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ABSTRACT

The most common image representation method for biomed-
ical image reconstruction uses pixels, and the image is as-
sumed to be constant throughout the pixel. Other methods
have also been used. In many reconstruction problems, the
measured data is approximated by line integrals through the
object. This fact suggests a new class of model representation
methods based on classical Newton-Cotes methods of integral
approximations. These methods use Lagrange polynomials of
one variable, and they can be extended to higher dimensions
by blending. In 2D, these methods lead to the pixel model,
bilinear interpolation, and higher order models. The bilinear
interpolation model has been implemented and shown to be
superior to the pixel model.

Index Terms— Basis functions, biomedical image recon-
struction, integral approximation

1. INTRODUCTION

Biomedical image reconstruction techniques acquire physical
measurements from some data acquisition process, such as
CT, PET, and so on. In order to reconstruct the underlying
image, the reconstruction techniques require some assumed
representation for the underlying image. In two dimensions,
the most prevalent method is the use of pixels, with the as-
sumption that the value of the image is constant throughout
the pixel [10].

Alternative basis functions have been proposed and im-
plemented: splines [17], cubic B-splines [9], the sinc function
[14], and modifications of the Kaiser-Bessel window func-
tions (blobs) [12]. The latter method requires the tuning of
several parameters [7]. Blobs have also been used success-
fully in electron tomography [6].

In two-dimensional transmission computerized tomogra-
phy (CT), the measurements are approximated by line or strip
integrals through the medium, and the problem is to recon-
struct the value of the (unknown) density function f(x, y)
from the measurements. The general framework of the re-
construction problem is to find some approximating function
g(x, y) such that:

• g(x, y) is represented in some simple form as a linear com-
bination of certain basis functions;
• the line integrals through the domain are good approxima-

tions to the measurements.
In positron-emission tomography (PET), line integrals also
need to be approximated. Here, the line integrals are eval-
uated on the line-of-response (LOR), which is the line along
which two opposing photons move when a positron collides
with an electron [4].

There are many different types of algorithms for image
reconstruction [2, 10, 13]. Some are based on the fast Fourier
transform (FFT), while others, such as ART [11, 8], are itera-
tive. Several methods strive to satisfy some optimization cri-
terion, such as least squares minimization [1], or expectation
maximization (EM) [5]. However, even the “best” algorithms
cannot derive more information from the measurements if the
underlying model of data representation is lacking.

This paper contributes to the field of data representation
by exploring new models. Since the approximation of line
integrals is fundamental to many image reconstruction prob-
lems, it is proposed to use basis functions that are derived
from standard integral approximations. Three well known
rules for integral approximation are the rectangle rule, the
trapezoidal rule, and Simpson’s rule. When the integral is
evaluated over a finite interval [a, b], the interval is subdivided
into subintervals of uniform length h. The error of the above-
mentioned approximation methods are, respectively, O(h),
O(h2), and O(h4). These three basic rules are examples
of the Newton-Cotes formulae for numerical integration [16,
§3.1], which are based on Lagrange basis polynomials.

Our approach consists of using the Lagrange polynomials
of one variable as blending functions in order to produce ba-
sis functions of higher dimension; this is a well-known tech-
nique from the field of spline approximations. Blending func-
tions for higher dimensions are obtained by taking all possi-
ble products of the one-dimensional functions. For example,
if f(x) and g(x) are the two basis functions in one dimension,
then the 2D functions obtained by blending will be f(x)f(y),
f(x)g(y), g(x)f(y) and g(x)g(y). This approach can be ex-
tended to higher dimensions. For biomedical image recon-
struction, the main interest will be two and three dimensions,
and also four dimensions for temporal image reconstruction.



2. THE THREE INTEGRAL APPROXIMATION
METHODS AND THE DERIVED 2D MODELS

2.1. The step function approximation and the pixel model

In the pixel model, assume that bi, 1 ≤ i ≤ m, are the ray
readings, and xj , 1 ≤ j ≤ n, are the (unknown) pixel values.
This gives us a system of equations Ax = b, where each co-
efficient aij is simply the length of the intersection of the ith
ray with the jth pixel.

The pixel model is based on the step function s(x) = 1,
defined over [0, 1]. By blending s(x) in 2D, we get s(x)s(y),
and it is quite easy to see that this leads to the pixel model;
we omit the details.

2.2. The trapezoidal rule and the linear model

In this model, we will assume that the unknown values are
assigned to the grid points. The model is based on the trape-
zoidal rule for integral approximation, as follows. Suppose
f(x) is defined on an interval [a, b]. We divide [a, b] into n
subintervals of equal length:

a = a0 < a1 < · · · < an = b,

and denote h = (b−a)/n. For 0 ≤ i ≤ n−1, let gi = f(ai).
In the trapezoidal rule, the approximating function over

the subinterval [ai, ai+1] is the line connecting the points
(ai, gi) and (ai+1, gi+1). Linear interpolation can be rep-
resented by the use of two linear functions, `0(x) and `1(x)
defined over [0, 1] by specifying their values at the end points:

`0(0) = 1, `0(1) = 0, `1(0) = 0, `1(1) = 1.

This yields
`0(x) = 1− x, `1(x) = x.

g(x), the linear interpolation approximation to f(x), is de-
fined (for ai ≤ x < ai+1) as

g(x) = gi

(
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h

)
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(
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)
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Therefore, over [a, b], g(x) is given by

g(x) =
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i=0
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By blending `0 and `1 in 2D, we get four basis functions

`0,0(x, y) = `0(x)`0(y), `0,1(x, y) = `0(x)`1(y),

`1,0(x, y) = `1(x)`0(y), `1,1(x, y) = `1(x)`1(y).

For simplicity, the 2D exposition will deal with the unit
square 0 ≤ x, y ≤ 1. Suppose f(x, y) has values vi, 1 ≤ i ≤

4, on the four corners of the unit square, taken in the order
(0, 0), (1, 0), (0, 1), (1, 1); see Fig. 1. The bilinear interpola-
tion approximation of f in the unit square is

g(x, y) = v1`0,0(x, y) + v2`1,0(x, y) +

v3`1,0(x, y) + v4`1,1(x, y).

We shall now show how a line integral of g provides us
with the coefficients of vi. There are two types of such lines:
one type intersects the square at two adjacent edges, and the
other intersects it at two opposite edges. Assume that the line
is of the first type, as shown in Fig. 1.
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Fig. 1. Computing the line integral in the linear model.

Let a, b, c be the distances as shown in Fig. 1, and let s
be a variable measuring the distance along the line from point
A to point B. To get the required coefficients, we need to
evaluate the line integral

∫ c

0
g(x(s), y(s))ds, where x(s) and

y(s) are the x and y coordinates of a point on the line AB
whose distance from A is s. We now have∫ c

0

g(x(s), y(s))ds =

∫ c

0

[
v1`0,0(x, y) +

v2`1,0(x, y) + v3`0,1(x, y) + v4`1,1(x, y)
]
ds.

For exposition, we will just evaluate the coefficient of v3,
which we denote by I3:

I3 =

∫ c

0

`0,1(x(s), y(s))ds

=

∫ c

0

`0(x(s))`1(y(s))ds

=

∫ c

0

(1− x(s))y(s)ds.

Referring to Fig. 1, it is easy to see that x(s) = a(1−s/c)



and y(s) = bs/c, from which we get

I3 =

∫ c

0

(
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c

))
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c
ds

= · · · =
bc(3− a)

6
.

The final coefficient of every vi, in the equation corre-
sponding to a given line, will be the sum of similar expres-
sions from adjacent pixels intersected by the same line; these
expressions will be added together to form the final coeffi-
cient. For example, the final coefficient of v3 in the equation
corresponding to the line in Fig. 1 will be the sum of two or
three expressions from adjacent pixels: I3 (evaluated above),
plus the expression for v3 evaluated from the pixel to the left,
plus possibly a similar expression from a third pixel (depend-
ing on how the line intersects the pixel above and to the left).

2.3. Simpson’s rule and the quadratic model

Simpson’s rule for integral approximation is based on the fol-
lowing three quadratic basis functions defined over [0, 2]:

q0(x) =
1
2 x

2 − 3
2 x+ 1

q1(x) = −x2 + 2x

q2(x) =
1
2 x

2 − 1
2 x

In 2D, we get nine basis functions defined over [0, 2] ×
[0, 2] by blending: qij(x, y) = qi(x) qj(y), for 0 ≤ i, j ≤
2. The computation of the equation coefficients will be more
complicated than in the previous case, and they will depend
on the geometry of the intersection of the line with a 2 × 2
square of pixels (there are five types of such intersections).

3. RESULTS AND DISCUSSION

The linear model was implemented in 2D within the frame-
work of the SNARK09 image reconstruction software pack-
age [15]. A phantom image of size 95×95 pixels was created
using a total of 27 elliptic shapes of various sizes. The recon-
struction geometry consisted of 95 parallel uniform lines at
a spacing of one pixel apart, with 95 equally spaced angles.
Reconstruction was done with ART (algebraic reconstruction
technique), which is actually the Kaczmarz algorithm [11],
but independently rediscovered in the context of image re-
construction from projections [8]. A relaxation parameter of
0.05 was used in all iterations. It is well known that ART with
a small relaxation parameter provides good images [10], and
the result is very close to the least squares solution [3].

Fig. 2 shows the relative error of the two reconstructions,
as compared to the phantom. The pixel model reaches a min-
imum relative error of 0.0489 at 17 iterations, while the linear
model reaches a minimum of 0.0398 at 12 iterations. The dif-
ference between the plots may not seem great, but the relative
difference is significant. For example, at five iterations, the

relative error of the pixel model is larger than that of the lin-
ear model by 36%. These differences are clearly noticeable
in the resulting images in Fig. 3. Note in particular the central
area, and the bottom right white ellipse.
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Fig. 2. Relative error plot of the pixel and linear models.

4. CONCLUSIONS

A new data representation model for biomedical image re-
construction was introduced. It is based on classical Newton-
Cotes techniques for integral approximation, such as the
rectangle rule, the trapezoidal rule, and Simpson’s rule. The
model based on the trapezoidal rule was implemented and
shown to be superior to the standard pixel model.

Clearly, more work is required to fully evaluate the new
class of data representation. The following are some addi-
tional topics for further research:
• Comparisons with other data models, such as blobs.
• Tests with various types of data, including clinical sino-

grams, noisy and/or low contrast data, and limited measure-
ments (resulting in underdetermined linear systems).
• Experiments with other reconstruction algorithms.
• Examination of the quadratic model (based on Simpson’s

rule), which can be expected to provide even better results.
• Fully 3D reconstructions.
• Applications to PET and electron tomography.
• Experiments with other integral approximation methods,

such as Gauss-Kronrod and Clenshaw-Curtis.
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Fig. 3. Top to bottom: phantom, linear and pixel results after
five iterations.


