[polyg@ii & 40 gons in Sy]

[polygons in Sk,j 1

Front-to-Back Display of BSP Trees

Dan Gordon and Shuhong Chen
Texas A&M University

COﬂ’lblanlg polygon Wc developed a technique to display binary space partitioning (BSP)

scan-conversion with a trees that is faster than the usual back-to-front display method. Our tech-

dynamic screen data nique—a front-to-back approach—provides significant speed-up in the dis-

structure led to a play time of polygongl scences tl.]vm depend on BSP trees, especially in cases
where the number of polygons is large.

front-to-back aPPTOﬂCh BSP trees' are one of the most useful data structures for polygonal scenes.

fOT dlsplaymg BSP trees. The structure of BSP trees embodies the geometrical priorities of a set of

. . . polygons in 3D space. Independent of any viewpoint, this structurc (once
This techmque lmproves constructed) enables fast display with hidden surface removal. It proves

Slgnlflcuntly over the especially useful in applications with a fixed environment where we need to
back-to-front method. generate many images from different viewpoints—in flight simulators, for
example.

Once we have determined a viewpoint. we can display the scene by tra-
versing the BSP tree in back-to-front order and scan-converting each poly-
gon. Since polygons closer to the viewpoint will be displayed later than
turther ones, they will overwrite the further ones, producing correct hidden
surface removal.

September 1991 0272-17-16/91/0900-0079$01.00° ©1991 [EEF 79

: Half-space

>

Half-space

|

Figure 1. Environment split by plane of p.

Invoxel and octree environments, researchers have had some
success with display algorithms that traverse the scene in front-
to-back order (instead of back-to-front).2* In principle, we can
convert any back-to-front display method to a front-to-back
one by a simple additional check: Before a pixel is set, it is
checked to verify that it had not already been set. However, this
simple modification has no advantage. Success lies in the use of
certain data structures to represent the image during process-
ing. These structures enable the algorithms to eliminate from
consideration large chunks of pixels that have already been set.

[Polygon py]

[Polygon p;]

{ Polygons in S%]

[Polygons in S ;] [Polygons in §° ;]

Figure 3. BSP tree after the second split of polygons.
80

In our method for displaying BSP trees in front-to-back
order, we use the data structure introduced elsewhere® for
front-to-back display of voxel-based objects. This data struc-
ture combines with polygon scan-conversion for efficient dis-
play of polygonal scenes. In principle, any priority-based
algorithm (for example, the depth-sort algorithm*®) that scan-
converts polygons one at a time can be modified in this manner.

Back-to-front display

A BSP tree, which is a data structure for polygonal objects,
enables easy traversal in any order relative to an observer.'
Suppose the 3D environment is defined by a set of polygons P
={p1, p2, . . ., pa}. We choose an arbitrary polygon py from this
set to serve as the root of the tree. The plane defined by pi
partitions the rest of the three-space into two half-spaces, as
shown in Figure 1. Let Sx and S’ denote the two half-spaces,
which we can identify with the positive and negative sides of the
plane. (If the plane equationisax + by + ¢z + d = 0, then Sy = {(x,

,z)lax + by +cz+d20}.)

pr has two subtrees, called positive and negative, constructed
as follows: If a polygon in P—{p} lies entirely in Sk, then it is
placed in the positive subtree. If it lies entirely in S)/, then it is

(Polygon py)

(Polygonsin S;) (Polygonsin S%)

Figure 2. BSP tree after the first split of polygons.

placed in the negative subtree. If the partitioning plane cuts the
polygon, then the polygon is split into two, with one part placed
in Sx and the other in S¢'. Figure 2 illustrates this. In most
normal scenes, most of the polygons will lie entirely in just one
of the two half-spaces.

The process now continues recursively with each of the sub-
sets of the polygons (see Figure 3). The resulting binary tree is
a BSP tree. Note that after a BSP tree is formed, we can easily
add new polygons toit. In fact, we can construct the BSP tree on
an on-line basis, with each additional polygon inserted into the
existing tree. Figure 4 shows an example of three polygons and
the resulting BSP tree.

Once the viewing position and orientation are given, we can
determine the visibility priorities of the polygons in the BSP
tree. The calculation of the visibility priorities is a variant of an

IEEE Computer Graphics & Applications

in-order traversal of a binary tree (traverse one subtree, visit
the root, traverse the other subtree). For example, suppose we
want an order of traversal that visits the polygons from those
farthest away to those closest to the current viewing position.
At any given node, there are two possible traversals: positive
side subtree — node — negative side subtree, or negative side
subtree — node — positive side subtree. We choose one of
these orderings based on the relationship of the current viewing
position to the node’s polygon.

According to the viewing position, we can classify the two
sides of a node’s polygon as the “near” side and the “far” side.
The near side is the half-space containing the viewpoint, while
the far side is the other half-space. The traversal for a back-to-
front ordering is simply the recursive implementation of the
order: (1) the far side, (2) the node, (3) the near side. This is
detailed in the procedure shown in Figure 5.

Front-to-back order

The back-to-front traversal will clearly display the polygons
correctly. However, we can also display the scene by traversing

the tree in front-to-back order: (1) the near side, (2) the node,
(3) the far side. The front-to-back traversal will only display the
image correctly if, before a pixel is set, it is checked to verify that

Procedure back_to_front(BSP_tree, view_point)
begin
if (BSP_tree !=null)
if (positive_side_of(root(BSP_tree), view_point))
back_to_front(negative_branch(BSP_tree), view_point);
display_polygon(root(BSP_tree));
back_to_front(positive_branch(BSP_tree), view_point);
else
back_to_front(positive_branch(BSP_tree), view_point);
display_polygon(root(BSP_tree));
back_to_front(negative_branch(BSP_tree), view_point);
end

Figure 5. Traversal for a back-to-front ordering.

Figure 4. Example of a BSP tree.

pixel just once and eliminates the need to test individ-
ual pixels that have already been lit. This technique
has the advantage of efficiently removing large chunks
of lit pixels from consideration.

The data structure we use appears in many applica-
tions, for example, bucket sorting, graph representa-
tion, and run-length encoding of images. Assume the
screen size is N x N pixels. An array of pointers DS[0.
.. N -1]isset up, each DS[i] pointing to a linked list of
the contiguous segments of unlit pixels at scan line i.
Each list element has three fields: Min and Max for the
minimum and maximum pixel coordinates of the unlit

it had not already been set. Thus, a front-to-back tra-
versal, if implemented in this naive fashion, will actu-

Procedure front_to_back (BSP_tree, view_point)

ally take longer than the back-to-front mode because
of the extra work. The basic idea behind our technique
is that large chunks of screen pixels can be checked
quickly and eliminated using the “dynamic screen”
data structure. The procedure shown in Figure 6 will
display the scene in front-to-back order.

The dynamic screen technique was first introduced
by Reynolds, Gordon, and Chen®for efficient front-to-
back display of voxel-based objects. Basically, the dy-
namic screen represents unlit contiguous segments of
pixels of each scan line. Combined with front-to-back
traversal of the BSP tree, this enables us to set each

September 1991

begin
if (BSP_tree !=null)
if (positive_side_of(root(BSP_tree), view_point))
front_to_back(positive_branch(BSP_tree), view_point);
display_polygon(root(BSP_tree));
front_to_back(negative_branch(BSP_tree), view_point);
else
front_to_back(negative_branch(BSP_tree), view_point);
display_polygon(root(BSP_tree));
front_to_back(posive_branch(BSP_tree), view_point);
end

Figure 6. Procedure to display the scene in front-to-back order.

81

Dynamic_screen
Min_Max__Link
0 - T T T3+ T T 3+ 1 ~J

I s s~

w| O T=—

Figure 7. The dynamic screen data structure.

segment, and Link, a pointer to the next list element (see Figure
7). For testing purposes, we chose N = 1,500. Initially, each list
contained just one element representing the entire unlit scan
line.

We used the standard polygon scan-conversion method for
polygon display,” with each polygon displayed separately.
Edges were inserted into an edge table in the usual way, then a
linked list of the active edges—the active edge table (AET)—
was swept through the scene in the usual manner.

The only fundamental difference between the standard scan-
conversion and our approach is that at each scan line i, we
perform a merge-like process between the AET and the list
DS[i]. This Merge process forms the core of our efficient dis-
play. It starts out by considering the first object segment of the
AET and the first contiguous unlit image segment of DS[i]. The
Merge operation then calls Merge_segment, which determines
the action that needs to be taken, based on the relative position
of the two segments. The result of the
Merge operation is an updated list DS[i],

Object segments

g —

and, of course, some screen pixels may be

in AET [SOOOOK] —— [POSONK]| ——— set. (See Figure 8.)
: : : : : The arguments to Merge_segment are
Uniitimage |] | an object segment from the AET, start-

ing with pixel / and ending with pixel J,
and an unlit image segment K in the list

U I t H H H N H H
il w— 0

Screen pixels set:

Note: The arrows represent pointers.

] DS[i], with initial pixel K.Min and end
: pixel K. Max. Merge_segment compares
I and J against K.Min and K. Max. De-
pending on the outcome of these com-
parisons, there are eight distinct actions
to take, as shown in Figure 9. Note thatin

Figure 8. The result of a merge operation.

Object ——— b p—
Image — { —— —]
After merging p——i — — —
Case 1 Case 2 Case3
= —| t I —
— — —
—
Case 4 Case5 Case 6
— A
— —
— —_
Case? Case 8

Figure 9. The eight cases arising from comparisons between a
projected object segment and an unlit image segment, and the
results of the merging operation.

82

Figure 9 the image segments are unlit
segments of screen pixels.
The outcomes of these comparisons (together with the proper
actions) fall into four different categories:

A. One segment completely precedes another (cases 1 and 8
in Figure 9). In these cases, no changes are made to the image
segment, and nothing is drawn on the screen. In case 1 we
advance (along the AET) to the next object segment, and in
case 8 to the next unlit image segment (along the list DS[i]).

B. The object segment covers one end of the unlit image
segment (cases 2, 5, and 7). The covered pixels are painted in
and the image segment is shortened at one end by changing
K.Min or K.Max. These operations are performed by the pro-
cedures Paint_segment and Change_segment. In case 2, we
advance to the next object segment, in case 7 to the next image
segment, and in case 5 along both lists.

C. The entire image segment is covered by the object seg-
ment (cases 4 and 6). The image segment is painted in and
deleted from the linked list by the procedure Delete_segment.
In case 4 we advance along both lists, and in case 6 we advance
to the next image segment.

D. The object segment falls strictly within the image segment
(case 3). In this case the covered pixels are painted in and the

IEEE Computer Graphics & Applications

Procedure split_segment (/, J, K)
(* K.Min <i/<) < K.Max— case 3 in Figure 9 *)
(* split segment K into two segments *)

begin
K.Max = I-1;
new(K");
K’ Min = J+1;

K'.Max = K.Max;
K’.Link = K.Link;
K.Link = K’;

end

Figure 10. The procedure to split a segment.

image segment splits into two segments (corresponding to the
uncovered parts). The splitting operation is performed by the
procedure Split_segment, which adds a new list element and
updates the fields of the old ones. The Merge procedure ad-
vances in this case to the next object segment.

All the above procedures are quite simple, so we only de-
scribe one of them (see Figure 10).

Experimental results

To get some meaningful statistical data on the behavior of our
technique, we applied it to randomly generated triangles. The
universe is a 1,000 x 1,000 x 1,000 cube. Users specify the total
number of triangles they want to generate and a number $
(between 10 and 500) that controls the size of the triangles. Our
program first generates three random numbers (Ci, Cs, C)
inside the universe. These three numbers specify the center of a
small cube of size §x § x S. Next, three points are randomly
generated inside the small cube, giving the coordinates of the
triangle (see Figure 11). Each coordinate is a random number,
chosen uniformly between C; - §/2 and C; + S/2. The program
was implemented on a Sun Sparc workstation.

We performed a series of experiments, with the size parame-
ter § ranging from 50 to 500 and the number of polygons rang-
ing from 100 to 500. Each BSP tree created was displayed in
four different ways: back-to-front, front-to-back, constant
shading, and intensity interpolation shading (see Foley et al.”).
The results of these experiments are shown graphically in Fig-
ures 12 to 14 for small, medium, and large values of S. Note that
the number of polygons specified in the figures is the number
before the creation of the tree. Since many polygons split upon
creation of the BSP tree, the final number of polygons is much
higher (almost 10,000 polygons are created from the original
500 for § =500).

Figure 12 shows no significant difference between the two
methods for small polygons. While back-to-front is slightly bet-

September 1991

1,000

Figure 11. A randomly generated triangle (ABC) inside the
universe cube,

Time (in seconds)
A o o N ® © O
]

w
i berve Lo e g i

N
1

JUNEE RN

o

AR S LA A A AR AR R sy a]
50 100 150 200 250 300 350 400 450 500 550
Number of polygons

G---© Back-to-front constant shading

[J @ Front-to-back constant shading
[H---f] Back-to-front interpolation shading
A

Front-to-back interpolation shading

Figure 12. Experimental results for polygons of size 50.

83

Time (in seconds)
y
o
1

-
OI—v—rrv‘pﬁ'r(u—r*ﬁmx\uv«m‘ﬁi,uu‘r‘f‘v‘hrxwuv;
50 100 150 200 250 300 350 400 450 500 550

Number of polygons

Back-to-front constant shading: polygon size 300.
Front-to-back constant shading: polygon size 300.
Back-to-front constant shading: polygon size 500.

Front-to-back constant shading: polygon size 500,

Figure 13. Experimental results for medium and large polygons
using constant shading.

g
TR NN SV BN) H
[}

Time (in seconds)

200

TNV ER RS U

O‘HVT“TWT.'rTxTrrU‘H‘rrwrvﬂ?*-yr"ri\\.f"rhw‘*rr\j
50 100 150 200 250 300 350 400 450 500 550
Number of polygons

&----0 Back-to-front interpolation shading: Polygon size 300.
[J @ Font-to-back interpolation shading: Polygon size 300,
CF----] Back-to-front interpolation shading: polygon size 500.
|] Ml Frontto-back interpolation shading: polygon size 500.

Figure 14. Experimental results for medium and large polygons
using interpolation shading.

84

ter with constant shading, the additional computations re-
quired for interpolation shading make front-to-back slightly
better.

In Figure 13 we begin to see some significant differences
between the two methods, even with constant shading, espe-
cially for large polygons (size parameter § = 500). The differ-
ence between the two methods is much more pronounced in
Figure 14 (intensity interpolation shading), where the time for
front-to-back is about 14 percent of the time for back-to-front
for 500 large polygons.

As mentioned, the actual number of polygons in the BSP tree
can be much higher than the original number. To control this
number, we also present data for parallel polygons, which do
notsplit when a BSP tree is created. This is shown in Figures 15
and 16 for constant and interpolation shading. We see from this
data that when the number of polygons exceeds 10,000, front-
to-back with constant shading takes approximately 30 percent
of the time of back-to-front. This percentage shrinks to less
than 8 percent for interpolation shading.

The data for parallel polygons and interpolation shading
(Figure 13) shows that the times for front-to-back are almost
constant when compared to the times for back-to-front. This
can be explained by the mode of operation of the front-to-back
approach: Once (most of) the picture has been painted in, the
time required to eliminate distant polygons is very small. This
results from the efficient elimination of hidden object segments
as implemented by the merging operation between a dynamic
screen listand the AET. On the other hand, back-to-front labo-
riously spends equal time on all polygons, even if they are
overwritten at a later stage.

Conclusions

Our experimental data confirm that our technique can pro-
vide a significant speed-up in the display time of BSP trees,
especially in scenes with a large number of polygons. Also, we
have seen that when the shading becomes more time-consum-
ing, our method again has an advantage because no time is
wasted in shading pixels that eventually get overwritten. We
expect that with more sophisticated shading—such as normal
interpolation (see Foley et al.”)—the front-to-back method will
be even more advantageous.

However, our method involves some overhead unjustified
for simple images. The precise point at which our method be-
gins to justify itself will vary with the system used, the quality of
the image desired, and the complexity of the scene.

Although we have implemented our technique on BSP trees,
the core of our method is the Merge operation between the
active edge table of polygon scan-conversion and the list of
unlit image segments in a scan line. Nothing in this Merge
necessarily ties it to BSP trees, so we could use our method with
any other list-priority algorithm,’ such as depth-sort.*

Our technique also has a potential for parallel implementa-
tion on specialized graphics processors such as the Silicon

IEEE Computer Graphics & Applications

140
120 ©
100 L
e .
[e] ”'
X
< o
E «

e
10,000 15,000
Number of polygons

SRR
20,000 25,000

Back-to-front constant shading

(- @ Frontto-back constant shading

Figure 15. Experimental results for parallel polygons using con-
stant shading.

1,000 -
1 LT
900 I
800 ﬁ ‘
700] A
> | p
2 00 - =
it : a
2 - <
< 500 - et
(0] 7'/
£ 40— /7
= 7
300-- I
200 ¢
100 !
‘s m ® B w8 B = "
0 ; . ; =TT |
0 5,000 10,000 15,000 20,000 25,000
Number of polygons
=== 4 Back-to-front interpolation shading
[] B Front-to-back interpolation shading

Figure 16. Experimental results for parallel polygons using in-
terpolation shading.

September 1991

Graphics GTX workstations.® This potential arises because the
merging operation of one scan line can be done independently
of others, hence different processors can perform it on different
scan lines. For example, in the scan-conversion subsystem of
the Iris GTX.® five different “span” processors work on five
different (interlaced) sets of scan lines. In principle, the number
of processors can equal the number of scan lines. a

Acknowledgments

The authors would like to thank Nathan J. Ptluger for a preliminary
version of a (back-to-front) BSP program. Under Dan Gordon’s super-
vision, Shuhong Chen implemented the computer program for this
research as a project for his Master of Computer Science degree at
Texas A&M University.

References

1. H. Fuchs, Z.M. Kedem, and B. F. Naylor, “On Visible Surface Genera-
tion by A Priori Tree Structures,” Computer Graphics (Proc. Siggraph).
July 1980, pp. 124-133.

2. D. Meagher, “Efficient Synthetic Image Generation of Arbitrary 3D
Objccts,” Proc. IEEE Computer Society Conf. Pattern Recognition and
Image Processing. June 1982, pp. 473-478.

3. R.A. Reynolds. D. Gordon, and L.-S. Chen. “ A Dynamic Screen Tech-
nique for Shaded Graphics Display of Slice-Represented Objects,”
Computer Vision, Graphics, and Image Processing, Vol. 38, No. 3, June
1987, pp. 275-298.

4. M.E. Newell, R.G. Newell, and T.L. Sancha. " A Solution to the Hidden
Surface Problem.” Proc. ACM Nat'l Conf.. Aug. 1972, pp. 443-450.

5. J.D. Foley et al.. Computer Graphics: Principles and Practice. 2nd ed.,
Addison-Wesley, Reading, Mass., 1990.

6. Iris GTX: A Technical Report (rev.2) and Iris GT Graphics Architecture
(tech. rept.). Silicon Graphics, Mountain View, Calif.

Dan Gordon is a senior lecturer of computer
science at the University of Haifa, Israel. His
research interests include computer graphics,
data structures and algorithms, and VLSI theory.
He has previously taught at Texas A&M Univer-
sity and at several other universities.

Gordon received BS and MS degrees in mathe-
matics from the Hebrew University of Jerusalem
and a DSc degree in mathematics from the Tech-
nion—1Israel Institute of Technology.

Shuhong Chen is a development engineer with
Dowell Schlumberger in Tulsa, Oklahoma. His
research interests include computer modeling of
complex dynamic systems and scientific visualiza-
tion.

Chen received a BS in physics from Zhongshan
University, China in 1982, an MS in physics from
the University of Nebraska, Lincoln, in 1988, and
an MS in computer science from Texas A&M
University in 1990. He is a member of Upsilon Pi
Epsilon, the computing scicnce honor socicty.

Readers may contact Gordon at Dept. of Mathematics and Computer
Science, University of Haifa, Haifa 31905, Israel.

85

