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a b s t r a c t

High frequency Helmholtz equations pose a challenging computational task, especially at
high frequencies. This work examines the parallel solution of such problems, using 2nd,
4th and 6th order finite difference schemes. The examples include problems with known
analytic solutions, enabling error evaluation of the different schemes on various grids,
including problems on L-shaped domains. The resulting linear systems are solved with
the block-parallel CARP-CG algorithm which succeeded in lowering the relative residual,
indicating that it is a robust and reliable parallel solver of the resulting linear systems.
However, lowering the error of the solution to reasonable levels with practical mesh sizes
is obtained only with the higher order schemes. These results corroborate the known lim-
itations of the 2nd order scheme at modeling the Helmholtz equation at high frequencies,
and they indicate that CARP-CG can also be used effectively with high order finite differ-
ence schemes. Furthermore, the parallel scalability of CARP-CG improves when the wave
number is increased (on a fixed grid), or when, for a fixed wave number, the grid size is
decreased.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Numerical solution of the Helmholtz equation at high frequencies (large wave numbers) is a challenging computational
task. Compounding the problem is the well-known fact that 2nd order finite difference schemes do not model the problem
very well and so require many grid points per wavelength. As a result, even if the linear system is solved to within a very
small relative residual, the computed solution may be quite far from the true solution of the partial differential equation
(PDE).

An additional problem with high wave numbers is the so-called ‘‘pollution’’ effect, which was first published in [1] (but it
was not called by that name); see also [2]. It is generally considered that at least 8–12 grid points per wavelength are
required to achieve a satisfactory solution. However, the pollution effect causes the relation between the wave number k
and the number of grid points per wavelength (denoted Ng) to be non-linear: Ng should be taken as proportional to
kðpþ1Þ=p, where p is the order of the accuracy of the scheme; see [3]. Hence, high order schemes have a clear advantage with
large wave numbers.

The literature on the Helmholtz equation is very extensive, with over 8000 titles containing the word ‘‘Helmholtz’’. Many
solution methods have been proposed and studied over the years, and a survey on this topic is beyond the scope of this
paper. One of the most prominent approaches is the ‘‘shifted Laplacian’’ method, introduced by Bayliss et al. [4]. The shift
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in the Laplacian is used as a preconditioner. Erlangga et al. [5] introduced the use of a complex shift. For a summary and some
new results, see [6], and for recent results with this approach using higher order schemes; see [3]. For some other ap-
proaches, see [7–11].

This work presents numerical experiments with the block-parallel CARP-CG algorithm [12], applied to the Helmholtz
equation with a large wave number, using 2nd, 4th and 6th order finite difference discretization schemes. CARP-CG is simple
to implement on structured and unstructured grids. In [13], it was shown to be a robust and highly scalable solver of high
frequency Helmholtz equations in homogeneous and heterogeneous media in 2D and 3D domains, using 2nd order finite dif-
ference schemes. CARP-CG is generally useful for linear systems with large off-diagonal elements [14,12], and also with dis-
continuous coefficients [15].

The high order schemes that are used in this work are all compact, meaning that they yield a 9-point and 27-point stencil
matrix in 2D and 3D, respectively. Such schemes are usually advantageous for absorbing boundary conditions, since they
require only one extra layer at the exterior boundaries. They are also simpler to implement than other high order schemes,
and they are advantageous for CARP-CG since they do not require more inter-processor communications than second order
schemes.

In this work we used the 2D 4th order scheme for variable k from Harari and Turkel [16], and the 2D 6th order scheme for
constant k from Singer and Turkel [17]. The 3D, 6th order scheme for constant k is taken from Sutmann [18, Eq. (17)].

Our experiments in 2D and 3D included problems with known analytic solutions, enabling evaluation of the error, includ-
ing problems on L-shaped domains. CARP-CG succeeded with all schemes at lowering the residual, indicating that it is a ro-
bust and reliable parallel solver of the resulting linear systems. However, lowering the error of the solutions to reasonable
levels with practical mesh sizes was possible only with the higher order schemes. These results corroborate the known lim-
itations of the low order scheme at modeling the Helmholtz equation (especially at high frequencies), and they indicate that
CARP-CG is also effective with high order finite difference schemes. Furthermore, the parallel scalability of CARP-CG im-
proves under any one of the following two conditions:

1. The grid is fixed and the wave number is increased.
2. The wave number is fixed and the grid size is decreased.

Some of the 2D results were presented at the 10th WAVES conference in 2011 [19]. The rest of this paper is organized as
follows. Section 2 describes CARP-CG and explains its effectiveness. Section 3 describes the Helmholtz equation and its dis-
cretization, and Section 4 explains the setup of the numerical experiments. Sections 5 and 6 present the results for the 2D and
3D problems, and Section 7 discusses the inherent difficulty with the 2nd order scheme. Section 8 presents some conclusions.

2. Description of CARP-CG and its effectiveness

2.1. Description of CARP-CG

We present a brief and informal explanation of CARP-CG; for full details, see [12]. Consider a system of m linear equations
in n variables, Ax = b. The Kaczmarz algorithm (KACZ) [20] is fundamental to CARP-CG. Starting from some arbitrary initial
guess, KACZ successively projects the current iterate onto a hyperplane defined by one of the equations in cyclic order. Each
cycle of projections is called a KACZ sweep. The projections can be modified with a relaxation parameter 0 < x < 2. If equa-
tion i has a fixed relaxation parameter xi, then the projections are said to be done with cyclic relaxation.

In a landmark paper, Björck and Elfving [21] showed that if a forward sweep of KACZ is followed by a backward sweep
(i.e., the projections are done in reverse order), then the resulting iteration matrix is symmetric and positive semi-definite.
Therefore, the double KACZ sweep can be accelerated using the conjugate-gradient (CG) algorithm. The iteration matrix is
not actually calculated; instead, whenever it has to be multiplied by a vector, the calculation is done by performing a suitable
KACZ double sweep. The resulting algorithm, called CGMN, is one cornerstone of CARP-CG.

A second cornerstone for CARP-CG is CARP [22], which is a block-parallel version of KACZ. Note that this is different from
the standard block-sequential version of KACZ, which requires the equations in a block to be independent (i.e., there are no
shared variables in a block). CARP divides the equations into blocks, which may overlap, and equations in a block need not be
independent. In a parallel setting, every processor is in charge of a block of equations. Every processor has a copy, or ‘‘clone’’,
of every variable that it shares with another block. The following two steps are now repeated until convergence:

1. Every processor performs a KACZ sweep on the equations of its assigned block, updating the block’s variables. For shared
variables, each processor updates its copy of the variable.

2. The processors exchange information about the new values of the clones. Every shared variable is now updated to be the
average of all its clones in the different blocks, and the new value of every shared variable is distributed among the pro-
cessors which share it.

If the blocks are chosen according to spatial partitioning, then the exchange of data occurs only at the boundaries between
subdomains. CARP can be viewed as a type of domain decomposition (DD) technique which differs from other DD methods
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because values from neighboring domains (the clones) are also modified by the internal processing. Furthermore, partition-
ing a domain into subdomains can be based entirely on efficiency considerations such as load-balancing and minimizing in-
ter-processor communications. In this context, the compact high order difference schemes are advantageous since they do
not require more elements from neighboring subdomains than the 2nd order scheme.

For a detailed parallel implementation of CARP, see [22]. An important point about CARP is that the averaging operations
between shared variables are equivalent to certain KACZ row projections (with relaxation x = 1) in some superspace. Hence,
CARP is equivalent to KACZ with cyclic relaxation in the superspace. This property provides a convenient convergence proof
for CARP, and it enables the CG acceleration of CARP.

The CG acceleration is obtained in [12] as follows. Firstly, the construction of CGMN is extended to KACZ with cyclic relax-
ation parameters. It then follows that the superspace formulation of CARP can be accelerated by CG. This means that in the
regular space, CARP can be accelerated by CG in the same manner as CGMN, i.e., by running CARP in a double sweep. On one
processor, CARP-CG and CGMN are identical.

2.2. The Effectiveness of CARP-CG

The effectiveness of CARP-CG follows from two inherent features of KACZ, which will be explained below. Let Ax = b be the
given linear system. We denote the L2-norm of a vector x by jjxjj. Consider the projection of the current iterate x onto the
hyperplane defined by the ith equation, yielding a new iterate x0 defined by

x0 ¼ xþxi
bi � hai�; xi
jjai�jj2

ai�; ð1Þ

where 0 < xi < 2 is the relaxation parameter associated with the ith equation and ai� is the ith row of A. Eq. (1) shows that
KACZ inherently normalizes the equations, i.e., the ith equation is divided by jjai�jj. Therefore, we can assume that this nor-
malization has already been done as a preliminary step; it is also more efficient to do so in practice. Note that KACZ is a geo-
metric algorithm in the following sense: the iterates depend only on the hyperplanes defined by the equations and not on
any particular algebraic representation of these hyperplanes. For this reason, we call the normalization GRS (geometric row
scaling).

This inherent use of GRS by KACZ is the reason that CARP-CG can handle discontinuous coefficients effectively. GRS is a diag-
onal scaling of A, and the positive effect of such scalings, when dealing with discontinuous coefficients has been known for a
long time; see, for example [23]. More recently, an extensive study in [24] has shown that normalization significantly improves
the convergence properties of Bi-CGSTAB [25] and restarted GMRES [26] (both of them with and without the ILU (0)
preconditioner) on nonsymmetric linear systems with discontinuous coefficients derived from convection–diffusion PDEs.
However, for these algorithm/preconditioner combinations, these results held only for small-to moderate-sized convection
terms; for large convection terms, [15] shows that CARP-CG is preferable.

An examination of the normalization in [24,15] shows that it ‘‘pushes’’ heavy concentrations of eigenvalues around the
origin away from the origin. It is known that such concentrations are detrimental to convergence. These results explain
why CARP-CG can handle the problem of discontinuous coefficients. Note that the normalization has a certain ‘‘equalization’’
effect on the coefficients of different equations (but not on different-sized coefficients in the same equation).

A second point concerning KACZ is the fact that it is actually SOR (successive over-relaxation) on the normal equations
system AAT y ¼ bðx ¼ AT yÞ; see [21]. Using AAT is generally considered detrimental because its condition number is the square
of the condition number of A. However, the following fact, which apparently appeared first in [15, Theorem 3.1], seems to
have been largely overlooked: assuming that GRS has been applied to A (as is inherent in KACZ), then the diagonal elements
of AAT are equal to 1, and all the off-diagonal elements are <1, provided no two rows of A are colinear. In other words, the two
simple operations of applying GRS to A and then using AAT , form a very simple means of dealing with systems with large
off-diagonal elements, including cases of discontinuous coefficients.

3. The Helmholtz equation and discretization schemes

3.1. The Helmholtz equation

Let D be a given domain. We use the following notations:

� c is the speed of the waves (in m/s); c may vary in D.
� f is the frequency of the waves in Hertz.
� k ¼ c=f is the wave length (in meters).
� The (dimensional) wave number is defined as k ¼ 2pf=c, from which we have k ¼ 2p=k.

The Helmholtz equation in D is � Dþ k2
� �

u ¼ g, where k is the wave number, and g is a prescribed right-hand-side. The
following additional notations will be used.
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� If D is a square measuring L� L, then one can define the non-dimensional wave number as k ¼ kL. Generally, the term
‘‘large wave number’’ refers to large values of k. We shall use k instead of k when the meaning is clear from the context.
� In two dimensions, the domain D is discretized with a uniform grid of N � N points (N � N � N in 3D). N includes the

boundary points, but for absorbing boundary conditions, one or more extra layers of points are added.
� h ¼ L=ðN � 1Þ (in meters) denotes the mesh spacing.
� From the above, we obtain the number of grid points per wavelength as Ng ¼ c=ðfhÞ ¼ 2p=ðkhÞ.

3.2. Discretization schemes

In our experiments, we discretized the equations by using 2nd, 4th and 6th order finite difference schemes. This yields a
system of equations Ax = b, which, depending on the boundary conditions, may contain complex elements.

In two dimensions, the standard 2nd order central difference scheme (for constant and variable k) is given by the follow-
ing constants, defined on a 5-point stencil:

At the center point : A2D2
0 ¼ �4þ ðkhÞ2;

At the 4 side points : A2D2
s ¼ 1:

ð2Þ

In three dimensions, we have a 7-point stencil:

At the center point : A3D2
0 ¼ �6þ ðkhÞ2;

At the 6 side points : A3D2
s ¼ 1:

ð3Þ

The 2D 4th order scheme for variable k [16] uses a 3� 3 square of values, and in each case, the value of k is taken at the
corresponding point. This is clarified in the following scheme by assigning an index to k corresponding to the point at which
it should be taken.

At the center point : A2D4
0 ¼ �10

3
þ 2

3
þ c

36

� �
ðk0hÞ2;

At the 4 side points : A2D4
s ¼ 2

3
þ 1

12
� c

72

� �
ðkshÞ2;

At the 4 corner points : A2D4
c ¼ 1

6
þ c

144
ðkchÞ2;

ð4Þ

where c is an arbitrary constant (taken as zero in our experiments).
The 2D 6th order scheme for constant k [17] is obtained from the 4th order scheme by taking c ¼ 14

5 and adding terms of
the order of ðkhÞ4:

At the center point : A2D6
0 ¼ �10

3
þ 67

90
ðkhÞ2 þ d� 3

180
ðkhÞ4;

At the 4 side points : A2D6
s ¼ 2

3
þ 2

45
ðkhÞ2 þ 3� 2d

720
ðkhÞ4;

At the 4 corner points : A2D6
c ¼ 1

6
þ 7

360
ðkhÞ2 þ d

720
ðkhÞ4;

ð5Þ

where d is an arbitrary constant (taken as zero in our experiments).
The 3D, 6th order scheme for constant k [18, Eq. 17] uses a 27-point stencil defined at all points of a 3� 3� 3 cube, as

follows.

At the center : A3D6
0 ¼ � 64

15h2 1� ðkhÞ2

4
þ 5ðkhÞ4

256
� ðkhÞ6

1536

 !
;

On the 6 sides : A3D6
s ¼ 7

15h2 1� ðkhÞ2

21

 !
;

On the 12 edges : A3D6
e ¼ 1

10h2 1þ ðkhÞ2

18

 !
;

At the 8 corners : A3D6
c ¼ 1

30h2 :

ð6Þ

3.3. Boundary conditions

Boundary conditions vary with the problems. In some cases, an impact on one side is modeled by a discontinuity on that
side. In order to model unbounded domains, it is necessary to prevent reflecting waves from the boundaries. In our examples,
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this was done by using the first-order absorbing boundary condition, derived from the Sommerfeld radiation condition [27,
Section 28]

@u=@~n� iku ¼ 0; ð7Þ

where ~n is the unit vector pointing outwards from the domain, and i ¼
ffiffiffiffiffiffiffi
�1
p

.
In order to incorporate this boundary condition, we add an extra layer of grid points to each side for which (7) holds, and

for each such extra grid point, we add the equation obtained by discretizing (7). For example, suppose we are dealing with
the unit square (or unit cube), and we choose this boundary condition on the side x = 1. Then, following [3, Section 3], we
obtain the following 6th order accurate equation for each new grid point:

1
2h

uNþ1 þ 2ikh 1� k2h2

6
þ k4h4

120

 !
uN � uN�1

 !
¼ 0; ð8Þ

where h is the mesh spacing and uN�1; uN ; uNþ1 are the values of u interior to the boundary, on the boundary, and at the extra
grid point, respectively. Thus, for every new grid point, we get one new equation.

Note that when the absorbing boundary condition is chosen on one side, then each (original) boundary point on that side
will have a regular equation centered on it, and that equation will also involve one or more of the extra grid points. As a
result, when using the 9-point stencil in 2D, each new grid point will (in general) participate in three regular equations.
In 3D, with a 27-point stencil, each new grid point will participate in nine regular equations.

4. Setup of the numerical experiments

4.1. Implementation details

Tests were run on a Supermicro cluster consisting of 12 nodes connected by an Infiniband network. Each node consists of
two Intel Xeon E5520 quad CPUs running at 2.27 GHz, so the cluster can provide a total of 96 cores. The two CPUs share 8 GB
of memory and each has its own 8 MB cache. The cluster runs under Debian Linux, and message passing used the MPICH2
public domain MPI package.

Our implementation of the data structures used by CARP-CG is similar to that of the AZTEC numerical software package
[28]. In a preprocessing stage, the following information is saved in each processor: a list of neighboring processors with
which it communicates, a list of local nodes that are coupled with external nodes, and a local representation of the submatrix
and subvectors used by the processor. The local submatrix in each processor is stored in the sparse matrix format called
DMSR (distributed modified sparse row) [28], which is a generalization of the MSR format [29, Section 3.4]. Additionally,
every processor stores the ‘‘clones’’ of the relevant external grid points.

CARP-CG is written in C and compiled with the GNU C compiler, with optimization parameter-O. All matrix–vector and
scalar products are coded inline; this is one contributing factor to the efficiency of our code. CARP-CG was implemented with
the MPI Cartesian topology routines for inter-processor communications. The initial estimate was taken in all cases as x0 ¼ 0,
and the relaxation parameter was taken as x = 1.5 (except for Problem 2L).

4.2. Solving complex-valued equations

There are several known methods for solving complex equations; see [30]. According to this paper, and as confirmed by
our experiments, the following approach is the most efficient. A complex system of equations Ax = b can be broken down as
follows: let A ¼ Bþ iC; b ¼ c þ id, and x ¼ yþ iz, where B;C; c; d; z; y are all real-valued. This yields the system
ðBþ iCÞðyþ izÞ ¼ c þ id, which is equivalent to the two real-valued systems By� Cz ¼ c; Cyþ Bz ¼ d. These two n� 2n sys-
tems can be solved by ‘‘merging’’ them into one real-valued 2n� 2n system by alternately taking one equation from the first
system and one from the second system. This gives us the system

b11; �c11; . . . ; b1n; �c1n

c11; b11; . . . ; c1n; b1n

..

.

bn1; �cn1; . . . ; bnn; �cnn

cn1; bn1; . . . ; cnn; bnn

0
BBBBBBB@

1
CCCCCCCA

y1

z1

..

.

yn

zn

0
BBBBBBB@

1
CCCCCCCA
¼

c1

d1

..

.

cn

dn

0
BBBBBBB@

1
CCCCCCCA
: ð9Þ

Note that when solving the system (9) with CARP-CG, our first step is to normalize this system (and not the original
Ax = b). In our experiments, we found that solving (9) with CARP-CG was about twice as fast as solving the original complex
system.
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5. 2D problems

We consider four problems in 2D, including one problem on an L-shaped domain. The first three have analytic solutions,
so we can compare the results with the true solution. The fourth problem is the well known Marmousi model [31]. For Prob-
lems 1 and 2, the wave number was taken as k = 300, and the number of grid points per wavelength was taken as
Ng ¼ 9;12;15;18. Table 1 shows the grid sizes for the various values of Ng . In Problem 1 the variables are complex, and
in Problem 2 they are real.

5.1. Problem 1

This example is taken from [3] (but with x and y interchanged for convenience). The equation Duþ k2u ¼ 0 is defined on
the square ½�0:5;0:5� � ½0;1�. Dirichlet boundary conditions were taken on three sides: u = 0 for x = �0.5 and x = 0.5, and
u ¼ cosðpxÞ for y = 0. On the side y = 1, a first order absorbing boundary condition (Sommerfeld radiation condition) was ta-
ken as uy � ibu ¼ 0, where b2 ¼ k2 � p2. The analytic solution to this problem is uðx; yÞ ¼ cosðpxÞeiby. k = 300 in all the test
runs of this problem.

Fig. 1 shows the relative residual results for the three schemes, for Ng ¼ 18, on one processor. Here, all three convergence
plots are quite similar, and those of the higher order schemes are almost identical.

Fig. 2 show the L2-error plots of the three schemes for Ng ¼ 18, on one processor. The 2nd order scheme stagnates at a
value of 0.78 with this mesh size, probably due to the pollution effect. This figure indicates the importance of the high order
schemes, especially the 6th order one for constant k.

Fig. 3 shows the error plots of the 6th order scheme for 9 6 Ng 6 18, on one processor. Since higher values of Ng take more
computation time, Ng should be chosen according to the desired accuracy.

The parallel performance of CARP-CG with the 6th order scheme on Problem 1 is shown in Fig. 4. The number of proces-
sors varies from one to 16, with Ng ¼ 15. The different plots are due to the fact that mathematically, we are actually solving
different systems of equations when we vary the number of processors. This is due to the averaging operations of CARP-CG,
which, in the superspace, are equivalent to additional equations in the system.

Table 2 shows the number of iterations and runtimes required to reach a relative residual of 10�7 with the 6th order
scheme for Ng ¼ 15, on 1 to 16 processors. There appears to be a certain anomaly here with the number of iterations reaching

Table 1
Problems 1 and 2: grid sizes for different values of Ng , for k ¼ 300.

Ng 9 12 15 18

Grid 431� 431 575� 575 717� 717 861� 861

Iter

R
el

-R
es

0 1000 2000 3000 4000 5000 6000 7000
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Problem 1: 2nd, 4th, 6th order schemes,
Ng = 18, k = 300

2nd order
4th order
6th order

Fig. 1. Problem 1: relative residual for Ng ¼ 18, one processor, with the 2nd, 4th and 6th order schemes.
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a maximum with eight processors. This is also apparent in Fig. 4. We conjecture that the cause of this is that with 8 processors,
the eigenvalues of the system matrix (in the superspace) turn out to badly distributed as compared to 4 or 12 processors.

5.2. Problem 2

The PDE Duþ k2u ¼ 0 is defined on the unit square ½0;1� � ½0;1�. The analytic solution chosen for this problem was taken
as uðx; yÞ ¼ sinðpxÞ cosðbyÞ, where b2 ¼ k2 � p2. Dirichlet boundary conditions were determined by the values of u on the

Iter

L 2
Er

ro
r

0 1000 2000 3000 4000
10-5

10-4

10-3

10-2

10-1

100

Problem 1: 2nd, 4th, 6th order schemes,
Ng = 18, k = 300

2nd order
4th order
6th order

Fig. 2. Problem 1: L2-error for Ng ¼ 18, one processor, with the 2nd, 4th and 6th order schemes.

Iter

L 2
Er

ro
r

0 1000 2000 3000 4000
10-5

10-4

10-3

10-2

10-1

100

Problem 1: 6th order scheme, k=300

Ng = 9
Ng = 12
Ng = 15
Ng = 18

Fig. 3. Problem 1: L2-error with 6th order scheme, for 9 6 Ng 6 18, on one processor.
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boundary: u = 0 for x = 0 and x ¼ 1; u ¼ sinðpxÞ for y = 0, and u ¼ sinðpxÞ cos b for y = 1. For this problem, k was also taken as
300 on all test runs.

Fig. 5 shows the relative residual with the three schemes, for Ng ¼ 18, on one processor. The two high order schemes
achieve almost identical results, which are better than those of the 2nd order scheme.

Iter

R
el

-R
es

0 1000 2000 3000 4000 5000 6000 7000
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Problem 1: 6th order scheme, Ng = 15, k = 300

1 proc.
2 procs.
4 procs.
8 procs.
12 procs.
16 procs.

Fig. 4. Problem 1: relative residual for 1–16 processors with 6th order scheme, for Ng ¼ 15.

Table 2
Problem 1: number of iterations and runtimes (s) required to reach a relative residual of 10�7, on 1–16 processors with
the 6th order scheme, for k ¼ 300 and Ng ¼ 15, on a grid of 717� 717.

# Proc. 1 2 4 8 12 16

No. iter. 2881 3516 4634 6125 4478 4983
Runtime (329) (233) (157) (96) (62) (51)

Iter

R
el

-R
es

0 1000 2000 3000 4000 5000 6000 7000
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Problem 2: 2nd, 4th, 6th order schemes,
Ng = 18, k = 300

2nd order
4th order
6th order

Fig. 5. Problem 2: relative residual for Ng ¼ 18, on one processor, with the 2nd, 4th and 6th order schemes.
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Fig. 6 shows the relative error, under the same conditions as in Fig. 5. The 2nd order scheme produces reasonable relative
residual results, but it is clearly inadequate for any purpose. The 6th order scheme is preferable to the 4th order scheme for
constant k because their computation times are identical.

Fig. 7 concentrates on the 6th order scheme and shows the L2-error for Ng ranging from 9 to 18, on one processor. Since
higher values of Ng require finer grids and hence longer time per iteration, Ng should be chosen according to the required
accuracy.

The parallel performance of CARP-CG on this problem is shown in Fig. 8. Results are shown for 1–16 processors, for
Ng ¼ 15.

Table 3 shows the number of iterations and runtimes required to reach a relative residual of 10�7 with the 6th order
scheme for Ng ¼ 15, on 1 to 16 processors.
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Fig. 6. Problem 2: L2-error for Ng ¼ 18, on one processor, with the 2nd, 4th and 6th order schemes.
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Fig. 7. Problem 2: L2-error with the 6th order scheme, one processor, for 9 6 Ng 6 18.
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5.3. Problem 2L–an L-shaped domain

This problem is identical to Problem 2, except that one quadrant is removed from the unit square, resulting in an L-shaped
domain, as shown in Fig. 9. Such domains are well-known to be problematic, because the inner corner gives rise to very
strong gradients in its vicinity. In this section, w was taken as 1.6 since this produced slightly better results.

Fig. 10 shows the L2-error with the 6th order scheme on one processor, for k = 50 and Ng ¼ 9;12;15;18. The correspond-
ing grids are 732;972;1202;1442. Similarly to Problems 1 and 2, larger values of Ng provide better accuracy but smaller val-
ues are preferable if they can provide the required accuracy.

Fig. 11 shows the L2-error with the 4th and 6th order schemes on one processor, for Ng ¼ 15 and k = 25, 50, 100. The cor-
responding grids are 612;1202;2402. The results with the 2nd order scheme are not shown because it achieved an L2-error of
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Fig. 8. Problem 2: relative residual for 1–16 processors with 6th order scheme, for Ng ¼ 15.

Table 3
Problem 2: number of iterations and runtimes (s) required to reach a relative residual of 10�7 on 1–16 processors with
the 6th order scheme, for k ¼ 300 and Ng ¼ 15, on a grid of 717� 717.

# Proc. 1 2 4 8 12 16

No. iter. 3847 3981 4328 4774 5561 5691
Runtime (207) (117) (65) (37) (30) (24)
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x

1

0.5

0

Fig. 9. The L-shaped domain.
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only 0.149 with k ¼ 50 and 0.308 with k = 100, and then the error increased. The 6th order scheme is clearly preferable to the
4th (when k is constant).

Fig. 12 compares the L2-error results for the original Problem 2 with the results for the L-shaped domain, on one proces-
sor, with the 4th and 6th order schemes, for k = 50 and Ng ¼ 15. The corresponding grid is 1202. We can see that many more
iterations are required on the L-shaped domain before achieving the same error as on the original square.

Fig. 13 is similar to Fig. 12, except that now k = 100 and the grid is 2402. The difference between the required number of
iterations for each case is now much larger than for k = 50.

Table 4 shows the times (in seconds) per 1000 iterations, on one processor with the 6th order scheme, for the square and
the L-shaped domains, for k = 50 and Ng ¼ 9;12;15;18. The corresponding grids are 732;972;1202;1442. As can be expected,
the time per iteration on the L-shaped domain is approximately 75% of the time on the full square (for equal values of Ng).
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Fig. 10. Problem 2L: L2-error with the 6th order scheme on one processor, for k = 50 and 9 6 Ng 6 18.
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Fig. 11. Problem 2L: L2-error on one processor with the 4th and 6th order schemes, for k = 25, 50, 100 and Ng ¼ 15.
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Large values of k are problematic with the L-shaped domain. For example, achieving 1% accuracy with k = 300 and Ng ¼ 9
required 14,465 iterations (205.56 s) on one processor. The best L2-error for this case was 2:583� 10�3 (obtained at 32,730
iterations).
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Fig. 12. Problem 2L: L2-error with the 4th and 6th order schemes for the square and the L-shaped domains, for k ¼ 50;Ng ¼ 15 and grid 120� 120.
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Fig. 13. Problem 2L: L2-error with the 4th and 6th order schemes for the square and the L-shaped domains, for k ¼ 100; Ng ¼ 15 and grid 240� 240.

Table 4
Time (s) per 1000 iterations on one processor for the square and L-shaped domains with the 6th order scheme, for k = 50
and 9 6 Ng 6 18.

Ng and grid 9; 732 12; 972 15; 1202 18; 1442

Square 0.4876 0.8943 1.3715 2.0292
L-shaped 0.3636 0.6753 1.0270 1.5199
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5.4. Problem 3–the Marmousi model

The third problem is the well-known Marmousi model [31]. The domain D corresponds to a 6000 m � 1600 m vertical
slice of the Earth’s subsurface, with the x-axis as horizontal and the y-axis pointing downwards. A point disturbance source
is located at the center of the upper boundary. The wave equation is Duþ k2u ¼ g, where gðx; yÞ ¼ dðx� ðxmin þ xmaxÞ=2ÞdðyÞ.
The domain is highly heterogeneous, with velocity c ranging from 1500 m/s to 4450 m/s. Three grid sizes are available:
751� 201;1501� 401, and 2001� 534.

This problem was discretized using 2nd and 4th order finite difference schemes, as detailed in Eqs. (2) and (4). The 6th
order scheme (5) was not used since k varies in the domain. The Sommerfeld radiation condition, discretized according to (7),
was used on all boundaries.

The frequency f is determined by the user, and in our test cases, it ranged from 20 to 80. Since the domain is heteroge-
neous, the value of Ng varies within the domain, with values determined by the frequency and the grid size. For example,
with the mid-sized grid and f = 40, we get 9:375 6 Ngð40Þ 6 27:8125.

Fig. 14 shows the relative residual results for one to 16 processors, using the 4th order scheme (4), with frequencies of 20,
40 and 60. The following points can be seen:

1. The number of required iterations decreases as the frequency increases.
2. As the number of processors increases, more iterations are required for convergence to some specific relative residual.
3. CARP-CG scales better as the frequency increases in the following sense: when the number of processors increases, the

percentage increase in the required number of iterations decreases with increasing frequency.

Similar results were obtained with the 2nd order scheme.
Unfortunately, there is no known analytic solution for the Marmousi problem. Problems 1 and 2 showed that the 2nd-

order scheme achieved very poor error results, even with 18 grid points per wavelength, compared to the high order
schemes. We can conclude from this that even in cases with no known analytic solutions, the high order schemes are much
closer to the true solution.

In order to evaluate the relative performance of the 2nd and 4th order schemes on this problem, we ran the 4th order
scheme on the mid-sized grid, with frequency f = 40, until a relative residual of 10�13 was achieved. The result was saved
as the ‘‘true’’ solution, and this was compared with the results of the 2nd order scheme. Fig. 15 shows the relative L2-error
of the 2nd order scheme w.r.t. to this ‘‘true’’ solution, as a function of the relative residual, for frequency f = 40. We can see
that the 2nd order scheme comes nowhere near the result of the 4th order scheme. It is clear from this that the solution with
the 4th order scheme is much closer to the true solution.
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Fig. 14. Problem 3: convergence of the relative residual on 1–16 processors, for frequencies 20, 40 and 60, on the mid-sized grid (1501� 401).
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Table 5 shows the number of iterations and runtimes required to reach a relative residual of 10�7 with the 4th order
scheme on one to 24 processors, on the three grid sizes. The frequency f was chosen so that the number of grid points
per wavelength, Ng , is at least 6.5.

6. 3D examples

6.1. Problem 5

We consider the Helmholtz equation Duþ k2u ¼ 0 on the unit cube D ¼ ½0;1�3, with the analytic solution

u ¼ cosðpxÞ sinðpyÞða cosðbzÞ � i sinðbzÞÞ; ð10Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2p2

p
and a ¼ b=k.

The boundary conditions are as follows. On the side z = 0, we take the first order absorbing boundary condition (7), which
reduces to @u

@z þ iku ¼ 0. On the other sides, we take Dirichlet boundary conditions, as determined by the values of u from (10).
It can be verified that u satisfies the Helmholtz equation throughout the domain and the absorbing boundary condition on
the side z = 0.

We use the 3D, 6th order discretization scheme from [18, Eq. 17], as detailed in Eq. (6). The absorbing boundary condition
on the side z = 0 is discretized according to [3, Eq. 8], as detailed in Eq. (8). Due to the large number of equations (13,824,000
complex variables with the 2403 grid), the runtime experiments were done on 12 processors. k = 100 in this problem.

Fig. 16 shows the relative residual plots for Problem 4 with the 2nd and 6th order schemes, for Ng ¼ 9;12;15. The cor-
responding grids are 1443;1923;2403. The figure shows that the 6th order scheme is advantageous.

Fig. 17 shows the L2-error plots with the 2nd and 6th order schemes, for the same values of Ng and grid sizes as in the
previous figure. Similarly to Problems 1 and 2, we can see that the 2nd order scheme is incapable of producing acceptable
results at these values of Ng .
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Fig. 15. Problem 3: relative error of the 2nd order scheme compared to the solution obtained with the 4th order scheme, for frequency f ¼ 40.

Table 5
Problem 3: Iterations and runtimes (s) to reach a relative residual 6 10�7 with the 4th order scheme, on the three grid
sizes with 1–24 processors. Ng P 6:25 in all cases.

No. proc. 1 2 4 8 12 16 24

751� 201 2734 2752 2838 2964 3053 3153 3420
f = 30 (85) (50) (28) (16) (14) (14) (14)

1501� 401 5332 5367 5428 5561 5655 5765 5995
f = 60 (668) (389) (206) (118) (97) (91) (86)

2001� 534 7083 7106 7170 7310 7414 7521 7734
f = 80 (1608) (914) (489) (274) (217) (212) (179)
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6.2. Problem 5

The Helmholtz equation is taken over the unit cube ½0;1�3, with a point disturbance at the center of the z = 0 side, so the
equation is Duþ k2u ¼ dðx� 1

2Þdðy� 1
2ÞdðzÞ. First order absorbing boundary conditions (7) are taken on all sides. We use the

3D 6th order discretization scheme from [18, Eq. 17], as detailed in Eq. (6). The absorbing boundary conditions are discret-
ized according to [3, Eq. 8], as detailed in Eq. (8).

Fig. 18 shows the convergence plots of Problem 5 for k = 100, on 2–16 processors (there was insufficient memory to run
the problem on one processor). The problem was ran on grid sizes of 1053;1453 and 1933, and Ngh ¼ 2p=k was kept fixed, so
the corresponding values of Ng were 6.5, 9 and 12. We can see that as Ng decreases, the number of iterations required to
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Fig. 16. Problem 4: relative residual of 2nd and 6th order schemes, for k = 100 and Ng ¼ 9;12;15.
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reach a certain relative residual also decreases, and the parallel scalability improves (meaning that when we consider the
percentage increase in the number of iterations as the number of processors increases, then smaller values of Ng produce
lower percentages).

7. Discussion

A natural question that arises in view of the results is the following: the high order schemes require more nonzero ele-
ments than the 2nd order scheme, so each iteration takes longer. Suppose we wish to obtain a certain level of accuracy, and
we want to do it in the minimal time. Can we do it with the 2nd order scheme faster than with the high order schemes by
increasing the grid sizes? As we shall see, for the three problems with analytic solutions that we consider here (1, 2 and 4),
the answer is negative.

Table 6 presents the time per iteration of the 2nd and 6th order schemes for Problems 1, 2 and 4 (problems with analytic
solution), and shows the percentage increase in time for the 6th order scheme w.r.t. the 2nd order scheme. Problems 1 and 2
were ran on one processor with k = 300 and Ng ¼ 18 (grid size = 8612). Problem 4 was ran with k = 100 and Ng ¼ 15 (grid
size = 2403). We can see that the percentage increase in time per iteration is 40% for the 2D problems and 145% for the
3D problem.

Notwithstanding the fact that the 6th order scheme takes more time per iteration, its accuracy is so much better than that
of the 2nd order scheme, that it can achieve the same level of accuracy with much lower values of Ng . This way, the 6th order
scheme can achieve any required accuracy with a much smaller grid, and hence, in less time. This is demonstrated in Table 7
for Problems 1, 2 and 4. The table shows the number of iterations and time for the 2nd order scheme to achieve its minimal
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Fig. 18. Problem 5: Convergence plots on 2–16 processors, for Ng ¼ 6:5;9;12.

Table 6
Problems 1, 2 & 4: time (s) per iteration of the 2nd and 6th order schemes, and the percentage increase in time for the
6th order scheme.

Prob. # Proc. k Ng Grid 2nd order 6th order % increase(%)

1 1 300 18 8612 0.119 0.167 40

2 1 300 18 8612 0.058 0.081 40

4 12 100 15 2403 0.280 0.686 145

Table 7
Problems 1, 2 & 4: number of iterations and time (s) to reach the minimal L2-error of the 2nd order scheme, compared to
the iterations and time of the 6th order scheme to reach the same L2-error with a much lower value of Ng .

Prob. # Proc. k L2-err. Ng 2nd order Ng 6th order

1 1 300 0.78 18 1650 (197) 6.5 109 (2.23)
2 1 300 0.41 18 1680 (97) 6.5 95 (0.97)
4 12 100 0.40 15 710 (195) 6.5 95 (5.76)
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L2-error, and compares it with the number of iterations and time for the 6th order scheme to achieve the same result with a
much lower value of Ng . We can see that the 6th order scheme takes about 1% of the time for the 2D pro blems and 3% of the
time for the 3D problem, as compared with the 2nd order scheme. Problems 1 and 2 were ran on one processor and Problem
4 on 12 processors. For Ng ¼ 6:5, the grid size is 3112 for Problems 1 and 2, and 1043 for Problem 4.

A related question is the following: how much will we have to refine the grid so that the 2nd order scheme can achieve
the same error as the 6th order scheme? To answer this, we recall some basic theory. Suppose p is the order of accuracy of
some scheme and h is a given mesh spacing. Then the error E obtainable (in theory) with a scheme of order p is proportional
to hp, i.e., for some constant c; E ¼ chp.

Suppose now that with a given mesh spacing h1 we can obtain accuracy E1 with a scheme of order p, and we want to
obtain a given accuracy E2. Let h2 be the required mesh spacing. Then, for i ¼ 1;2 we have Ei ¼ chp

i . From this we get

h2 ¼ h1
E2

E1

� �1
p

: ð11Þ

Example 1. Consider the case of Problem 4 with p = 2. The error obtained with the 2nd order scheme for Ng ¼ 15 was
E1 ¼ 0:40, and it was obtained with a mesh spacing of h1 ¼ 1=239. Suppose we set our error goal as E2 ¼ 1:2973� 10�3,
which is the error obtained with the 6th order scheme for Ng ¼ 6:5. Substituting these numbers in Eq. (11) gives us
h2 � 1=4197. Hence, the required grid size is 41983, which is approximately 63,909 times larger than the grid of 1053

required by the 6th order scheme. The required number of grid points per wavelength would be Ng ¼ 2p� 4197=100 � 264.

8. Conclusions

The results show the usefulness of CARP-CG for solving the Helmholtz equation with large wave numbers, using 4th and
6th order finite difference schemes. The high order schemes are clearly preferable over the 2nd order scheme, which requires
unrealistic mesh sizes to achieve comparable results. Both high order schemes take the same time per iteration, so the 6th
order scheme is preferable when the wave number is constant. Furthermore, the parallel scalability of CARP-CG improves
when the wave number is increased (on a fixed grid), or when, for a fixed wave number, the grid size is decreased.

Results on an L-shaped domain indicate that CARP-CG coupled with high order schemes can handle this difficult problem.
However, for large wave numbers, the number of iterations required to reach a given error goal can be much greater than for
the full square. This suggests that mesh refinement in the vicinity of the corner could be a useful approach.
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