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Abstract

Recent work shows that the block-parallel CARP-CG algorithm [Parallel Computing 36,
2010] is extremely effective on sparse nonsymmetric linear systems with very small diag-
onal elements, including cases with discontinuous coefficients. In contrast to most known
solvers, the effectiveness of CARP-CG often improves as the diagonal elements become
smaller. This property is shown to follow from the foundations on which CARP-CG is
based. The unique behavior of CARP-CG is demonstrated with some old and new re-
sults. Previously studied problems consist of convection-dominated elliptic PDEs, with
and without discontinuous coefficients. New results using high-frequency Helmholtz equa-
tions in the heterogeneous Marmousi model, discretized with 2nd, 4th and 6th order finite
difference schemes, indicate the insufficiency of low-order schemes and the good parallel
scalability of CARP-CG at high frequencies.

1 Introduction

Some of the most difficult problems in numerical linear algebra consist of solving sparse
nonsymmetric linear systems in which the off-diagonal elements are very large compared to
the diagonal elements. Such problems arise in the discretizations of several types of partial
differential equations (PDEs), such as convection-diffusion equations in which the convection
terms are relatively very large compared to the diffusion term. Another type of problems
which gives rise to large off-diagonal elements is the Helmholtz equation at high frequencies.

Compounding the situation is the fact that the underlying physical domain is often highly
heterogeneous, giving rise to large differences between the coefficients—so-called “discontin-
uous coefficients”. Such problems are often handled using domain decomposition (DD), but
this approach may be difficult to implement on unstructured grids or if subdomain bound-
aries are irregular. Note, however, that recent advances in FETI DD methods can also handle
highly heterogeneous problems in some cases—see [5, 16, 17].

Another difficulty, specific to the Helmholtz equation, is the so-called “pollution effect” [1].
The numerical significance of this effect is that when the frequency increases, the grid must
be refined even beyond the simple requirement of keeping a fixed number of grid points per
wavelength. It is generally considered that the number of grid points per wavelength, denoted
Ng, should be at least 8–12. However, the pollution effect causes the relation between the wave
number k and the number of intervals per domain side, N , to be non-linear: N is proportional
to k(p+1)/p, where p is the order of the accuracy of the scheme; see [6]. Therefore, higher order
schemes are clearly advantageous at high frequencies.
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The usual approach to solving problems with large off-diagonal elements often involve
reorderings, with the aim of placing the large elements of the system matrix on the diagonal
[2]. This may not always be helpful when there are four or more large off-diagonal elements
in each equation.

In recent work, we obtained very good results on such problems with our block-parallel
CARP-CG algorithm [10]. This algorithm seems to “thrive” on small diagonal elements;
in fact, the smaller the diagonal, the better it usually performs. In addition, discontinuous
coefficients can be handled without any problems.

CARP-CG is described in §2, and §3 explains its behavior on problems with discontinuous
coefficients and small diagonal elements. §4 presents sample results from previous work for
convection-dominated PDEs, and new results for high-frequency Helmholtz equations in the
heterogeneous Marmousi model [15], using 2nd, 4th and 6th order finite difference schemes.

2 Description of CARP-CG

We present a brief and informal explanation of CARP-CG; for full details, see [10]. Consider
a system of m linear equations in n variables, Ax = b. The Kaczmarz algorithm (KACZ) [14]
is fundamental to CARP-CG. Starting from some arbitrary initial guess, KACZ successively
projects the current iterate onto a hyperplane defined by one of the equations in cyclic order.
Each cycle of projections is called a KACZ sweep. The projections can be modified with a
relaxation parameter 0 < ω < 2. If equation i has a fixed relaxation parameter ωi, then the
projections are said to be done with cyclic relaxation.

In a landmark paper, Björck and Elfving [3] showed that if a forward sweep of KACZ
is followed by a backward sweep (i.e., the projections are done in reverse order), then the
resulting iteration matrix is symmetric and positive semi-definite. Therefore, the double
KACZ sweep can be accelerated using the conjugate-gradient (CG) algorithm. The iteration
matrix is not actually calculated; instead, whenever it has to be multiplied by a vector, the
calculation is done by performing a suitable KACZ double sweep. The resulting algorithm,
called CGMN, is one cornerstone of CARP-CG.

A second cornerstone for CARP-CG is CARP [8], which is a block-parallel version of
KACZ. Note that this is different from the standard block-sequential version of KACZ, which
requires the equations in a block to be independent (i.e., there are no shared variables in
a block). CARP divides the equations into blocks, which may overlap, and equations in a
block need not be independent. In a parallel setting, every processor is in charge of a block
of equations. Every processor has a copy, or “clone”, of every variable that it shares with
another block. The following two steps are now repeated until convergence:

1. Every processor performs a KACZ sweep on the equations of its assigned block, updating
the block’s variables. For shared variables, each processor updates its copy of the variable.

2. The processors exchange information about the new values of the clones. Every shared
variable is now updated to be the average of all its clones in the different blocks, and the
new value of every shared variable is distributed among the processors which share it.

If the blocks are chosen according to spatial domains, then the exchange of data occurs only
at the boundaries between domains. CARP can be viewed as a type of DD technique which
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differs from other DD methods because values from neighboring domains (the clones) are also
modified by the internal processing. Furthermore, partitioning a domain into subdomains can
be based entirely on efficiency considerations and not on differences between coefficients.

For a detailed parallel implementation of CARP, see [8]. An important point about CARP
is that the averaging operations between shared variables are equivalent to certain KACZ row
projections (with relaxation ω = 1) in some superspace. Hence, CARP is equivalent to KACZ
with cyclic relaxation in the superspace. This property provides a convenient convergence
proof for CARP, and it enables the CG acceleration of CARP.

The CG acceleration is obtained in [10] as follows. Firstly, the construction of CGMN
is extended to KACZ with cyclic relaxation parameters. It then follows that the superspace
formulation of CARP can be accelerated by CG. This means that in the regular space, CARP
can be accelerated by CG in the same manner as CGMN, i.e., by running CARP in a double
sweep. On one processor, CARP-CG and CGMN are identical.

3 On the Effectiveness of CARP-CG

The effectiveness of CARP-CG follows from two inherent features of KACZ, which will be
explained below. Let Ax = b be the given linear system. We denote the L2-norm of a vector
x by ‖x‖. Consider the projection of the current iterate x onto the hyperplane defined by the
ith equation, yielding a new iterate x ′ defined by

x ′ = x + ωi
bi − 〈ai∗, x〉
‖ai∗‖2

ai∗, (1)

where 0 < ωi < 2 is the relaxation parameter associated with the ith equation and ai∗
is the ith row of A. Eq. (1) shows that KACZ inherently normalizes the equations, i.e.,
the ith equation is divided by ‖ai∗‖. Therefore, we can assume that this normalization has
already been done as a preliminary step; it is also more efficient to do so in practice. Note
that KACZ is a geometric algorithm in the following sense: the iterates depend only on the
hyperplanes defined by the equations and not on any particular algebraic representation of
these hyperplanes. For this reason, we call the normalization GRS (geometric row scaling).

This inherent use of GRS by KACZ is the reason that CARP-CG can handle discontinuous
coefficients effectively. GRS is a diagonal scaling of A, and the positive effect of such scalings,
when dealing with discontinuous coefficients has been known for a long time; see, for example,
[22]. More recently, an extensive study in [11] has shown that normalization significantly
improves the convergence properties of Bi-CGSTAB [21] and restarted GMRES [19] (both
of them with and without the ILU(0) preconditioner) on nonsymmetric linear systems with
discontinuous coefficients. However, for these algorithm/preconditioner combinations, these
results held only for small- to moderate-sized convection terms; For large convection terms,
[9] shows that CARP-CG is preferable.

An examination of the normalization in [11, 9] shows that it “pushes” heavy concentrations
of eigenvalues around the origin away from the origin. It is known that such concentrations
are detrimental to convergence. These results explain why CARP-CG can handle the problem
of discontinuous coefficients. Note that the normalization has a certain “equalization” effect
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on the coefficients of different equations (but not on different-sized coefficients in the same
equation).

A second point concerning KACZ is the fact that it is actually SOR (successive over-
relaxation) on the normal equations system AATy = b (x = ATy). Using AAT is generally
considered detrimental because its condition number is the square of the condition number
of A. However, a fact that seems to have been overlooked is that if A is normalized first
(as is inherent in KACZ), then the diagonal elements of AAT are equal to 1, and all the
off-diagonal elements are < 1, provided no two rows of A are colinear [9, Thm. 3.1]. In other
words, the two simple operations of normalizing the equations and then using AAT , form a
very simple means of dealing with systems with large off-diagonal elements, including cases
of discontinuous coefficients.

Additionally, as the diagonal element of A decreases, the sum of the off-diagonal elements
of AAT also decreases. To see this, consider, a simplified case of a 5-point stencil matrix A
obtained with 2nd order finite difference scheme on a regular grid. Assume that A has been
normalized, and has a small d on the diagonal and a off the diagonal. In AAT , the diagonal
element is 4a2 + d2 = 1. By considering all possible placements of a cross of 5 grid points
w.r.t. another cross, it is easy to see that in a general setting, the sum of the absolute values
of the off-diagonal elements of AAT is S = 12a2 + 8|ad|. Substituting a =

√
1− d2/2 into S,

we get limd→0 S
′(d) = 4 > 0, so S(d) decreases as d↘ 0.

4 Experimental Results and Discussion

All the problems were tested on a Linux cluster of 16 PCs, using MPICH for message passing.
The initial estimate was taken as x0 = 0, and convergence goals were based on setting a
tolerance for the relative residual: ‖Ax − b‖/‖b‖ < ε, with the equations always taken as
normalized. In the tables, timings are in seconds and dashes indicate no convergence or
impractically slow convergence.

4.1 Convection-Dominated PDEs

We present illustrative results from [10, 11, 9] for three convection-dominated elliptic PDEs.
On these problems, we also tested Bi-CGSTAB, restarted GMRES (restart=10), and CGNR.
These algorithms were tested with and without GRS, and Bi-CGSTAB and GMRES were also
tested with and without the ILU(0) preconditioner. Note that as shown in [9], CGNR+GRS
is actually identical to the CG-acceleration of the Cimmino algorithm [4].

4.1.1 Problem 1

The PDE for this problem is ∆u−∂(Dexyu)/∂x−∂(De−xyu)/∂y = F , where ∆u = uxx+uyy.
Two values of D were considered: D = 10 and D = 1000. The purpose of this example is
to demonstrate how CARP-CG’s convergence behavior improves as the convection term is
increased. This problem originally appeared in [18, §3.7, Problem F3D] with D = 10, and also
in [10] as Problems 8 and 9. The right-hand-side was created artificially by first computing
A, and then computing b = Av, where v = (1, 1, . . . , 1)T . Problem 1 was solved on the unit
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square [0, 1]2, using a 2nd order finite difference scheme on a grid of 802, resulting in 64,000
equations.

Table 1 shows the runtimes to achieve a convergence goal of 10−7 for the two values of the
convection term D, for the tested algorithms on the normalized equations. The un-normalized
equations gave very similar results, because there were no jumps in the coefficients. We can
see that ILU(0) was useful for Bi-CGSTAB and GMRES with D = 10, but not with D = 1000.
Also, CARP-CG is similar to GMRES with D = 10, but its convergence improves significantly
with D = 1000, both absolutely and relatively to the others. Note that CGNR also performed
reasonably well with the higher convection.

Convection: D=10 D=1000

Bi-CGSTAB+GRS 6.7 —
Bi-CGSTAB+GRS+ILU(0) 3.3 —
GMRES+GRS 14.4 6.6
GMRES+GRS+ILU(0) 3.5 —
CGNR+GRS — 5.0
CARP-CG 15.0 1.9

Table 1: Problem 1: time (sec.) to achieve convergence to 10−7 on 16 processors.

4.1.2 Problem 2

This problem originally appeared in [7, §5.1] as one of three related problems, which were
solved there using DD. They were also examined in [9, §5]. The problem is a 3D convection-
diffusion-reaction equation with discontinuous coefficients. The domain consists of the unit
cube divided into two subdomains by the plane x = 1

2 . The PDE is −div(ν(x)∇u) + ux +
3uy + 5uz + u = 0, where ν(x) = 10−1 for x < 1

2 and ν(x) = 10−5 otherwise.

Dirichlet boundary conditions are taken as u = 1 on the z = 0 plane and u = 0 on the
other boundaries of the unit cube. The small value of ν on half the cube results in an equation
that is strongly convection dominated.

Fig. 1 shows the effect of GRS on the eigenvalue distribution, on a grid of 12 × 12 × 12.
As can be seen, GRS “pushed” the eigenvalues away from the origin.

Table 2 shows the time (on one processor) to converge to 10−4, 10−7 and 10−10, for all
cases that achieved at least one goal. These results were obtained on a grid of 803. We can
see that Bi-CGSTAB has no entries at all in the table, and ILU(0) was no help. Note that
GRS improved the convergence properties of GMRES and CGNR. On this problem, CGMN
(CARP-CG on one processor) has a very strong lead over GMRES+GRS and CGNR+GRS.

4.1.3 Problem 3

This problem, which appeared in [9, §7] and [11, §7], is based on a 3D example from [13], with
additional convection terms. The domain is the unit cube [0, 1]3, and the differential equation
is −div(a∇u) + D∇u = 0, where a(x, y, z) = 104 for 1

3 < x, y, z < 2
3 , and a(x, y, z) = 1
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Figure 1: Problem 2: eigenvalue distribution for the original and the scaled matrices.

Convergence goal: 10−4 10−7 10−10

GMRES 1388 — —

GMRES+GRS 609 1126 —

CGNR 1179 — —

CGNR+GRS 246 444 608

CGMN (CARP-CG) 67 120 188

Table 2: Problem 2: time (sec.) to achieve three convergence goals on one processor.

otherwise. D determines the size of the convection terms. Dirichlet boundary conditions
were used with u = 1 on the z = 0 plane and u = 0 on the other boundaries. Discretization
was done on a grid of 403. The resulting linear system is indefinite, with eigenvalues in the
four quadrants of the imaginary plane. It was shown in [11] that the usefulness of GRS for
Bi-CGSTAB and GMRES degrades as the convection terms are increased.

In order to compare the performance of the various methods as the convection increases,
we ran tests with convection terms of D = 100, 200, 500, 1000. The results with one processor
are summarized in Table 3 (only for methods which achieved at least one convergence goal).

These results show that GRS is useful for Bi-CGSTAB and GMRES, with and without
ILU(0), but only for the lower values of D. For the higher values of D, CGMN (CARP-CG
on one processor) provides the best approach. CGNR+GRS also provides good results for
large D.

The optimal relaxation parameter ω of CGMN varied with the convection in the range
1.35 to 1.65. However, the runtimes of CGMN varied very little when ω was changed between
these values, so a fixed value of ω = 1.50 is sufficient to obtain reasonable results on this
problem.
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Convection: D=100 D=200 D=500 D=1000

Convergence goal: 10−4 10−10 10−4 10−10 10−4 10−10 10−4 10−10

Bi-CGSTAB+GRS 1.00 3.62 2.77 9.85 9.74 38.24 — —

Bi-CGSTAB+ILU(0) 1.35 1.74 2.30 — — — — —
with GRS 0.76 1.67 1.90 — — — — —

GMRES+GRS 2.05 — 2.23 — 4.50 — — —
with ILU(0) 0.76 — — — — — — —

CGNR+GRS 5.10 11.28 4.78 10.23 5.96 13.42 7.29 16.15
CGMN (CARP-CG) 2.01 4.60 1.93 4.95 1.96 6.30 2.45 7.59

Table 3: Problem 3: time (sec.) for the different methods to achieve convergence to 10−4 and
10−10, with increasing convection terms. Minimal times are in boldface.

4.2 High-Frequency Helmholtz Equations

The fourth problem is the well-known Marmousi model [15]. The domain Ω corresponds to a
6000m×1600m vertical slice of the Earth’s subsurface, with the x-axis as horizontal and the
y-axis pointing downwards. A point disturbance source is located at the center of the upper
boundary. The wave equation is ∆u+ k2u = g, where g(x, y) = δ(x− (xmin + xmax)/2)δ(y).
The domain is highly heterogeneous, with velocity c ranging from 1500 m/s to 4450 m/s.
Three grid sizes are available, and here we used the mid-sized grid of 1501× 401.

This problem was discretized using 2nd, 4th and 6th order finite difference schemes, with
the Sommerfeld radiation condition at the boundary. The two higher order schemes were
done along the lines of [20, 6]; both schemes produce a 9-point stencil matrix.

The frequency f is determined by the user, and our test cases consisted of f = 20 and
f = 40. For f = 20, the number of grid points per wavelength, (Ng(20)), was in the range
18.75 ≤ Ng(20) ≤ 55.625. For f = 40, we get 9.375 ≤ Ng(40) ≤ 27.8125.

Fig. 2 shows the relative residual results with CARP-CG for one to 16 processors, using
the 6th order scheme, with frequencies of 20 and 40. We can see that the high frequency case
requires fewer iterations than the lower frequency. We can also see that when the number
of processors increases, more iterations are required for convergence to some specific relative
residual. However, CARP-CG scales better with the high frequency case in the following
sense: when the number of processors increases, the percentage increase in the number of
iterations is much smaller than in the case of the low frequency. Similar results were obtained
with the 2nd and 4th order schemes.

Unfortunately, there is no known analytic solution for the Marmousi problem. Our pre-
vious work with high-order schemes on problems with known analytic solutions [12] showed
that the 2nd-order scheme achieved very poor error results, even with 18 grid points per
wavelength, compared to the 6th order scheme. In contrast, the 6th order scheme achieved
very good error results. We can conclude from this that the 6th order scheme is much closer
to the true solution.

In order to evaluate the various schemes on this problem, we run the 6th order scheme to a
relative residual of 10−13, saved the result as the “true” solution, and compared the results of
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the three schemes with this solution. Fig. 3 shows the relative L2-error of the three schemes
w.r.t. to the “true” solution, as a function of the relative residual, for frequency f = 40.
We can see that the 2nd order scheme is virtually useless, and even the 4th order scheme is
insufficient for most purposes. In any case, since the 4th and 6th order scheme take the same
time per iteration, the 6th order scheme is preferable.

5 Conclusions and further research

This paper reviewed the block-parallel CARP-CG algorithm for solving nonsymmetric linear
systems in which the off-diagonal elements are very large, including cases of discontinuous
coefficients. Examples included convection-dominated elliptic PDEs in homogeneous and
heterogeneous media. Additionally, a numerical study of a high frequency Helmholtz equation
in heterogeneous media, using 2nd, 4th and 6th order finite difference schemes, demonstrated
the importance of high order schemes and the good scalability of CARP-CG on such problems.

Future research directions will include the application of CARP-CG to high-frequency
Helmholtz equations in 3D heterogeneous media, using high-order finite difference schemes.
Another potential application is the solution of high-frequency Maxwell equations.
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