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There are several reconfiguring-network models of parallel
computation that are considered in the published literature,
depending on their switching capabilities. Can these recon-
figurable models be the basis for the design of massively parallel
computers? Perhaps the most fundamental related issue is vir-
tual parallelism, or the self-simulation problem: Given an algo-
rithm which is designed for a large reconfigurable mesh, can
it be executed efficiently on a smaller reconfigurable mesh? In
this work, we give several positive answers to the self-simulation
problem. We show that the simulation of a reconfiguring mesh
by a smaller one can be carried optimally and using standard
methods on the model in which buses are established along
rows or along columns. A novel technique is shown to achieve
asymptotically optimal self simulation on models which allow
buses to switch column and row edges, provided that a bus is
a “linear” path of connected edges. Finally, for models in
which a bus is any subgraph of the underlying mesh, efficient
simulations are presented, paying by an extra factor which is
polylogarithmic in the size of the simulated mesh. Although the
self-simulation algorithms are complex and require extensive
bookkeeping operations, the required space is asymptotically
optimal. © 1995 Academic Press, Inc.

1. INTRODUCTION

The basic idea of a reconfigurable network is to enable
flexible connection patterns, by allowing nodes to connect
and disconnect their adjacent edges in various patterns.
This yields a variety of possible topologies for the network
and enables the program to exploit this topological variety
in order to speed up the computation.

Informally, a reconfigurable network operates as fol-
lows. Essentially, the edges of the network are viewed as
building blocks for larger bus components. The network
dynamically reconfigures itself at each time step, where an
allowable configuration is a partition of the network into
a set of edge-disjoint buses. A crucial point is that the
reconfiguration process is carried out locally at each pro-
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cessor (or switch) of the network. That is, at the beginning
of each step during the execution of a program, each switch
in the network fixes its local configuration by partitioning
its collection of edges into some allowable combination of
subsets. Two adjacent edges that are grouped by a switch
into the same partition are viewed as if they were (hard-
ware) connected.

There are several reconfiguring models that are consid-
ered in the published literature, depending on their switch
capabilities. In this work, we focus on two-dimensional
arrays (or, meshes) operating in three of the more popu-
lar models:

Horizontal-Vertical Reconfigurable Mesh (HV-RN
Model). The switches may change the configuration of
the network so that buses of different lengths are formed
horizontally along rows and vertically along columns. Thus,
a single bus cannot ‘“‘change directions” by using both
horizontal and vertical bus components (mesh edges) [15,
12, 23]. A VLSI chip called YUPPIE (Yorktown Ultra
Paralle! Polymorphic Image Engine) has been imple-
mented to demonstrate the feasibility of this reconfigura-
tion style [14, 16].

Linear Reconfigurable Mesh (LRN Model). A bus may
consist of any connected path of edges, not only vertical
or only horizontal. In this model, however, only “‘linear”
buses are composed, so that a bus component is attached
to at most one other bus component at each end. Many
results present efficient algorithms on the linear reconfig-
urable mesh. Some of these algorithms achieve constant
running time (even when this is not possible using the
popular PRAM model), and some match known Area X
Time? lower bounds. These results include arithmetic oper-
ations [19, 8, 21], sorting and selection [2, 10, 9, 20, 6],
image processing applications [11, 7], and others [18, 2, 4].

General Reconfigurable Mesh (RN Model). A config-
uration of buses is any partition of the network into edge-
disjoint subgraphs, so buses are not necessarily linear.
Efficient algorithms were presented on the general recon-
figurable mesh, including for example a constant time tran-
sitive closure algorithm [26, 27]. A version of this model,
namely, the CAAPP (Content Addressable Array Parallel
Processor), consisting of a 2-D array of 512 X 512 bit-serial
processors, was implemented [28, 29].
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In [3. 24]. the expanding volume of reconfigurable results
and architectures was given a theoretical treatment. For
example, it was shown that the set of problems computable
in constant time on a polynomial size mesh in the linear
model is exactly the set of problems computable by a log-
space Turing machine. The corresponding sct in the gen-
eral model contains exactly all the problems that are com-
putable by a logspace Turing machine having a symmetric
logspace oracle. Thus the general model is expected to be
more powerful than the linear one. In particular, these
results may explain the existence of a fairly simple constant
time connected components algorithm on the general re-
configurable mesh [26], while no such equivalent is known
on the linear reconfiguring mesh.

Some work was carried in the direction of simulating
general networks using a larger two-dimensional mesh. It
was shown that any constant degree reconfiguring network
may be simulated with no slow-down by a reconfiguring
two-dimensional mesh, paying by a quadratic blow-up of
the number of processors 3, 24]. This result was improved
for the case of d-dimensional meshes: An n“-nodes d-di-
mensional mesh can be simulated by a two-dimensional
mesh with O(n*?"*) processors [22].

1.1. This Work: Optimal Simulations

The question we are interested in this work is whether
reconfigurable models (in particular, two-dimensional re-
configurable arrays) can form the basis for the design of
massively parallel computers. Perhaps the most basic as-
pect of this question is the efficiency and ease of algorithms
design. Usually, for a certain problem, the solution is given
by an algorithm which is suitable for input of size n, where
the number of computing processors may be a function of
n. It is assumed by the algorithm designer that as many
processors as required by his algorithm are simultaneously
available for his program. This assumption frees him from
the need to know the exact size of the machine he is
working on, and thus considerably eases the programming
task. Furthermore, independence of machine size is also
a desired feature for reasons of software portability.

By the above discussion, it is desirable that the assign-
ment of logical processors to the available physical ones
be automatically determined by the compiler. To this end.,
the compiler should write an efficient self-simulation pro-
gram of a large machine having many processors by a
smaller machine with less processors. Hence the ability of
efficiently achieving the logical to physical mapping is an
extremely important property of any model for parallel
computation. In its absence, it is not likely that the model
will be chosen for a direct implementation on existing ar-
chitectures.

Despite the large number of efficient algorithms that are
known for reconfigurable arrays, none of the models was
previously shown to support optimal self simulations. In
this work, we give several positive answers to this problem.
We present asymptotically optimal and almost optimal self-

simulation results of large reconfigurable-mesh machines
by smaller ones. We have the following (informally
stated) results:

(1) Using standard simulation techniques the mesh in
the HV-RN model exhibits optimal self simulations (Sec-
tion 3.1).

(2) Although using the same method fails in the LRN
model (Section 3.2), a technique is developed to achieve
asymptotically optimal self simulation for that model, too
(Section 4).

(3) A third algorithm presents self simulations in the
RN model, paying by an extra slowdown which is poly-
logarithmic in the size of the simulated mesh (Section 5).

The self-simulation algorithms are very complex and
require lots of bookkeeping operations. We show that in all
of our algorithms the required space for the bookkeeping is
asymptotically optimal. Yet, to avoid painful reading, we
do not cope with constants minimization. In addition, al-
though given for the mesh, the simulation results may be
applied to arbitrary rectangles as well.

2. RECONFIGURING MODELS OF
COMPUTATION—PRELIMINARIES

A reconfigurable network is a network of processors
operating synchronously. The processors residing at the
nodes of the network perform the same program, taking
local decisions and calculations according to the input and
locally stored data. Input and output locations are specified
by the problem to be solved, so that initially, each input
item is available at a single node of the network, and
eventually, each output item is stored by one.

A single node of the network may consist of a computing
unit, a memory unit and a switch with reconnection capabil-
ity. In the sequel, we use the notions of switch, processor,
and retwork node in an interchangeable manner.

A single time step of a reconfigurable network computa-
tion is composed of the following substeps:

Substep 1. The network selects a configuration H of
the buses, and reconfigures itself to H. This is done by
local decisions taken at each switch.

Substep 2. One or more of the processors connected
by a bus transmit a message on the bus. These processors
are called the speakers of the bus.

Substep 3. Several of the processors connected by the
bus attempt to read the message transmitted on the bus
by the speaker(s). These processors are called the readers
of the bus.

Substep 4. Some local computation is taken by every
Processor.

At each time step, a bus may take one of the following
three states. Idle, no processor transmits; Speak, there is
one or more speakers, all sending the same message; Error,
there is more than one speaker, and two or more messages
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are different. An Error state is detectable by all processors
connected by the corresponding bus, but the messages are
assumed to be destroyed. Thus, the bus accessing capability
is similar to that of the popular Collision CRCW PRAM.

2.1. Switch Operations

The general reconfigurable network model, as presented
above, does not specify the exact operation of the switches.
In this paper, we consider three basic variants:

General RN (RN Model). The switch may partition its
collection of edges into any combination of subsets, where
all edges in a subset are connected as building blocks for
the same bus. Thus the possible network configurations
are any partition into edge-disjoint connected subgraphs.

Linear RN (LRN Model). The switch may partition its
collection of edges into any combination of connected pairs
and singletons. Hence buses are of the form of a path (or
a cycle) and the global configurations is a partition of the
network into paths, or a set of edge-disjoint linear buses.

Horizontal-Vertical RN (HV-RN Model). Buses are
formed either along rows (horizontally) or along columns
(vertically), but may not contain building blocks from
both dimensions.

Observe that a network operating in the HV-RN model
has a subset of the set of possible configurations of the
same network operating in the LRN model. The same
applies to the LRN and the more general RN models.

We omit the description of other switching variants that
are considered in the literature. Nevertheless, our methods
may be applied to some of these models as well.

2.2. Simulations and Slowdown

Let 3 and R’ be two reconfigurable networks operating
in any of the models defined in Section 2.1. & and R’ may
have the same underlying topology or they may differ in
their structure. They may be operating in the same model,
or they may have different types of switches. We say that
R’ simulates a single step of R with slowdown C if for any
single-step algorithm that is executed by & there is a C-
step algorithm that is executed by R’ achieving the same
computational task. We say that R’ simulates R with slow-
down C if for any algorithm A that is executed by R there
is a step-by-step simulation algorithm A’ that is executed
by R’ achieving the same computational task, and in which
each step of A is simulated with slowdown C. When C =
1 we say that the simulation is carried with no siowdown.

Typically, we assign the tasks carried by processors from
R to be executed by processors from &’. We say that
processor x in R’ simulates processors (say) y, z, w in R
if x carries the tasks of y, z, and w during the simulation.
Mapping of simulated to simulating processes may change
at different steps of the simulated algorithm. More com-
monly, however, a fixed mapping M and a simulation of a

single, arbitrary step which is consistent with M is shown
with slowdown d. The latter is thus a simulation of any
algorithm with slowdown d, given that the input is consis-
tent with M.

The above definitions formalize the intuitive notion of
“simulation.” However, since & and ' may have a differ-
ent structure, a certain computational task may require a
specific placement and timing of the input and output
items. For the sake of simplicity, we will not define these
requirements in a formal fashion. Rather, we assume that
they are fulfilled in some “‘satisfactory” way.

Another issue is the resource requirements by the simu-
lating network. In particular, when presenting a simulation
we have to determine the memory requirements by the
simulating processors. For example, each processor in a
large network which is simulated by a processor in a smaller
network is allocated a special buffer in the memory of
the simulating processor, in which information about the
simulated processor is stored: input and output, local con-
figuration, information about crossing buses, readers and
writers on these buses, etc. However, we always assume
that the computing power of the processors is equivalent
for the simulating and the simulated networks. Moreover,
the bus bandwidth, namely, the maximal number of bits
in a message that is transmitted on the bus in a single step,
is the same for both networks (however, not less than
sizeof(id) in the simulated network).

2.3. The RLA and the Bus-Splitting Method

The most simple connected topology is the Reconfigur-
able Linear Array (RLA). An RLA consists of n processors
labeled {0, ..., n — 1}. Processor { is connected to processors
i—landi+1ifl1 =i=n -2 toprocessor 1 if i =0
and to processor n — 2 if i = n — 1. Thus, for a processor
of a RLA there are only two local configurations: either
connect or disconnect the edges. The set of allowable
global configurations of an RLA is the set of all 2"72 split-
tings of the n — 1 edges into smaller linear arrays. We may
view the RLA as a path going from “left” to “right.”

One of the most basic techniques in computing with
reconfiguring arrays is called bus splitting [18]. Consider
the RLA and suppose some arbitrary subset of its proces-
sors store input values, a single value at each processor.
Then, in a single step, the rightmost processor in the RLA
can have one of these values. This is done as follows: The
processors which do not have input values connect their
edges, while the others disconnect and transmit their values
to the right. Clearly, the rightmost input value (if exists)
will be read by the rightmost processor of the RLA

3 Although the bus splitting method is very simple, it gives an indication
of the power of the reconfiguring model. In particular, if the input values
are 1's and the processors with no input are assumed to store 0’s, then
the OR of the input is computed in a single step. In comparison, for the
same operation in the CREW model, one needs time which is logarithmic
in the number of processors [5].
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2.4. The Mesh and the Folding Mapping

The reconfigurable mesh is the underlying topology
which is the most popular in the literature and which is
also the topology considered in this work. One of the
reasons for the popularity of the mesh is its universality.
For example, by paying a quadratic blow-up in the number
of processors, any network may be simulated by a two-
dimensional mesh with no slowdown [24, 3}.

The n X n reconfigurable mesh, called the n-mesh, or
the mesh of size n, is composed of an array of n columns
and n rows of processors, with edges connecting each pro-
cessor to its four neighbors (or fewer, for borderline pro-
cessors). We refer to the processor at the ith row and the
jthcolumn as [i — 1, — 1].

Only four local configurations are supported by the
switch of the HV-RN mesh. These are {I. — R, U — D},
&,4U — D}, {L — R}. The linear reconfiguring mesh (LRN)
supports six additional local configurations. All ten LRN
local configurations are depicted in Fig. 1. The RN mesh
further supports five additional configurations that are not
supported by the LRN mesh. These are depicted in Fig. 2.

For convenience, we envision the mesh as embedded in
the plane so that row 0 is at the top and column 0 is to
the left.

The following function is sometimes used for mapping
large meshes into smaller ones:

l

-

Local configurations supported by the switch of the mesh in the LRN model.

mmod p if mdivpiseven
FOLD(m) = .

p—1—(mmodp) otherwise
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We use
[r, c] = [FOLD(r), FOLD(c)]

for mapping a processor [r, c] of a large mesh into the p-
mesh. This has the same effect as that of folding a large
page of paper several times into a square of size p X p. A
point on the p-sized square ‘‘simulates™ all points of the
folded page that are stabbed when pushing a pin at this
point.

In order to simplify the presentation of our algorithms,
we describe the global configurations taken by the network
and the actions performed by the processors in a nonformatl
way. For example, by saying that ‘‘each processor of the
bottom row transmits (some message) on its column” we
mean the following. First, set the global configuration so
that all columns are connected, forming vertical buses, and
processors at different columns are disconnected. This is
done by using the {U — D} local configuration at all proces-
sors. Then, let [0, i — 1], the ith processor of the bottom
row, be the speaker of the bus created on column i — 1.
The readers are all the rest of the processors of that column.

3. THE CONTRACTION METHOD

In this section, we show that the straightforward ap-
proach of simulating each submesh with a single processor
gives a self-simulation algorithm with optimal asymptotic
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FIG. 2. Local configurations that are supported by a switch of the mesh in the RN model and are not supported by a switch of the mesh in

the LRN model.
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slowdown on meshes that operate in the HV-RN model.®
We call this technique the contraction method, as sub-
meshes may be viewed as if they are contracted into a single
processor. We then proceed to show that the contraction
method fails to achieve efficient self simulation for the
LRN and the RN models.

3.1. Optimal Self Simulations in HV-RN Meshes

The HV-RN algorithm is based on the simulation of an
n/p-submesh of the n-mesh by a single processor of the p-
mesh (We assume that n/p is an integer), as shown in the
following lemma.

LemMma 3.1, In the HV-RN model, a single processor
can simulate the I-mesh with slowdown 412,

Proof. In the HV-RN model, buses are formed either
along rows or along columns. This implies that movement
of a single message on a bus can be determined by consider-
ing one-dimensional arrays of processors of the /-mesh. In
other words, we need only to consider the simulation of a
row or a column of the /-mesh. The proof will be completed
by showing that the simulation of a single row (similarly,
a single column) can be done by a single processor with
slowdown 2/.

The simulation of an /-processor RLA by a single proces-
sor is carried in a double pass of on the RLA: left-to-
right and then right-to-left. In the first pass, the simulating
processor simulates RLA processors 0, 1, ... / — 1 in that
order. The operations and decisions of each processor are
determined, and the simulating processor collects data
about transmitied messages or error states. When a simu-
lating processor disconnects, so that one bus is terminating
and one is starting, the data concerning the terminating
bus is stored. In the reverse pass, the data stored at the
rightmost processor of each bus is dispersed to the rest of
the processors of this bus which are readers. B

Using Lemma 3.1, we get the following theorem.

TueoreM 3.1.  In the HV-RN model, the simulation of

the n-mesh by a p-mesh can be completed with slowdown
5(nlp)* + O(nlp).

Proof. We will show the simulation of a single step.
Each processor in the p-mesh simulates an n/p-submesh
of the n-mesh. More precisely, processor [i, j] of the p-
mesh (where 0 = i, j = p — 1) simulates the submesh of
the n-mesh consisting of the processors [k, /], for all
infp =k < (i + 1)n/p and jnip = 1 < (j + 1)n/p. The
processors [k, /] for which & or I get extreme values in
these ranges compose the boundary of the submesh. A
row in a n/p-submesh is called a row-segment (of the corre-
sponding row of the n-mesh). The rightmost and leftmost
processors of a row-segment belong to the boundary. Simi-
lar terminology apply to column and column-segments.

® A result similar to the one obtained in Section 3 was shown indepen-
dently by Maresca and Li [17].

ALGORITHM HV-RN Simulation. The algorithm con-
sists of three phases. In the first phase, each processor
of the p-mesh simulates the corresponding submesh. By
Lemma 3.1, this phase takes 4(n/p)* steps. We make a
minor change in the algorithm from Lemma 3.1 as follows.
The algorithm notifies a boundary processor in each seg-
ment whether it is connected by a bus to the other bound-
ary processor in that segment. Moreover, the information
includes whether there was a speaking or a reading proces-
sor in the “‘internal part” of any bus reaching a bound-
ary processor.

The second phase consists of n/p steps. These corre-
spond to the n/p rows (columns) of the n-mesh that are
simulated by every row (column) of the p-mesh. Let x be
a processor of the p-mesh and let M, the submesh which
is simulated by x. During the second phase x collaborates
with the rest of the processors in its row (column) to simu-
late the intersubmesh bus connections. In the ith step of
this phase, x simulates intersubmesh connections for the
ith row-segment (column-segment) of M,. Let us consider
simulation of row only, the details for the column are
similar.

Let z be the leftmost processor of the ith row-segment
in M, and let y be the corresponding rightmost processor.
During the second phase x simulates the connections of
z and y to their neighbors which belong to neighboring
submeshes. The connections, denoted z, grr and yriGu7,
correspond to the left and right edges of x, which are
denoted x; grr and xgicy7, TESPECtively. We consider two
cases:

1. If z.err and ygrigur belong to different buses, then
x disconnects x; gy from xgiour. Let By ger and Bgrigur
denote the subbuses in which z; zrr and yg,yr take part,
respectively. If the part of B, grr that is contained in M,
contains a speaker, then x speaks on x; gxr (while checking
the state of the bus for an error). If, on the other hand, it
contains only readers, then x reads from x;grr. As ex-
plained above, this information is stored in x during the
first phase. Similar decisions are made for reading and
speaking on Xg;Gur-

2. If zyprr and ygigyr take part in the same bus, then
X connects X, grr t0 Xpigur. X reads and speaks according
to the operations that are taken by the processors of the
ith row-segment of M,.

The third phase involves a single pass of each processor
on the corresponding simulated submesh. Information that
was read during the second phase is informed to all simu-
lated processors which take part in buses which cross sub-
mesh border lines. This is completed in (n/p)® +
O(ni/p) steps. B

3.2. The Contraction Method Fails in Stronger Models

The contraction method used above for the simulation
of an n-mesh by a p-mesh, involves splitting the larger
mesh into submeshes, each of which is simulated by a



6 BEN-ASHER, GORDON, AND SCHUSTER

O O
O O

O O
O O

O O
O O
O O
O O

L
NZEEAN
o0,

L/
N

O N
£
NN
L
o/

QO

CROIRIONCINION®

O\
N N
O\

N 0N
K'\J} NN

O O] 100 00 0O

D
O
-
M
AN
a7
N\
A \)

P OTTP-OTTP-Q| |O O
O Ol P DD P||OO
F 2 SN2 N I SN Y 2 A O
NN\ NN W AN
OO |D DD D io
I
1 7 2 6 3 5 4
FIG.3. Lowerbound example: buses are shuffled so that bus i shares
an exit of a simulating mesh processor with all the buses 1,2, .., i — L.

processor of the smaller mesh (see first and third phases
of the algorithm).” Another characteristic of the above
simulation algorithm is that a bus which crosses submesh
boundaries is simulated in a single step by a bus, solely
dedicated for that purpose (second phase of the algorithm).
We now give an example how this straightforward ap-
proach fails to achieve efficient simulations in the LRN or
the RN models.

Suppose an LRN n-mesh is to be simulated by an LRN
n/2-mesh. We let processor [i, j ] in the n/2-mesh simulate
processors [2i, 2], [2{ +1, 2j], [24, 2j + 1}, and [2i + 1,
2j + 1] of the n-mesh. Consider a simulation of a step of
the n-mesh in which the bus configuration is as shown in
Fig. 3. The figure shows the mapping of processors of the
n-mesh, represented by circles, to the simulating processors
of the n/2-mesh, represented by squares. Buses are drawn

7 Indeed, this is the common approach of simulating a processor array
with a smaller one, e.g., in the fixed connection model of computation
[13. p. 234].

by thick black lines. Let us describe the configuration of
the n-mesh, as shown in Fig. 3:

Bus 1 starts at processor |0, 0] (in the n-mesh) and goes
straight, all the way down to processor [n — 1, 0]. Bus 2
starts also at processor [0, 0], goes right to processor [0,
1], down to [2, 1], right to {2, 2], and then all the way down
to [n — 1, 2]. Note that bus 2 shares with bus 1 the Down
exit of the simulating processor [0, 0]. Hence, according
to our policy of simulating a full (boundary crossing) bus
in a single step, we need two different steps to simulate
bus | and bus 2. Bus 2 has two stair-like bends. Bus 3 has
three such bends: Start [2, 0], right to [2, 1], down to [4,
1] (parallel to bus 1), right to [4, 3], down to [6, 3] (parallel
to bus 2), right to [6, 4], and down all the way to [n — 1,
4]. Again, since bus 3 shares edges of the simulating mesh
with both bus 1 and bus 2, it is simulated in a step when
both bus 1 and bus 2 are not simulated.

We may proceed in the way described above in order
to construct n/2 + 1 such buses. Bus i shares exits of the
simulating mesh with all the buses j for 1 = j < i We
conclude that for the given configuration and under the
given assumptions on the operation of the simulating algo-
rithm, the simulation takes at least {}(n) steps regardless
of the size of the simulating mesh.

4. OPTIMAL SIMULATIONS FOR LRN MESHES

Although it was demonstrated in Section 3.2 that the
straightforward approach fails to achieve efficient self sim-
ulations of LRN meshes, we show in this section a more
involved technique which obtains optimal simulation re-
sults. The main result of this section is the following
theorem.

THEOREM 4.1.  The simulation of the n-mesh by the
m-mesh in the LRN model is completed with slowdown
O((n/m)*). The simulation algorithm uses O ((n/m)?*) ex-
tra space at each processor of the m-mesh.

The algorithm uses a variant of a connected components
algorithm for graphs having only linear and noncyclic com-
ponents, which may be of interest in its own right.

4.1. Preliminaries

We first note that a processor writing on a linear bus
may do so in two different modes: (a) the bus is connected
inside the processor, and the processor simply writes on
the bus; (b) the bus is not connected inside the processor,
and the processor writes a message on each end of the bus
(in theory, these messages may be different).

Our notion of a linear bus allows cycles. Whenever we
have a configuration of buses and speakers on the buses,
we say that condition NSC (No Speaker Cycle) holds if
there is no speaker on a cycle. Note that a speaker in mode
(b) above cannot be on a cycle, because the bus is not
connected inside the processor. Our next observation is
that any configuration of linear buses and speakers can
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LRN configurations:

Double directed Buses:

P e e |

N . .
Q‘Ek \ikm)jslm{]:m;
NN NaNdiEnIEN
et e
T T T T

FIG. 4. LRN bus configurations in an n-mesh, and the corresponding double directed buses in a 2n-mesh.

be simulated in two steps in a straightforward way by a
configuration satisfying NSC as follows:

Step 1. A processor that broadcasts in mode (a) does
not connect the buses inside, and simply broadcasts its
message in mode (b) on the two bus ends; it also listens
to the two ends.

Step 2. 1f the above processor detected an error at one
or both bus ends, it now broadcasts a special error message
on both bus ends. All processors receiving such an error
message will know that the simulated bus (which may be
a cycle) had inconsistent messages written on it. If the
processor did not detect an error, it now connects the
bus ends and listens (without broadcasting), in case some
processor broadcasts an error message.

The leader election problem for a bus is the problem of
all the processors agreeing on one of them being a leader.
When the bus is linear and not a cycle, this problem can
be solved in O(1) time by simulating an n-mesh with a 2n-
mesh as follows: Every processor of the n-mesh is simulated
by a 2 X 2 square of processors on the 2n-mesh, and every
bus is simulated by a double bus on the 2n-mesh. This
double bus can be viewed as having 2 directions, as illus-
trated in Fig. 4. In the 2n-mesh, bus directions alternate
on the rows and also on the columns. A speaker on the
n-mesh is simulated by some of the simulating four proces-
sors broadcasting only in outgoing directions. The two sets
of buses are used to prevent concurrent write by the end
processors.

To explain this, note from our previous comments that
it is sufficient to simulate processors writing in mode (b).
Consider the case of processor P (in Fig. 4) writing on bus
a. P is simulated by processors P1 to P4, and bus a is
simulated by buses al and a2. Only processor P4 writes

on the outgoing bus a2. P3 only listens to its bus al. Natu-
rally, each step of the n-mesh must be simulated by three
steps of the 2n-mesh:

¢ An internal step for each 2 X 2 square assigning the
tasks to the four processors.

+ An external step, where each processor interacts with
the processors outside the squares.

* An internal step, where the four processors exchange
the information from step 2.

The leader is elected by having each endpoint of the
bus transmit its id towards the other end. All processors
on the bus listen, and the processor with the smallest id is
chosen by all as the leader. Note that on each bus, only
two processors will transmit.

4.2. LCC: Linear-Connected Components

DEeFINITION 4.1. A graph G = (V, E) is called linear
if the degree of every vertex is <2, and G is acyclic.

The LCC problem is defined in the following lemma,
stating our main result for 4.2

LeMMA 4.1. Let G = (V, E) be a linear graph, |V| =
n. Assume that the adjacency matrix M = (m;;) of G is
stored on the 2n-mesh, where m,; is stored on processor
[2i,2f]. Then the connected components of G can be found
in constant time, and the output is stored such that for every
0 < i < n, [2i, 0] holds some j such that vertices i and | are
connected, and two connected vertices hold the same value.

Proof. We consider an n-mesh in which every proces-
sor is the image of a 2-submesh of the 2n-mesh. We call
the processors of the given n-mesh v-processors (virtual
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processors). A bus in the n-mesh can be represented by
two paths in the 2n-mesh, so that a leader may be elected
as described above. The rest of the proof is described in
terms of the n-mesh, so that [, j] denotes the v-processor
in row i, column j.

We now describe the algorithm solving the LCC
problem:

1. Every processor [i, j] that has m,; = 1 determines

which of the following cases hold:

(a) it is a unique 1 in its row;

(b) itis a unique 1 in its column;

(c) if it is not unique in its row, the direction (left
or right) of the other 1 in the same row;

(d) ifitis not unique in its column, the direction (up
or down) of the other 1 in the same column.

Note that there are at most two 1's in a row or column,
because the degree of every vertex is = 2.

2. If my; =0, [i, j] connects the buses {L — R, U -

D}. Else:

(a) if m,; is the unique 1 in its row, [/, j] does not
connect itself to anything in its row;

(b) similar to (a), but for the column;

(c) if there is another 1 in the same row, [, j] con-
nects itself to the bus in the direction of that 1.

(d) similar to (c), but for the column.

Note that conditions (a)-(d) can be tested using bus-
splitting. Figure 8b below shows the 1's of a 10 X 10 adja-
cency matrix and the corresponding bus configuration. Ob-
serve that when [i, /] connects itself to a 1 in its column
and to a 1 in its row, the corresponding bus segments are
connected together inside [4, j].

Define G, ¢ to be the graph formed according to step
2 (above), ie., Gree = (Vices Ercc), where

Viee ={[i.]] ( m; ;= 1}

Eicc=

o [i,j], [k, 1} are connected together by
{{[!sl]s [&. 1]} :

a horizontal or a vertical bus segment
Denote by G’ the dual graph of G. Namely,
G' =(E. {{ei.ex} | ey N ey € V).

CrLamm 4.1,
ies of G'.

G cc contains exactly two isomorphic cop-

Proof. Consider a connected component of G’, which
is a path of maximal length e, e;, ..., ¢;, and ¢; N ¢, €

V. For some v;, v; € V, e, = (v;, v;). Assume w.l.o.g. that
i <j.The isomorphic copy of e, ..., e, is obtained as follows:

{[i,k] ife; = (i, k)
e —Lj} e— k] ifes=(j.k)

The maps of e, e> are connected in G, ¢, either on row
i or column j. This construction continues for es, ..., €.
The second copy of the connected component e, ..., ¢ is
obtained by mapping e, to [j, i/] (when i < j), and proceed-
ing in the same manner as above. Note that the two copies
of the connected components are reflections of each other
about the main diagonal of the mesh. W

Back to the LCC algorithm: every connected component
in G cc now chooses a unique label as follows: A v-proces-
sor [i, j] knows that it is the end of a linear component
when it holds a unique 1 in its row or column. Each end
[Z, j] transmits min(/, j ) to the other end (using the double
path mentioned in the preliminaries). Now all v-processors
on the linear component choose the minimum number that
was transmitted as the component’s label. Note that the
reflection component about the diagonal will have the
same label.

To transmit the information to column 0, we do the
following: Every v-processor holding a 1 transmits / (the
component label) to the left, provided there is no edge of
Gicc to its left; see « in Fig. 8b. This transition is done
by letting every v-processor holding a 0 connect {L — R},
while v-processors which do have a 1 disconnect their edges
() and transmit i to the left. Note that between them,
the two isomorphic copies of a connected component trans-
mit all necessary information to column 0. The label trans-
mitted to every processor in column 0 is shown in Fig. 8b
in parentheses to its left.

This completes the proof of Lemma 4.1. ®

The LCC’ Problem. Consider now a graph G such that
every vertex degree is < 2, but we now allow cycles. The
LCC’ problem is defined the same as the LCC problem,
except that all processors that are on any cycle are consid-
ered as belonging to the same component. The component
label for such processors will be some special value
CYCLE. A simple modification of the LCC will solve the
LCC’ problem: At the stage where each end [/, j | transmits
min(/, j) to the other end, v-processors that are on a cycle
will not detect anything on the bus; from this they will
conclude that they are on a cycle, and assign themselves
the component value CYCLE. For convenience, we hence-
forth use LCC to refer to LCC'.

4.3. The LRN Simulation Algorithm:
Introduction and Sketch

Recall that n denotes the size of the simulated mesh and
m is the size of the simulating mesh. If m < 4, we simulate
the n-mesh with one processor. Else, let p = m/4. We shall
use a p-mesh to traverse the n-mesh. As we have seen, the
m-mesh solves the LCC problem on 2p vertices in O(1)
time, given that the inputs reside in every alternative pro-
Cessor.

We define a mapping of the p-mesh into the m-mesh so
that its image can simulate the p-mesh with no slowdown.

Mapping. Processor [i, j] of the p-mesh is mapped to
processor [4i, 4j] of the m-mesh.
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A
B
C
FIG.5. Buses A, B, and C encountered and joined inside a window.
Simulation. Processors of the m-mesh which are not

the image of the p-mesh fix their configuration as {L. — R,
U — D} It is straightforward to see that in this way the
m-mesh can simulate the p-mesh and can also solve the
LCC problem on 2p vertices. In the rest of the algorithm
description, we use the term p-mesh to refer to the image
of the p-mesh in the given m-mesh.

ALcoritHM LRN Simulation (Sketch). We assume
that » is divisible by p. We divide the n-mesh into (n/p)>
submeshes of size p X p; each such submesh is called a
window. The basic idea is to traverse the n-mesh with the
p-mesh in snake-like order. The p-mesh moves from one
window to the next one, keeping track of all necessary bus
information. At every window position of the p-mesh, the
following occurs: New bus segments are encountered, old
bus segments enter the window from a previously traversed
window, and some old bus segments join up with others
(see Fig. 5). In addition, some processors may write on a
bus. Every new bus segment that is encountered is given
some unique id, and when bus segments join, the combined
segment is given a single id; this is where the LCC is used.
At the end of the forward traversal of the window, we
have all the separate buses, each identified by a unique id,
and we also have all the necessary broadcast information
for each bus. The window is then moved over the n-mesh
in the opposite order. At every position, the bus segments
in the window are set up, and the broadcast information
for each segment is broadcast from one of its endpoints.
Note that every bus which is contained entirely inside some
window can be handled in a simple manner, so we assume
from now on that we are only dealing with buses that cross
window boundaries.

According to our previous comments, it suffices to con-
sider the case when condition NSC holds. Note that there
may still be cycles, but there will be no speakers on a cycle.
Also, any bus cycle eventually results in a cycle in the LCC
graph, and the processors on such a cycle will become
aware of it by getting the value CYCLE, as explained in
the description of the LCC’ problem (end of Section 4.2).
During the backsweep, such bus cycles will all have the id
CYCLE, but the broadcast message will be null.

To begin with, we assume that all the bus connections
in the n-mesh are stored in the processors of the p-mesh
in the folding mapping, as described in Section 2.4. Thus,

in moving from one window to the next in the snake-
like order, the two rows or columns on either side of the
boundary are simulated by the same row or column of
the window. Information about speakers is also stored in
this manner.

In general, every window position is bordered by up to
four windows, of which at most two are “‘old” window
positions, and at most two are ‘‘future’”” window positions.
Furthermore, one old window is the immediate predeces-
sor of the current position, and one future window is the
immediate successor (called the “next” window). Since the
buses are linear, each bus segment may have two ends
leaving a window to a future window position. The border
processor at which a bus end leaves a window retains all
relevant information about the bus, including the status of
the other end of the bus and the identity of the processor
“in charge” of the other end. Whenever two or more bus
segments merge in a window (due to the LCC operation),
they become a single bus segment, with only two ends.
The processors “‘in charge” of these ends are informed
about the id of the single bus segment.

As long as one end of a bus continues from the current
window to the next, it retains all relevant information about
the bus (including the status of the other end). However,
when a bus end does not continue into the next window
(e.g., if the bus segment terminates in the window), that
same bus may still be encountered in a future window. In
this case, a special mechanism (called the column stack)
is used to convey all necessary information to that bus in
the future window position.

The rest of this section is organized as follows. Section
4.4 introduces some necessary concepts and explains in
detail everything that happens inside a window. Section
4.5 gives the details of how dormant endpoints are updated.
Section 4.6 describes the column stack mechanism for up-
dating dormant endpoints. Section 4.7 gives a detailed de-
scription of the back-sweep.

4.4. The LRN Simulation Algorithm: Technical Details

We need some terminology to explain the method. A
bus segment that intersects a window is called “live” (or
active) in the window. If a segment was live in some window
W1 and is not live in some successive window W2 (and
did not terminate prior to W2), it is called ““dormant” with
respect to W2. For each bus segment active in a window,
the following is true (see Fig. 6):

New Segment. The segment starts in the window; such
a segment is called a “new” bus.

Entering Segment. The segment enters the window
from the immediate predecessor window; we call such a
segment an “‘entering’’ segment.

Awakening Segment. 'The segment enters the window
from an old window which is not the immediate predeces-
sor, which means that the segment was dormant with re-
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old window
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G - Going-to-sleep segment
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N - New segment

FIG. 6. Bus segments in a new window position.

spect to the predecessor; such a segment is called an “*awak-
ening’’ segment.

Terminating Segment. The entering or awakening seg-
ment terminates in the window; it is called an ‘“ending”™
or “‘terminating”’ segment.

Leaving Segment. The segment enters the next win-
dow: it is then called a “‘leaving™ segment.

Going-to-Sleep Segment. The segment enters a future
window which is not the next window, so it is dormant
with respect to the next window: we call such a segment
a "‘going-to-sleep” segment.

We now describe everything that happens inside a win-
dow. At first, the window configures all the buses in it
according to the information stored in the window's pro-
cessors. New buses are given id's by the processors through
which they leave the window (recall that we are only han-
dling buses which cross window boundaries). In case a new
bus leaves through two processors, one of them is elected
by the bus segment to assign the new bus an id. The simula-
tion algorithm performs the following steps:

1. If an entering segment has an awakening partner
(the other end of a bus segment with the same id), it
informs the awakening end of new developments, which
may include a new bus id and a broadcast message. Recall
that a live id is always aware of the status of its dormant
end and of the processor that retains this information.

2. Some awakening segments may not have an active
“other end” entering the window. The processor in charge
of the awakening segment is updated by a so-called “col-
umn stack™ which will be explained in detail later. This
mechanism ensures that the processor is updated in con-
stant time. The information in the column stack is placed
there by the other end of the bus at some previous window
in which the other end did not continue.

3. Every processor in charge of an entering or awaken-
ing segment now has the current id of the bus, and the

situation of the other current end of the bus, which may
also be entering or awakening. We now configure the buses
inside the window, according to the basic information
about the configuration of the buses. Every local bus seg-
ment (i.e., an intersection of a bus with the window) is
used so that each processor at the end of the local segment
has the information about the other end. This is done by
having both ends transmit the information along the local
segment, using the “double path™ existing in the underlying
2p-mesh, as mentioned in the preliminaries.

4. Consider a processor P, in charge of an entering or
awakening segment; see Fig. 7. Consider the linear bus
through P: one end leaves the window at the point where
the bus entered or woke up in the window. This end of
the bus may eventually reenter the same window, and if
it does so after passing only through windows that have
been processed, it will enter the window (or wake up)
through some processor-in-charge Q. The bus may reenter
the window more than once; we assume Q is the first such
processor along the bus from the direction of P. Our
method of retaining and conveying information will guar-
antee that P will have all the necessary information about
Q. The other end of the linear bus through Q may continue
inside the window and exit through another processor-in-
charge R. So P has information about zero, one, or two

~

FIG. 7.
Q and R.

A processor in charge P connected to processors in charge
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FIG. 8. Example of the LCC process applied to a bus configuration: (a) bus segments in a 5 X 5 window; (b) the corresponding LCC graph.

other processors-in-charge to which it is connected (at most
one such connection is inside the window and at most one
is outside the window). The fact that P is connected this
way to at most two processors is crucial, because it ensures
that the graph representing these connections is linear,
thus enabling the use of the LCC algorithm to find the
connected components and assign a unique id to each com-
ponent. Note that [0, 0] is a special case, since it may be
in charge of two segments, one entering and one awaken-
ing. It is therefore regarded in the following as two proces-
sors, numbered O (potentially in charge of an awakening
segment) and (' (potentially in charge of an entering seg-
ment. We label the processors in the top row 0, 1, 2, ...,
p — 1, and the processors in the left column ', p,
p + 1, .., 2p — 2. All these processors are now mapped
in a straightforward manner to the top row and the left
column of the 2p-mesh, in the order 0, 1, ... p — 1, 0,
p,pt+1,..2p—2

5. At this stage, the adjacency matrix corresponding
to the connections found above is set up in the 2p-mesh,
as follows: horizontal buses are configured, and the proces-
sors in column O (of the 2p-mesh) transmit the processor
labels (0,0, 1, 2, ..., 2p — 2) to which they are connected,
at most two labels per bus. All processors listen to the
broadcast, and if a processor in column k reads the label
k. it knows that it should hold the value 1 in the adjacency
matrix. Next, vertical buses are configured, and the above
step is repeated with the columns of the 2p-mesh.

ExaMmPLE. An example is given in Fig. 8. Figure 8a
shows a 5 X 5 window, moving from left to the right, and

the buses that are configured in it. Bus connections outside
the window are shown as dotted lines. Processors 5, 7, and
8 are in charge of entering bus segments, and processors
0, 1, 2, and 4 are in charge of awakening bus segments.
Each processor-in-charge knows whether it is connected
outside the window to another processor-in-charge; awak-
ening bus segments are informed of this by the column
stack mechanism. After the local segments are configured,
all processors-in-charge know to which other processors-
in-charge they are directly connected (inside or outside
the window). The 2p-mesh holding the adjacency matrix
is shown in Fig. 8b. Note that if one of the buses is a cycle,
it will eventually result in a cycle in the corresponding
LCC graph (a unique 1 in both its row and column is
considered a cycle).

6. An LCC is performed on the adjacency matrix on
the 2p-mesh. Since the actual mesh is of size m X m =
4p X 4p, by Lemma 4.1 the LCC can be done in O(1)
time. The LCC operation chooses one unique bus id for
all the segments that were found to belong to one bus.
Figure 8b also shows the bus segments resulting in the 2p-
mesh as a result of the LCC operation. In the case of a
cycle, it follows from our NSC assumption that there is no
speaker on this bus, so the LCC will assign the value CY-
CLE to its processors.

7. Using the connections of the LCC, any processor
carrying a message from a speaker now transmits its mes-
sage. At this stage, it is possible that there will be two or
more different messages, in which case the processors will
retain a special value ERROR as the bus message.
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P1

P2

FIG. 9. Case (a): two situations in which both ends are dormant.

8. Consider now a single bus and the situation of its
current endpoints. Each endpoint may be in one of three
states: inside the window, outside the window and dormant,
or outside the window but not dormant (this happens if
the window has already passed over an actual endpoint of
the bus). The current endpoints need to be updated of the
new bus /d (and perhaps of the broadcast information),
and this is done as follows:

(a) If acurrent endpoint is in the window, no updat-
ing is necessary, since it has all the necessary information
after the LCC.

(b) If a current endpoint is outside the window and
not dormant, we do not update it at this stage, because it
will not participate in any future LCC operations. It will
be updated during the back-sweep of the window (Sec-
tion 4.7).

(c) Consider now a current endpoint that is dormant.
We have to ensure that when it awakens, it will hold the
latest id (and any other relevant information) that has been
assigned to the bus. A naive approach is to try to update
itevery time a new id is found, but this is inefficient because
a dormant end may be updated many times before it wakes
up, so some method has to be found that will choose the
latest of these updates. The problem is that in some win-
dow, the same physical processor, say x, may be in charge
of several different dormant ends (which will wake up in
different future windows), so updating it in constant time
in the current window is impossible. One approach may
be to store all these updates in the column of x. However,
this, in turn, will require the extraction of the latest update
from the column (when the dormant endpoint awakes),
which cannot be done in constant time. The following
section describes our solution.

—

Pll A

P2

4.5. Updating a Dormant Endpoint

Our basic solution to updating a dormant end is to adopt
the lazy approach: As long as one end of the bus is active
and continues into the next window, it will take care of
the dormant end in the future. Only when it does not
continue, does it initiate an update operation for the dor-
mant end.

Consider now the portion(s) of the bus inside the win-
dow. Our assumption is that one current end—call it A—is
dormant, and let P1 denote the processor through which
A enters the current window, so P1 either borders the
previous window or some past window. Let B be the other
current end of the bus, and let P2 be the processor through
which the bus connected to B enters (or wakes in) the
window. There are four cases to consider, illustrated in
Figs. 9-12. In all these figures, the window with processors
P1 and P2 is the current window:

(a) B is dormant; see Fig. 9. It can be seen that during
the LCC, P1 and P2 correspond to the ends of a connected
component. We specify now that during the LCC the end-
points of such a component exchange all their information
about their current bus ends. So now both P1 and P2 have
all the information about A and B. The update action is
the following: P1 checks which of A or B is due to wake
earlier. If A is due to wake before B (or in the same window
as B), then P1 initiates an update of A using the “column-
stack mechanism” described later. Note that because B is
also dormant, then, by symmetry, P2 will do the same for
bus-end B. This guarantees that the dormant end which
wakes earlier will be able in the future to update the other
dormant end.

Pl

P2 B

FIG. 10. Case (b): B terminates in the current window.
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FIG. 11. Case (c): G continues into the next window.

(b) B terminates in the current window (Fig. 10). As
in case (a) above. Pl and P2 exchange information during
the LCC, and now P1 initiates a future update of A (using
the column-stack). Note that P1 and P2 may coincide.

(c) B continues from the current window into the next
window (Fig. 11). Again, P1 and P2 exchange information
during the LCC, but now P1 does not initiate an update
of A. The continuing end B will update (or initiate an
update of) A in some future window. Again, P1 and P2
may coincide.

(d) The bus ending in B goes to sleep in the current
window (Fig. 12). As above, Pl and P2 have each other’s
information about A and B after the LCC. P1 checks if A
will wake up before B. If so, P1 initiates an update of A.
Otherwise (i.e.. if B wakes up before A), A will be updated
in the future by B, so no update of A is initiated by P1.
Note that in this case, A and B cannot wake up together
in the same window. In the case that B wakes up before
A, B requires no updating since the entire bus segment
connecting A to B has already been processed by the win-
dow. Here. P1 and P2 can also coincide.

It remains to verify that the dormant end A is updated
once and only once by the above technique. It is easy to
see that it is updated at least once, depending on what
happens to B. To see that only one update is done, note
first that as long as B remains active, no update is done,
and this continues until B enters the window in which A
wakes up. So now consider all the other cases, and consider
the first time that A is updated; we shall see that this is
the only update to A. This update falls into categories (a),
(b), or (d) above, as follows.

If the first update is done according to case (a), then in
the window where the update was initiated, both A and B
are dormant and were found to belong to the same bus.
Hence, the entire bus section connecting A to B has already
been processed by the window, so no further updates to
A are possible (B will wake up after A or together with
A if an update was initiated).

If the first update was done according to case (b), then
there will be no further updates, because the entire bus
segment connecting A to B has been processed by the
window.

If the first update was done according to case (d), then
the entire bus segment between A and P2 has been pro-
cessed and so there will be no further updates (B will not
update A because it wakes up after A).

4.6. The Column Stack

The problem can be specified as follows: In some window
position, [, 0] wishes [0, k] to receive message m in a
future window w. We are given that for every 0 = i < p,
[i, 0] has just one such message to send. This is done
as follows:

1. Horizontal buses are configured.

2. All processors in column 0 that have a message to
send broadcast the triple (k, w, m) on the horizontal bus.

3. Every [, j] reads the triple (k, w, m) from the bus.
If j = k, [i, j] stores m in an internal array M[1..W], where
W denotes the total number of window positions, i.e.,
M[w] = m.

The retrieval of information from the column stack is
done at the beginning of every new window position w
as follows:

1. Vertical buses are configured. Only processors in
the first row listen to the bus.

2. Every [i, j] checks M[w]. If it is not empty, [i, j]
broadcasts M[w] on the bus.

3. Every processor in the first row that had a message
will now receive it.

As noted earlier, every awakening segment will receive at
most one such message, so in every column, at most one
processor will have a message to broadcast.

The size of the internal array M[1.W], as described
above, has to be (n/p)>. However, by using relativized
window numbers, we can modify it so that we only need
n/p — 1 memory locations, as follows:

Note that when a message has to be sent to a dormant
endpoint, that endpoint will awake in a window that is at
most 2n/p — 1 window positions away. Also, when the
current window position advances horizontally one posi-
tion, the window in which bus segments go to sleep gets
closer by two window positions (and the last window in
a horizontal run has no such “going to sleep” window).
Therefore, we can use a circular array of size n/p — 1 to
store and retrieve the messages. As the window advances,
we advance along the circular array, and always retrieve
messages from the current position on the array.

Pll A

FIG. 12. Case (d): B goes to sleep in the current window.
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4.7. The Back-Sweep

At the end of the forward sweep, the simulating window
has the following information:

1. For every bus: the final id of the bus, the last window
which the bus intersected, and the broadcast value (if any)
on the bus. Recall that the broadcast value may be ERROR
in the case when there were two or more different mes-
sages.

2. For every window position, we also have the follow-
ing information:

(a) For every bus segment in the window (recall
that we are only considering segments that cross window
boundaries), both local endpoints of the bus segment know
the id of the bus that was valid after the LCC in that
window.

(b) Every processor knows whether it had a 0 or 1
in the adjacency matrix of the LCC in that window, and
the configuration of the LCC graph.

(¢) All processors that were in charge of entering or
awakening bus segments hold the bus-ids that were valid
before and after the LCC.

The window is now swept in the exact reverse direction.
At every window position, the situation is somewhat analo-
gous to the forward sweep, but the actions—mainly the
transfer of information—are different. In order to avoid
confusion with the forward sweep, we shall add the prefix
“b-" to all words which may have ambiguous meaning.
Thus, b-first means the first time (in the back-sweep), which
is also the last time in the forward-sweep.

At every window position in the back-sweep, some or
all of the following may occur:

* A b-first bus is encountered. This means that in the
forward-sweep, this was the last window in which that
particular bus intersected the window.

* A b-new bus segment is encountered. Such a segment
may be a b-first bus, but it may also be a segment of a
non-b-first bus, e.g., in case the bus was encountered before
{(in the back-sweep) and both its ends became b-dormant.

» Some bus segments are b-entering (they were leaving
in the forward sweep).

* Some bus segments are b-continuing (they were enter-
ing segments in the forward sweep).

* Some bus segments are b-awakening (they were going-
to-sleep in the forward sweep).

* Some bus segments are b-going-to-sleep (they were
awakening segments in the forward sweep).

Denote by fid the final id that was given to a bus. For
convenience, we assume that the fid also codes the broad-
cast value (if any) on the bus. In case of two or more
conflicting broadcast values, this is easily detected by the
time we reach the last window (in the forward sweep)
which intersected the bus, and we assume that the fid also
codes a special ERROR value.

The fid of a bus is transmitted to the various bus seg-

ments in the various window positions in the following
manner:

At the b-first time that a bus is encountered, we have
the fid of the bus. One or both endpoints of such a segment
is b-continuing or b-going-to-sieep, so each such endpoint
will hold the fid of the bus.

At every window position, the following is done:

1. Every b-entering or b-awakening segment holds the
fid of its bus.

2. The column-stack is activated so that b-new (but not
b-first) segments now also hold the fid of their bus. Actu-
ally, only b-new segments that initiated a column-stack
message in the forward-sweep retrieve their fid in this
manner; the others will be updated in step 3 below.

3. The LCC is configured in the same way as in the
forward-sweep. In every (linear) component of the LCC,
at least one processor is in charge of either a b-first bus,
a b-new bus with an fid from the column-stack, a b-entering
segment, or a b-awakening segment. All such processors
hold the fid of the bus and they broadcast it along the
linear component of the LCC graph. Now, row and column
buses are configured so that processors in the first row and
column (in charge of local bus segments) receive the fid
from their row or column. in a manner similar to the trans-
fer of a component label in the LCC algorithm.

Invariant: Every processor in charge of a local (to the win-
dow) bus segment holds the fid of its bus.

4. The buses are now configured in the window, and
every processor in charge of a local bus segment broadcasts
the fid along the local segment to all processors in the
window which are on that segment.

5. We also take action to guarantee that b-new (but
not b-first) segments in b-future windows will receive their
fid. Recall that segments that were awakening (in the for-
ward-sweep) received information from segments that
were not continuing with their window. Although not men-
tioned earlier for the sake of clarity, we now specify that
among the information that was passed was the id of the
processor in charge of the segment that did not continue.
So now, every processor that received information from
the column stack in the forward sweep uses the column-
stack mechanism to pass the fid to the same processor in
charge of the b-new segment in the b-future window.

In order to prove the correctness of the algorithm, we
need to show that the invariant is true at every window
position. In the b-first window position (the very first posi-
tion in the back-sweep), any local bus segments are b-first
segments, so, as explained above, they have the fid of the
bus as found in the forward-sweep.

Assume that the invariant is true in all window positions
up to, and including, window position w; we shall show
that it remains true in the b-next position, which we denote
by w’. Consider all the local bus segments of w’; they fall
into the following categories: b-entering, b-awakening, b-
first, b-new (but not b-first).
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A b-entering segment has the fid because it had it, by
the invariant, in the b-previous window position w. A b-
awakening segment has its fid, because, according to the
invariant. it had it in the b-old window position in which
it b-went-to-sleep.

Any b-first bus segments have their correct fid, as has
already been explained. A b-new (but not b-first) segment
receives its fid either from the column-stack, as explained
above, or (if it did not initiate a column-stack message in
the forward sweep) from the LCC configuration. Note that
the correct fid is retrieved from the column-stack because,
by the invariant, all bus segments had their fid's in the
window in which the information was placed on the col-
umn-stack.

The backsweep completes the proof of Theorem 4.1.

4.8. Other Traversal Orders

It should be noted that the above algorithm can be modi-
fied to handle other traversal orders, at the expense of a
larger memory at each processor. The details, which may
be found in [1], are straightforward, and we omit them for
brevity. The larger memory is needed because the small
circular array used in the column-stack may no longer
be sufficient.

5. SELF SIMULATIONS OF MESHES—RN MODEL

For the RN model, we can show the following result
which may be suboptimal. In order to simplify the presenta-
tion of the main algorithm of this section, we assume that
n = 2*p for some positive integer k. Also, throughout the
presentation we will not care for constants, but rather will
try to make the asymptotic results as clear as possible. For
a table of size O((n/p)?) which is stored at the local mem-
ory of a processor, it is assumed to be accessed in O(1)
steps by that processor. Note that this implies a ®(log n)-
bits word model for the simulating machine. This is not
unreasonable, as the simulated and simulating processors
are assumed to be of the same size.

THEOREM 5.1. The simulation of the n-mesh by the
p-mesh in the RN model is completed with slowdown
O((n/p)® log n log(n/p)). The simulation algorithm uses
O((n/p)?) extra space at each processor of the p-mesh.

The general method is different from the one used in
the LRN model simulation from Section 4. We keep using
windows for the simulation of p-submeshes of the n-mesh.
Similarly, we keep the method of assigning ids (representa-
tives, labels) to the bus segments that are discovered, from
the set of ids of window boundary processors. The main
difference comes from the way that the bookkeeping is
handled. The algorithm here is based on iterations, where
the basic iteration step is a connected components algo-
rithm, presented in Section 5.1. The ith iteration (0 < i <
log(n/p)) collects information on bus segments that are
contained in windows of size 2'p X 2‘p of the n-mesh. The

algorithm makes use of LRN simulations as subroutines,
applying the result from Section 4. Thus, for consistency,
the folding mapping is also used here for RN simulations
of n-meshes by a p-mesh.

5.1. Connected Components

The RN self simulation makes heavy use of an algorithm
for finding the connected components of a sparse graph.
The result is stated in the following lemma, and may be
of interest in its own right.

LeEMMA 5.1. Let G = (V, E) be an undirected graph
having |V| = n nodes and |E| < n edges. Given the edges
of G arbitrarily distributed at the processors of the leftmost
column of the LRN n-mesh, such that there is at most one
edge stored at each processor, the connected components
of G can be determined in O(log n) steps.

The restriction on the number of edges may be allevi-
ated: For any ¢ = 1 (even when c is a function of #n), if
|E| = cn then the connected components may be found in
O(c log n) steps. This may be obtained as a corollary of
the algorithm, by repeating each step O(c) times.

The connected components algorithm is a variant of the
algorithm by Miller et al. proving the following result.

LemMma 5.2 [18, Thm. 4.4). Given the adjacency matrix
of an undirected graph with n vertices distributed so that
element (i, j) of the matrix is stored in processor [i, j| of
the LRN n-mesh, the connected components of the graph
can be determined in O(log n) steps.

However, Lemma 5.1 is not a trivial corollary of Lemma
5.2, since moving the edges to their appropriate places
according to the adjacency matrix may require ((n'’?)
steps, e.g., when a full n!/2-submesh of the adjacency matrix
is set.

The results from Section 4, Lemma 5.2, and Lemma 5.1
imply the following corollary.

CoroLLARY 5.1. 1. Given the adjacency matrix of an
undirected graph with n vertices distributed so that element
i, j] of the matrix is stored in processor |[FOLD(i),
FOLD(j)] of the LRN reconfigurable p-mesh, the con-
nected components of the graph can be determined in
O((n/p)?* log n) steps.

2. Let G = (V, E) be an undirected graph having |V| =
n nodes and |E| < n edges. Given the edges of G arbitrarily
distributed at the processors of the leftmost column of the
LRN reconfigurable p-mesh, such that there are at most
n/p edges at each processor, the connected components of
the graph can be determined in O((n/p)* log n) steps.

Although Corollary 5.1 will be sufficient for our purpose,
we remark that the connected components results are in
fact stronger than what is stated. A closer inspection of
the algorithms involved reveals that they use buses which
are configured along columns and rows only. We thus con-
clude that the results of Lemmas 5.2 and 5.1 hold also for
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the HV-RN model. Using also Theorem 3.1, we have that
Corollary 5.1 holds also for the HV-RN model.

Proof of Lemma 5.1. 'We use a variant of the n-vertices
graph connected components algorithm given in Miller ez
al. [18] which, in turn, is an adaptation of the O(log n)
steps CRCW PRAM algorithm by Shiloach and Vishkin
[25]. We assume that the reader is familiar with the Shi-
loach—Vishkin algorithm, and proceed to describe its im-
plementation on the n X n reconfigurable mesh. Compo-
nents are labeled by vertex numbers, where all the
processors of the ith row of the mesh “know™ the label of
the ith vertex and store it in a variable called LABEL.

The following initialization procedure is carried.

» Simultaneously for all rows i move the input edge from
[£. 0] to [i, i].

» Simultaneously for all columns i, suppose the input
edge at [4, {] is (j, k) then it is moved to [J, {]. In this step
column broadcast is used, so that the information about
the edge (j, k) is kept at all column processors.

¢ At all rows i all processors define a variable LABEL
which is initialized to i.

The crucial point at the end of the initialization (and which
is different from the Miller et al. algorithm) is that for
column i there is at most one k so that there is a row j
containing an input edge (/, k) at its intersection with the
column, namely at [}, i].

The Shiloach—Vishkin algorithm consists of O(log n)
iterations, during which the PRAM algorithm exploits two
fundamental operations to update component labels. At
each point during the algorithm, the current label of vertex
i, namely the value of LABEL in row {, may be viewed as
a pointer from { to its current label, so we call parent(i)
the value of LABEL in row i (e.g., after the init procedure
above parent(i) = i). In what follows we briefly describe
the update operations, along with reconfigurable mesh im-
plementations.

The first operation, called shortcutting, consists of every
vertex “‘connecting” itself to its grandparent. This is imple-
mented as follows.

* Use column broadcasts from every diagonal processor
[, i] so that every processor [k, m] knows the current
parent of m.

¢ Simultaneously for all rows i, the value parent(par-
ent(i)) is broadcast in row i from processor [i, parent(i)]
so that all processors [/, j ] know the grandparent of vertex i.

The second operation is called hooking, which consists
of every vertex k that points to a root (i.e., parent(k) =
parent(parent(k))) trying to hook the root parent(k) to a
vertex / in the same component, such that parent(i) <
parent(k). This is accomplished as follows:

* Simultaneously for all processors [/, j]: Suppose one
of the processors in column j, say [, j], holds an input
edge (k, i). [i, j] uses column broadcast to notify [k, j] the

value parent(i). After receiving, processor [k, j] knows
both parent(k) and parent(i), and consequently it com-
putes which of them is greater. If parent(i) < parent(k)
then [, j] takes part in the following step.

* By using bus splitting simultaneously in all rows k,
[k, O] receives parent(i) from some processor in row k
which holds the input edge (k, i) and for which par-
ent(k) > parent(i). If no value is received by [k, 0] or if
parent(k) is not a root then [k, 0] does not transmit in the
following step.

* [k, 0] uses row broadcast to notify that parent(i) is the
new label of vertex &, so parent(i) (if received) is stored
as the new value of LABEL in all the processors of row k.

Obviously the implementations of the shortcutting, hook-
ing, and initializing operations take O(1) steps. Therefore
the whole algorithm takes O(log n) steps. H

5.2. The Algorithm

Back to the proof of Theorem 5.1, the algorithm consists
of three main phases. We first sketch these phases infor-
mally, then proceed to give the details.

One of the notions we use extensively is that of a window.
A submesh of the n-mesh is called a window of size m, or
an m-window, when it is one of the (n/m)? m-submeshes
in a partitioned n-mesh. Thus a window of size m is always
“aligned to a boundary of size m.” The boundary of a
window consists of all the processors from which edges
exit the window (or from which there is a direction with
no edge at all). The boundary of a window is composed out
of four facets in the intuitive way (each corner processor
belongs to two facets).

The algorithm consists of three basic phases, as de-
scribed below.

ALGoriTHM RN Simulation (Basic Phases).

Phase (1) This phase consists of log(n/p) iterations,
called levels, which gather configuration information and
construct a spanning forest over the set of buses. During
iteration 0 (level zero), each p-window is simulated by the
given p-mesh and a representative for each bus segment is
elected. During iteration { > 0 (level i) all windows of size
2'p are considered, deducing information for each of them
out of the information of its four composing subwindows.
This is achieved by computing the connected components
of a graph which represents the bus configuration.

Phase (2) In this phase the data gathered in Phase (1)
is used to associate a message (or an error indication)
with each processor which is a bus representative in some
p-window.

Phase (3) The p-mesh is moved through all p-windows.
Each p-window is simulated for a single step, in which the
representative of each of its buses transmits the appro-
priate message (similar to the “back-sweep” of the LRN
simulation algorithm).
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We now turn to the detailed description of the phases
and the data management. Our goal is to show that Phase
(1) terminates in O({(n/p)* log n log(n/p)) steps, phase (2)
terminates in O((n/p)? log(n/p)) steps, and phase (3) takes
only O((n/p)?) steps. We will also consider the space re-
quirements: if we define a single unit of space by the num-
ber of bits (+sizeof(id)) required by the algorithm at each
processor of the original mesh, then the simulation requires
O((n/p)?) space units at each processor, which is optimal
up to a constant factor.

5.3. Phase (1): Gathering Information

We view this phase as log(n/p) + 1 iterations with a
growing window size. Each iteration is called a level, where
level i of the algorithm, 0 = / < log(n/p), processes infor-
mation for windows of size 2'p. Level i + 1 uses the infor-
mation gathered in level i to process larger windows of
size 2/*!p, each consisting of four windows of size 2’p, etc.

3.3.1. Level Zero

For i = 0 (level zero), windows of size p are simulated
one by one by the p-mesh in some arbitrary order. Since
buses which do not cross the window boundaries are simu-
lated in a single step, we assume w.l.o.g. that all buses do
cross window boundaries.

Similar to the algorithm for the LRN simulation, some
id is chosen for each bus. This id is referred to as the
representative processor of that bus in the simulated win-
dow. It is going *‘to represent” this window in subsequent
levels. Thus the representative stores any message which
is heard on the bus and which originated from a speaker
of the bus in its window. It also stores the state of the bus.

We pick representatives from ids of window boundary
processors only. For each bus we pick one of the boundary
processors when the bus actually exits the window. There
may be up to 4(p — 1) such processors. Picking a represen-
tative for all buses of any window may be done in O(log
p) steps by applying a “binary search’ on the address space
of the boundary processors.

There is one complication, however. Corner processors
may represent two different buses (since two edges leave
the window in the corner). We thus refer to a corner proces-
sor as two different logical processors. For this purpose,
we add a least significant bit to the id of corner processors,
thus having two different (but successive) new id’s. Sup-
pose the corner is an upper-left one. Then one of the id’s
belonging to that corner will be a candidate for represent-
ing the bus which leaves the corner going up (if exists) and
the other one will be a candidate for representing the bus
which leaves the corner going left (if exists). If the buses
are the same one, i.e., they join inside the window, then
one of the candidates will be elected according to the above
mentioned algorithm.

In view of the above discussion, in the rest of this section
we refer to each corner processor as two different proces-

sors. In the mappings to be described later, mapping a
corner processor means mapping separately its two differ-
ent id’s. Moreover, as each of the ids refers to an edge
exiting the window, we consider each of the id’s as belong-
ing to a different window facet according to the direction
of the corresponding edge. Finally, we note that using this
terminology, the boundary of a 2’p-window consists of
4 - 2'p processors.

5.3.2. Higher Levels

Moving to a higher level, we find new representatives
for the buses which cross the boundaries of the composing
subwindows. Let us first sketch the general idea, and then
give the details of the data movement.

Suppose we are given the bus representatives in four
subwindows A, B, C, and D, each of size 2"'p. A, B, C
and D compose a window W of size 2'p, as depicted in Fig.
13. The computation of the representatives of W consists of
the fact that there are at most 4-2¢'p different buses at
each of the sub-windows. We define a new graph Gy,
called the input graph whose nodes are all the bus represen-
tatives in the subwindows. Let a be an id of a node of
Gw. So

a=[r27p +r,c27'p + ¢,

where 0 < r,, ¢; < 2" 'p and at least one of the following
equalities holds:

=0 =0 n=2"p-1;, ,=2""p -1

An edge (a, b) of Gy represents two bus segments repre-
sented by 4 and b in neighboring subwindows, and which
are found to be connected at their joint boundary. Note
that any bus leaving a subwindow in the direction of one
of the other subwindows indicates such an edge. In sum-
mary, Gy has up to 162" 'p nodes and 4-2* 'p edges.*

The crucial point in the validity of the algorithm is that
the connected components of Gy represent connected
buses in W, just like the nodes of Gy represent bus seg-
ments in A, B, C and D. Thus, choosing representatives
for connected components in W is the next step in moving
to a higher level. If data is stored appropriately, this can
be done by using Corollary 5.1 in O(2%(i + log p)) steps
by the p-mesh. In the following sections, we show that the
output of the connected components algorithm of the ith
level is readily available as input to the (i + 1)th level
(i.e., it is stored in the appropriate processors), after some
initializing operations which take only O(2%) steps.

Let T(n) denote the time to compute the representa-
tives, as described above, for the global n-mesh, i.e. to
complete Phase (1). Level i involves connected compo-

® A closer inspection of the algorithm reveals that the constants of
this estimate may be reduced considerably. We shall not consider the
details here.
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FIG. 13. Bus segments in four subwindows A, B, C. and D compose a larger segment in W.

nents and initializing operations for (n/2‘p)? windows of
size 2'p. Thus

log{n/p) 2
T(n) = gi (—{,‘p) (2% + 2%(i + log p))
i=0

= O((n/p)*log nlog(n/p)).

We now proceed to show the consistency of locations for
the output of level i and the input for level i + 1.

5.3.3. Mapping Representatives into the p-Mesh

The mesh on which the connected components algorithm
is performed in level i is of size 16-2"'p. We refer to it
as the virtual mesh. In order to make the (LRN) simulation
of the virtual mesh by the given p-mesh applicable, we
define a function Y,( ). This function maps the facets of a
window of size 2'p and the facets of his subwindows, i.e.,
the 16 - 2" 'p nodes of the input graph, one-to-one into the
rows of the virtual mesh, i.e., into {0, ---, 162" 'p — 1},

As an exception, Y, maps the facets of a window of size
p (which has no subwindows), as follows:

FOLD(r) foracolumn facet

Yo([r.c]) = {
FOLD(c) forarow facet

For i > 0, there are eight ‘“‘generalized” facets to be
mapped, called g-facets, as is depicted in Fig. 14. Although
we do not explicitly specify Y,( ), we require that it maps
two adjacent processors of the same g-facet successively.
Clearly, such a mapping exists for every i and is easily
computed in O(1) steps. Note that the requirement implies
that each row g-facet is mapped into a consecutive
subrange of {0, ---, 16 - 2""!p — 1} according to the proces-
sors column indices, where the first number in this range
is a multiple of 2p. A similar observation holds for column
g-facets and their processors row indices.

Virtual meshes change in different levels. In each level,
the corresponding virtual mesh is simulated by the given
p-mesh. We thus map the virtual mesh (for i > 0) into the
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4

FIG. 14. Eight “generalized™ facets (gfacets) of a window and its
four composing subwindows.

p-mesh, using FOLD( ). In particular, this maps the rows
of the virtual mesh into the rows of the p-mesh. The joint
mapping Y = FOLD - Y; maps the facets of 2’p-windows
and their four sub-windows into the rows of the p-mesh.
Observe, however, that the mapping Y does not depend
on the level i. In other words, a processor in the facet of
some window and which is also in a facet of a larger window
will be mapped by Y to the same row of the p-mesh. This
is due to the property of the functions Y;, the operation
of FOLD, and the fact that facets are of size which is a
multiplicity of 2p. This feature will become important later
when the output of the connected component algorithm
in one level is to become the input of this algorithm at the
next level.

5.3.4. Representative Election

As before, we assume the connected components algo-
rithm to compute bus representatives for bus segments in
a window W of size 2'p. The algorithm uses the id’s of the
nodes of the input graph Gy as indices to the rows of the
virtual mesh, by using the mapping described in Section
5.3.3. Thus, we cannot allow the nodes of Gy to have
arbitrary id’s. We solve this by restricting the set of possible
ids to the set of boundary processors of W and of its
four composing sub-windows, i.e., the processors which
compose their facets. This is done as follows.

Recall that the representative of a bus is, in fact, an id
of a processor through which the bus passes. Also, a bus
has a representative corresponding to a certain window
only if it exits this window. We conclude that we can always
choose the representative of a bus with respect to a certain
window to be an id of a processor on the boundary of that
window. Clearly, this is the case for windows of size p. For
larger windows, however, we have to change the connected
components algorithm inductively. Basically, while choos-
ing a representative out of a set of candidates, we prefer
a candidate which resides on the boundary of the largest
window. Note that if we do not include this change at a
certain level, then we might run into trouble at some higher
level, with the following situation: suppose r is the elected
representative of a bus segment s, in a 2’p-window W,
and suppose Wi, is contained in a 2/p-window (j > i)
Wa,, and suppose s, exits W, via a single node 7 in the

boundary of W, which is also in the boundary of W,
and suppose r # #. Since we choose r and not 7 at level i,
we arrive at level j with 7 not in the pool of representative
candidates for the bus containing s, in Wy,. Hence we are
forced to choose a representative for this bus (say r) which
is not on the boundary of W,i,, contradicting our previ-
ous discussion.

Consider again the choice of representatives of buses in
a p-window W,. W, is a subwindow of larger windows, let
W,, denote the window of size 2p containing W,. Two of
the facets of W, f}, f, take part in the boundary of W,,.
For larger sized windows, either both f, f, take part in
border lines, or just one of them (say, f; in this case), or
none. In choosing representatives for buses in W, we revise
the algorithm so that ids from f; are chosen with priority
over others, ids from f, are next, others chosen only for
buses which do not intersect f; and f,. This adds only two
steps to the representative choice in W,, given that each
borderline processor knows the size of the largest window
containing W, for which it is still a borderline processor.

Let x = [r, ¢] be a borderline processor. Suppose

r=r2kp; c=c2%p;, r+1=r2kp; c+1=c"2%p;

where ', ¢, v and ¢" are odd positive integers. If & =
max{k,, k, k3, k4} then the largest window W, containing
x in its boundary is of size

{n ifc=0o0rr=0
otherwise '

2kp

Computing the above for three other processors, one from
each of the other three facets of W,, x may decide in O(1)
steps his status as a representative candidate against other
borderline processors of W,. This computation is taken
only once at level zero.

Next, we have to make a similar revision of the con-
nected components algorithm, so that the choice of repre-
sentatives “prefers” ids of processors on the boundary of
larger windows. Recall that the connected components
algorithm computes representatives for a 2‘p-window W
out of the representatives of its subwindows. Let x be a
node in the input graph, where (by induction hypothesis)
x is a boundary processor of one of the subwindows, say
A, and x is in a facet of W taking part in the boundary of
a window which is much larger than W. So according to
our policy, x is a preferred representative of its bus segment
in W. This is done as follows. By the end of the ith level
connected components algorithm all processors in row
Y:(x) of the virtual mesh know LABEL(x) which was
chosen as the representative of the component of x. Sup-
pose LABEL(x) # x. Processor [Y{x), YALABEL(x))]
uses bus splitting in column ['(LABEL(x)) in order to
inform processor [Y{LABEL(x)), Y{LABEL(x))} about
the higher priority of x. Note that the bus-splitting method
guarantees that only one candidate having higher priority
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than LABEL(x) succeeds, and let us assume it is x.
[YALABEL(x)), YALABEL(x))] chooses x to replace
LABEIL (x) as the new representative of the bus. It then
informs the processors in its column of its decision, which,
in turn, is distributed to all rows Yi(y) for which
LABEL(x) was the previous elected representative, so
that the component is relabeled to x. The whole process
takes constant number of steps (on the virtual mesh).

5.3.5. Message Collection and Error Detection

We now turn to the message transmission on the bus
and the detection of bus error states.

Consider level i, in which windows of size 2'p are consid-
ered. Let LABEL(x) be chosen as a representative of a
bus segment s, where x is a representative of a partial
segment s, in one of the subwindows. If i = 1, so that s, is
a segment contained in a single p-window, then x “knows”
whether there was a message transmission during the simu-
lated step by one of the processors in s, (see Section 5.3.1).
This information is stored in a row of the level-zero virtual
mesh, namely, Y(x). By the property of Y, we know that
this row and Y(x) are mapped to the same row of the p-
mesh. Thus, this information is readily available to the
virtual processors of the row Y,(x) in the virtual mesh of
level 1. Column Y(x) is used to move the message to
processor [Y,(LABEL(x)), Y(x)]. Now all messages
transmitted on subsegments reside in processors of the row
of the virtual mesh to which the new representative is
mapped. Next, row Y, (LABFL(x)) is connected, and all
its processors transmit the stored messages simultaneously,
so that all processors of the row can either store a message
or detect an error state of the bus (indicating an error state
of the corresponding simulated bus segment s).

Similarly, if i > 1 then we assume inductively that the
information about transmission in subsegments is stored
at the rows of the virtual mesh of level i — 1. As before,
these rows and the corresponding rows of the virtual mesh
of level i are mapped by Y to the same rows of the p-
mesh, hence the same process may be carried.

5.3.6. Data Types and Storage

There are four types of data items that are produced,
stored and fetched during Phase (1):

Representatives. For each x which was elected as a rep-
resentative in a previous level, the representative of x is
elected during the connected components algorithm and
is stored at row Y,(x) of the virtual mesh as LABEL(x).
Thus LABEL(x) is stored at row Y (x) of the p-mesh. The
representatives are temporary data existing during Phase
(1) only.

Edges. Thisisanedge (x, y) of the graph Gy as defined
in Section 5.3.2 for a window W. These are formed at the
end of level i — 1 and are the input to the connected
components algorithm of level i. This is a temporary data
for “‘internal use” of Phase (1).

Pointers. For each pair, x and its chosen representative
LABEL(x), we define a pointer {(x — LABEL(x)). This
pointer is duplicated and stored by all the processors of
row Y (x). The collection of all pointers is a spanning forest
of all representatives, in which there is a single tree for
each bus. This forest is the output of Phase (1) and the
input to Phase (2).

Note that there is at most one pointer (x — LABEL(x))
for each representative x. Recall that there are initially at
most 2n’/p representatives which are evenly distributed
by Y among the rows of the p-mesh. Thus the total number
of pointers that are stored at each row is O((n/p)?).

Ancient Parent.  Finally, a chosen representative which
is global to its bus (rather than to some partial segment)
is called an ancient parent (because it is a root of a tree
in the pointer forest). Let x be an ancient parent. x is
stored, together with the message that was transmitted on
that bus (or with an error indication) by all the processors
at row Y(x). An ancient parent is easily identified during
the connected components algorithm when it is elected as
a representative of some component in a certain window:
either that it is not on the boundary of the window, or it
is on the boundary but the corresponding bus does not
leave the window.

5.3.7. Data Movement: The Way It Works

We now describe the substeps taken by level i of Phase
(1) for a single window, say W (of size 2'p), together with
the bookkeeping that is performed.

We assume that at the beginning of the phase and for
each x which is a boundary processor of the subwindows
of W, row Y(x) of the p-mesh knows LABEL(x). This is
obvious at level 1, after the bus algorithm for representa-
tion election that is executed during level zero. Suppose
this holds at the beginning of level i. We shall see that it
holds at the beginning of the next level, too.

Knowing LABEL(x), row I'(x) creates a pointer (x —
LABEL(x)) which is stored at all its processors. Since
the boundary processors are evenly distributed among the
rows, there are at most Q(2’) such pointers that are created
at each row of the p-mesh.

Let x be a boundary processor of a sub-window of W,
and suppose that x is in a facet facing a facet of another
sub-window of W. We define NBR(x) as the id of the
processor which is a neighbor of x in the neighboring facet
(see Fig. 13).

The property of Y (see Section 5.3.3) implies that for
every x, Y(NBR(x)) = Y(x). Hence the processors of
the same row of the p-mesh, namely Y(x), know both
LABEL(x) and LABEL(NBR(x)). Row Y(x) composes
a new edge (LABEL(x), LABEL(NBR(x))) and stores
it at its leftmost processor.

This process takes O(1) (row) steps per edge, and there
are O(2') edges stored at each (leftmost processor of each)
row of the p-mesh.
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Conceptually, here is where the virtual mesh of size
16-2"'p and the mapping Y, into its rows, are replaced
by the virtual mesh of size 16 - 2‘p and the mapping Y; into
its row. Again, since the mapping Y remains the same, so
edges of the input graph to the level i connected compo-
nents algorithm do not have to switch locations in the
p-mesh.

After the neighbors connecting edges are produced and
stored, the connected component algorithm of level / can
be executed. The algorithm (including the change as de-
scribed in Section 5.3.4), takes O(2* log(2'p)) steps. It
stores the representatives at the correct places: For each
v in the boundary of W, row Y(y) knows LABEL(y), as
was required at the beginning of this subsection.

5.4. Phase (2): Simple Tree Contraction

Phase (1) constructs trees of maximal height log(n/p).
The tree information is saved by pointers (tree edges) (x —
LABEL(x))wherexisanodeinthetreeand LABEL(x)is
its parent. The total of all pointers is replicated and saved
at each column of the p-mesh.

All nodes of the trees are processors of the simulated
n-mesh which are boundary processors of p-windows. We
want to evaluate for each such processor its ancient parent
in the pointers forest. It is easy to split the total number
of n%/p such boundary processors into p sets; e.g., let the
Ithset, 0 =/ < p — 1, consist of all processors with column
coordinate equal to / div n/p. The Ith column is in charge
of evaluating the ancient father for each of the processors
in the /th set. The whole column is connected as a single
bus and works independently and sequentially on the eval-
uation of his set. This process is straightforward, assuming
the processors store the pointers in a way which gives them
constant time access to the table of O((n/p)?) pointers that
is stored by each of them. Note that a p-mesh processor
y = [r. ¢] stores a (single) pointer (x - LABEL(x)) for
each of the O((n/p)?) xs where r = Y(x). Hence the
pointers table at each processor, as a table of child-parent
edges, may be accessed using the ids of the children as the
entry indices.

Finally, after O(log(n/p)) steps for each p-window
boundary processor z, the processor storing the pointer to
the ancient parent of z in the pointers forest transmits the
id of the ancient parent together with the attached message
(or an error indication) msg(z). This information is stored
by all column processors as an info-pair {z, msg(z)) in a
(O((n/p)?*)-sized) table. This table is used during Phase (3).

5.5. Phase (3): Back-Sweep

At this final phase, the information that was collected
and arranged at Phases (1) and (2) is dispersed to the bus
segments at the p-windows. Note that at the end of Phase
(2) all representative information, namely the info-pairs,
are replicated and stored at each row of the p-mesh. During
Phase (3) the p-mesh simulates the p-windows in some

arbitrary order, as follows. For each p-window, for each
row y, there are exactly four boundary processors z for
which y = Y(z). The row is connected to collectively find
the information about them: for each z = [r, c} the info-
pair (z, msg(z)) is fetched by row Y(z) and is moved to
[FOLD(r), FOLD(c)]. All this takes O(1) steps.

In one additional step, the p-mesh is connected to form
the exact configuration of the simulated p-window. For a
boundary processor z, if z was elected as the representative
of its bus segment in this window then [FOLD(r),
FOLD(c)] transmits msg(z).

This completes the proof of Theorem 5.1.

6. CONCLUDING REMARKS

In this work, we gave the first results for the simulation
of large reconfiguring meshes by smaller ones. We believe
that efficient self simulation results are essential for any
parallel model of computation. Our algorithms may also
be applied to other variants of the reconfigurable mesh
model that are discussed in the literature. For example the
optimal LRN self simulation implies optimal self simula-
tion of a model called tree-RN. The tree-RN model is
similar to the general RN model, except that no cycles are
allowed in the configuration. Notice that this is a global
restriction on the set of configurations, whereas the restric-
tions which differentiate the HV-RN, LRN, and the RN
models are applied locally at every switch. In contrast to
the tree-RN model, it seems that in the general RN model
an additional polylogarithmic factor is inherent in the com-
plexity of the self simulation algorithm, since otherwise
much faster connected components algorithms must be
found. Yet, there may exist a faster algorithm than the one
given for the RN model. This and the related lower bound
problems are the subjects for futher research.
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