LINEAR SYSTEMS WITH LARGE OFF-DIAGONAL ELEMENTS AND DISCONTINUOUS COEFFICIENTS

Dan Gordon

Computer Science University of Haifa Rachel Gordon

Aerospace Engineering The Technion

1

SIAM Conf. on Applied Linear Algebra, Oct. 2009.

OUTLINE

- Linear systems with large off-diagonal elements
- Linear systems with discontinuous coefficients
- Large off-diagonal elements *and* discontinuous coefficients
- Sample results
- Conclusions

LARGE OFF-DIAGONAL ELEMENTS

Some examples:

- 1. Convection-diffusion(-reaction) PDEs with LARGE convection terms
- 2. Helmholtz equation with LARGE wave numbers
- 3. Some circuit problems

Simple solution methods:

- Scaling and/or reordering may leave some large off-diagonal elements
- Robust but not efficient: Kaczmarz (sequential), and the block-parallel CARP (G&G 2005), type 1 problems
- Robust and efficient results: CGMN algorithm (Björck & Elfving 1979), type 1 problems (G&G 2008)
- Parallel setting: similarly good results with CARP-CG (G&G 2009)
- Good preliminary results also on type 2 problems

L_2 -SCALING AND THE NORMAL EQUATIONS

- Given a system Ax = b, let $G = \text{diag}(1/||a_i||_2)$
- Consider the system GAx = Gb call it GRS preconditioning
- GRS = Geometric Row Scaling iterative results depend only on the hyperplanes and not any particular algebraic representation
- Denote $C = GA, b' = Gb \implies Cx = b'$
- Consider the normal system $CC^T y = b', x = C^T y$
- <u>Theorem</u>: Let $D = CC^T$, then $|d_{ii}| = 1$, and $|d_{ij}| < 1$ for $i \neq j$
- Proof: immediate (assuming *A* is full rank)
- Significance: A method to control large off-diagonal elements

GRS + NORMAL EQUATIONS ARE INHERENT IN:

- Kaczmarz (SOR on normal equations) inherently sequential
- Cimmino inherently parallel
- CGMN: CG acceleration of Kaczmarz (Björck & Elfving, 1979)
- CG-acceleration of Cimmino, equivalent to CGNR+GRS
- CARP: a block-parallel version of Kaczmarz (G&G 2005)
- CARP-CG: CG acceleration of CARP (G&G 2009)

DISCONTINUOUS COEFFICIENTS

- "Discontinuous coefficients" linear systems with large differences between the coefficients of different equations
- Typically arise when PDEs model certain physical phenomena in heterogeneous media, e.g. flow through different materials
- Common approach: Domain Decomposition (DD)
- Problem: May be difficult to implement when:
 - Unstructured grid
 - Complicated boundaries between subdomains

ALTERNATIVE APPROACH: ROW AND/OR COLUMN SCALING

- Not always useful
- Theoretical results, e.g., van der Sluis 1969
- Widlund 1971: "well-scaled ADI methods give good rates of convergence when the coefficients of elliptic problems vary very much in magnitude"
- Duff & van der Vorst 1998: "on vector machines, diagonal scaling is often competitive with other approaches"
- Graham & Hagger 1999: "diagonal scaling has been observed in practical computations to be very effective as a preconditioner for problems with discontinuous coefficients"
- Gambolati et al. 2003: use the least square logarithm scaling on rows and columns for geomechanics problems with discontinuous coefficients

PREVIOUS WORK ON SCALING (G&G 2009):

- Problems considered: nonsymmetric systems w/discontinuous coefficients, from PDEs with <u>small to moderate</u> convection terms
- Considered *L*₂ scaling of the equations (GRS)
- Results:
 - 1. improved convergence behavior of Bi-CGSTAB and (restarted) GMRES, both with and without ILU(0)
 - 2. Improved eigenvalue distribution (large concentration "pushed" away from origin)
 - 3. Degradation of usefulness of GRS as the convection was increased
- Note: *L*₁ scaling produced similar results

PROBLEM 1

- Based on a 3D (symmetric) problem of Graham & Hagger 1999
- Original problem solved by DD techniques
- We added convection terms to make it nonsymmetric

• PDE:
$$-\frac{\partial}{\partial x}(au_x) - \frac{\partial}{\partial y}(au_y) - \frac{\partial}{\partial z}(au_z) + du_x + eu_y + fu_z = 0$$

where $a(x, y, z) = \begin{cases} D & \text{if } \frac{1}{3} < x, y, z < \frac{2}{3}, \\ 1 & \text{otherwise} \end{cases}$ $D = 10^4$ and $D = 10^6$

- Domain: $[0,1]^3$
- Convection terms: d = e = f = 100
- Dirichlet boundary conditions (u = 1 on z = 0, u = 0 elsewhere)
- Discretizations: $40 \times 40 \times 40$ and $80 \times 80 \times 80$

PROBLEM 1: EIGENVALUE DISTRIBUTION

PROBLEM 1: RUNTIMES (SEC.)

 $D = 10^6$, grid: $80 \times 80 \times 80$

PROBLEM 1: DEGRADATION WITH INCREASED CONVECTION

Method / Convection:	100	200	500	1000					
Bi-CGSTAB with GRS	 1.2E-12	 1.7E-11	 3.4E-13						
Bi-CGSTAB+ILU(0) with GRS	2.5E-14 2.5E-14	3.2E-5 4.1E-5							
GMRES with GRS	 1.8E-5	 2.7E-5	 5.6E-5						
GMRES+ILU(0) with GRS	 1.2E-5								
Notes: '—' means no convergence. Numbers are the best relative error obtained.									

PROBLEM 1: SOLUTIONS FOR LARGE CONVECTION

Convection:	100		200		500		1000					
Convergence goal:	10^{-4}	10^{-7}	10^{-10}	10 ⁻⁴	10^{-7}	10^{-10}	10 ⁻⁴	10^{-7}	10^{-10}	10^{-4}	10^{-7}	10^{-10}
Bi-CGSTAB+GRS	1.0	2.8	3.6	2.8	7.2	9.9	9.7	21.0	38.2			
Bi-CGSTAB+ILU(0)	1.4	1.6	1.7	2.3					—			
with GRS	0.8	1.4	1.7	1.9							—	
GMRES+GRS	2.1			2.2			2.8					
GMRES+ILU(0)+GRS	0.8											
CGNR+GRS (note 2)	5.1	10.4	11.3	4.8	9.5	10.2	6.0	12.4	13.4	7.3	15.0	16.2
CGNR+GCS (note 3)	9.4	10.4	11.3	8.7	9.4	10.2	11.3	12.4	13.4	13.7	14.9	16.1
CGMN (note 4)	2.0	4.3	4.6	1.9	4.6	5.0	2.0	5.8	6.3	2.5	6.9	7.6

Notes:

- 1. Times in seconds; minimal times in boldface
- 2. CGNR+GRS is CG-accelerated Cimmino
- 3. GCS = L_2 Column Scaling
- 4. CGMN is also CARP-CG on one processor

PROBLEM 2

- A 3D problem of Gerardo-Giorda, Le Tallec and Nataf, 2004
- System(s) with large off-diagonal elements and discontinuous coefficients.
- Solved originally by DD techniques
- PDE: $-\operatorname{div}(v(x)\nabla u) + \vec{b} \cdot \nabla u + u = 0$, with

$$v(x) = \begin{cases} 10^{-1} & \text{if } x < \frac{1}{2}, \\ 10^{-5} & \text{otherwise.} \end{cases}$$

- $\vec{b} = (1,0,0) / (0,1,1) / (1,3,5) / (0,1,0)$
- Domain: unit cube
- Dirichlet boundary conditions (u = 1 on z = 0, u = 0 elsewhere)
- Discretizations: $40 \times 40 \times 40$ and $80 \times 80 \times 80$

PROBLEM 2 – SUMMARY OF RESULTS

- When $\vec{b} = (1,0,0)$ or (0,1,0) (only <u>one</u> large convection term):
 - Bi-CGSTAB+ILU(0) and GMRES+ILU(0) very efficient
 - GRS helped very little
 - CGMN relatively slow
- When $\vec{b} = (0,1,1)$ or (1,3,5) (two or more large convection terms):
 - GMRES converged very slowly, GRS was quite useful
 - CGMN was very efficient
- Conclusion: the difficulties with large convection terms occur when there are more than two large off-diagonal elements (each convection term contributes two off-diagonal elements with second-order finite difference schemes)

SUMMARY

- Two tools for nonsymmetric systems with discontinuous coefficients:
- <u>Small to moderate</u> off-diagonal elements: *L*₂-scaling with your favorite algorithm/preconditioner
- Also: <u>one or two</u> large off-diagonal elements
- <u>Three or more</u> large off-diagonal elements: CGMN (sequential), CARP-CG (parallel), CGNR+GRS (CG-accelerated Cimmino, sequential or parallel)

SOME LITERATURE

- Å. Björck & T. Elfving. Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations. *BIT, 19:145-163, 1979*.
- G&G: Component-averaged row projections: A robust, block-parallel scheme for sparse linear systems. *SIAM J. Sci. Comp., 27:1092-1117, 2005*.
- G&G: CGMN revisited: robust and efficient solution of stiff linear systems derived from elliptic partial differential equations. *ACM Trans. Math. Software, 35(3):18:118:27, Oct. 2008.*
- G&G: Row scaling as a preconditioner for some nonsymmetric linear systems with discontinuous coefficients. Tech. Rept., CS Dept., Univ. of Haifa, Oct. 2009. http://cs.haifa.ac.il/~gordon/gs.pdf.
- G&G: Solution methods for nonsymmetric linear systems with large offdiagonal elements and discontinuous coefficients Tech. Rept., CS Dept., Univ. of Haifa, Oct. 2009. http://cs.haifa.ac.il/~gordon/lodc.pdf.

THANK YOU