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Local Absorbing Boundary Conditions
for the Elastic Wave Equation

E. Turkel * R. Gordon † D. Gordon ‡

Abstract

We compare and analyze absorbing boundary conditions for the elastic wave equations. We con-
centrate on the first order extensions to Clayton–Enqquist and show the relationship of the Lysmer–
Kuhlemeyer ABC to these generalizations. We derive conditions for the reflection coefficient to have
the same accuracy for near normal waves as in the acoustic wave case. Extensions to the first order
system, spherical coordinates, higher order boundary conditions and frequency domain are derived.
We extend Stacey’s absorbing boundary condition (ABC) to all six sides of a cubic domain, and show
that Stacey’s ABC provide good numerical results.

Keywords: Elastic wave equation; Local absorbing boundary conditions; Lysmer–Kuhlemeyer; Stacey’s
boundary conditions.

1 Introduction

We consider the time dependent elastic equations in an unbounded domain. For computational reasons
we need to truncate this to a finite domain. In order to simulate the infinite domain we impose boundary
conditions on the far field boundaries so that waves do not reflect back into the domain. Any perfect
nonreflecting boundary treatment is non-local in both space and time [12]. Instead, we will consider
only local absorbing boundary conditions that minimize the reflections.

For simplicity, as will be explained, we shall consider low order absorbing boundary conditions. We
shall see that even in this case the problem is nontrivial. In the acoustic case Engquist and Majda [13]
developed a sequence of boundary conditions in Cartesian coordinates. This was based on splitting the
wave equation into forward and backward moving waves and eliminating the waves entering the domain.
We shall consider the boundary condition on the upper boundary where the domain is z ≤ 0, −∞ <
x < ∞. We consider a Cartesian coordinate system with z oriented downward, x parallel with the plane
of the paper and y out of the paper. For the two dimensional problem we chose the x-z plane. To change
the coordinate system so that z decreases as we descend we replace t by −t in all the formula. The lowest
order boundary condition is simply

ut − cuz = 0 at z = 0 (1)

where c is the speed of sound in the wave equation. This is simply a one dimensional convective equation
with the wave moving up (remember z increases as we descend physically), i.e. no waves enter into the
domain. For polar coordinates Bayliss and Turkel [4] considered a different approach which introduced
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a lower order term u
2r , in two dimensions, into the lowest order ABC. We will analyze extensions of

various first and second order local ABCs to the elastic wave equation.

Both approaches (EM and BT) allow for a sequence of higher order absorbing. However, higher order
interior methods usually require higher order derivatives in time and space. These can no longer be
represented with linear finite elements. With finite differences a larger stencil is required which causes
difficulties and frequently demands one sided stencils (see however, [46], [33] for some examples with
higher order ABCs for the acoustic equation). Experience with both Engquist-Majda [13] and Bayliss–
Turkel [4] for the acoustic wave equation shows that the best low order local schemes are second order.

In recent years several approaches have been presented for higher order absorbing boundary conditions.
One of the most popular is the perfectly matched layer (PML) algorithm. This was first developed by
Bérenger [7] for Maxwell’s equations and later extended to the acoustic wave equation and then the
elastic wave equation, see e.g. [22]. (see however, [46], [33] for some examples with higher order ABCs
for the acoustic equation). Another approach is to introduce auxiliary variables [38] which increases
the size of the system. Other high order approaches include the double absorbing boundary approach
[39] and the supergrid approach [3, 35]. However, PML can depend on parameters that are not easy
to calculate. Other difficulties of higher order schemes include: some stability issues, implementation
for corners of two sets of high-order ABCs, loss of symmetry etc. The higher order schemes generally
require more CPU time and storage and hence become competitive only when coupled with a high order
interior scheme for high accuracy requirements.

Hence, for many engineering problems low order methods remain very popular. They use a second
order finite difference or a linear finite element method coupled with the absorbing boundary scheme of
Lysmer and Kuhlemeyer (LK), see, for example, the ABAQUS Theory Manual [1, §3.3.1]. LK has over
3000 citations and is used also in recent papers, e.g. [40, 42]. Thus, while LK is now used more than
Clayton–Engquist we shall demonstrate that other lower order but local ABCs have better properties than
both these schemes.

2 Elastic Equations

Let −→u be the velocity vector in the elastic media; so in three dimensions −→u =(u, v, w). We denote by cp
and cs the longitudinal and transverse wave speeds, from which the Lamé parameters λ and µ are defined
as follows:

λ = ρ(c2p − 2c2s) and µ = ρc2s,

where ρ is the density in kg/m3. From this we have

cp =

√
λ+ 2µ

ρ
and cs =

√
µ

ρ
(2)

In vector form the elastic equations for a homogeneous media are given by

−→u tt = c2p∇(∇ · −→u )− c2s∇×(∇×−→u ) = (c2p − c2s)∇(∇ · −→u ) + c2s∆(−→u ) (3)

We rewrite (3) in component form

utt = c2puxx + (c2p − c2s)(vxy + wxz) + c2s(uyy + uzz)

vtt = c2pvyy + (c2p − c2s)(uxy + wyz) + c2s(vxx + vzz) (4)

wtt = c2pwzz + (c2p − c2s)(uxz + vyz) + c2s(wxx + wyy)
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The elastic equations, as a time dependent first order system in velocity-stress variables, are given by

ρut = τ11x + τ12y + τ13z + F u(x, y, z, t) (5a)

ρvt = τ12x + τ22y + τ23z + F v(x, y, z, t) (5b)

ρwt = τ13x + τ23y + τ33z + Fw(x, y, z, t) (5c)

τ11t = ρc2pux + λ(vy + wz) (5d)

τ22t = ρc2pvy + λ(ux + wz) (5e)

τ33t = ρc2pwz + λ(ux + vy) (5f)

τ12t = ρc2s(uy + vx) ρc2p = λ+ 2µ (5g)

τ13t = ρc2s(uz + wx) ρc2s = µ (5h)

τ23t = ρc2s(vz + wy) (5i)

where F u, F v, Fw are the components of the impact force in the x, y, z directions, respectively.

3 Absorbing Boundary Conditions (ABC)

When we extend the ABC from the acoustic wave equation to the elastic wave equation there are two
difficulties. First, there is a system of two coupled equations instead of a scalar wave equation. Second,
there exists two speeds of propagation cp and cs. We note that Maxwell’s equations are a coupled set of
equations but with only one non-zero speed.

Higdon [25,26] generalized (1) by eliminating both possible waves. So the lowest order ABC of Higdon
is given by

(∂t − cp∂z)(∂t − cs∂z)
−→u = 0. (6)

More generally he suggests applying
j=m∏
j=1

(βj∂t − cp∂z) (7)

to each component of the solution vector in both two and three space dimensions.

Higdon further writes: The use of cp in each factor amounts to a normalization of coefficients. The
jth operator in (7) is perfectly absorbing for P-waves traveling at angles of incidence ±cos−1(βj) and
S-waves traveling at angles of incidence ±cos−1(

βjcs
cp

), if these angles are real. If βj < 1 for all j,
then (7) is oriented mainly to P-waves but also helps to absorb S-waves. If the βjs are all near cp

cs
then

this is oriented mainly to S-waves but helps absorb P-waves. For general-purpose use, a compromise is
advisable; for example, in the case m=2 we could use β1=1 and β2=

cp
cs

which is equivalent to (6).

He further claims that applying different boundary operators to different components only gives a small
advantage but complicates the stability analysis. These equations have the difficulty that even the lowest
order ABC now contains two spatial derivatives and the next ABC will contain a fourth z derivative
which makes it very difficult to implement numerically.

An extension of the Engquist-Majda approach to elasticity was developed by Clayton and Engquist [9].

ut = csuz

vt = csvz (8)

wt = cpwz.

3



Now the normal and parallel components are treated differently but they are still uncoupled. The second
order ABC has coupling in the mixed xz derivative.

Stacey [43] presents an improvement to the first order ABC of Clayton and Engquist which is given by

ut = csuz + (cp − cs)wx

vt = csvz + (cp − cs)wy (9)

wt = cpwz + (cp − cs)(ux + vy)

Zhou and Saffari [48] developed absorbing boundary conditions by demanding complete absorption at
two incident angles. For one incident angle, θ, in two dimensions, they derived

ut =
1

cos(θ)

(
(cp sin

2(θ) + cs cos
2(θ))uz + (cp − cs) sin(θ) cos(θ)wz

)
(10)

wt =
1

cos(θ)

(
(cp − cs) sin(θ) cos(θ)uz + (cp cos

2(θ) + cs sin
2(θ))wz

)
.

For the incident angle zero they recover the boundary condition of Stacey (9).

Petersson and Sjögreen [34] developed a different variant. This results (note they considered the left
boundary) in, using λ

ρ =c2p − 2c2s,

ut = cs(uz + wx)

vt = cs(vz + wy) (11)

wt = cpwz +
c2p − 2c2s

cp
(ux + vy).

A completely different approach was presented by Lysmer and Kuhlemeyer [32] (note that in their paper
u and v are displacements and not velocities; we have changed their equation to account for using u and
w as velocities). They introduce the normal and tangential stresses. Their equations become, in 3D,

τ13 = ρcsu

τ23 = ρcsv (12)

τ33 = ρcpw

This formula is not derived from any absorbing boundary condition but rather represents a dashpot and
is justified by analyzing a plane wave solution. One can also generalize these by considering other
coefficients in these equations, e.g. White et el. [47], Kim [28].

If we differentiate these formulae in time and use (5) to eliminate the time derivatives of the stresses eq.
(12) is equivalent to eq. (11) We note, that the ABC of Lysmer and Kuhlemeyer, based on a viscous
dashpot, is identical to the ABC of Petersson and Sjögreen (11) based on a paraxial equation with an
energy minimization. Cohen [10] and Cohen and Jennings [11] use the second order paraxial boundary
condition of Clayton–Engquist and present a heuristic analysis why the paraxial approximation is similar
to the viscous boundary condition based on the dashpot approach of Lysmer–Kuhlemeyer.

4 Potentials

To reduce the elastic equations to a pair of wave equations, we introduce the Helmholtz decomposition.
There exists two potentials, a scalar Φ and a vector Ψ so that

−→u = ∇Φ+∇×Ψ ∇ ·Ψ = 0. (13)
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To invert (13) we multiply by the divergence and curl. Using the identities ∇ · ∇×=0 , ∇×∇=0 and
∇×(∇×Ψ)=∇(∇ ·Ψ)−∆Ψ = −∆Ψ we get

∆Φ = ∇ · −→u (14a)

∇×(∇×Ψ) = −∆−→u . (14b)

Important note: To find Φ and Ψ from the velocities we need to solve a global relationship.

In two dimensions (x, z) and component form (13) is equivalent to

u = Φx −Ψ2z (15)

w = Φz +Ψ2x.

Since the only component of Ψ that enters is the normal to the plane, Ψ2 we will drop the subscript 2.

The potentials solve

Φtt = c2p∆Φ (16)

Ψtt = c2s∆Ψ.

Randall [41] suggests solving the wave equations for the potentials and the using (15) to find the veloc-
ities. They use an absorbing boundary of Lindman [31] for the wave equation. This approach assumes
that initial and boundary conditions for the elastic equation can be given in terms of the potentials.

To do some analysis we expand the potentials in terms of plane waves. For simplicity we define the
following exponentials

E1 = eikp(x sin(θ)+z cos(θ))+iωt

E2 = eikp(x sin(θ)−z cos(θ))+iωt (17)

E3 = eiks(x sin(ϕ)−z cos(ϕ))+iωt

Note, that at the boundary z=0 we have E1=E2= eikpsin(θ)x−iωt and E3= eiks sin(ϕ)x−iωt. However,
we have

ω = cpkp = csks (18a)

kp sin(θ) = ks sin(ϕ) or cs sin(θ) = cp sin(ϕ) (18b)

and so E3=E1=E2 at z=0.

Following Achenbach [2], Lysmer–Kuhlemeyer [32], Peterson et al. [34] and D. Rabinovich et al. [38]
we consider an incident P wave and a reflected P and S wave. So

Φ = E1 +RPPE2 (19)

Ψ = RPSE3

Note, that we are expressing the potentials in terms of plane waves. Other researchers have expressed
the displacements or velocities in terms of plane waves. Since the potentials solve a wave equation we
felt it was more appropriate to use (19). It then follows from (15) that

u = ikp sin(θ)(E1 +RPPE2) + iksRPS cos(ϕ)E3 (20)

w = ikp cos(θ)(E1 −RPPE2) + iksRPS sin(ϕ)E3

Since all the Ei are equal at z=0 we can divide by them and so equivalently set them equal to one.
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We note that in two dimensions (9) and (11) can be written as:

ut = csuz + βwx

wt = cpwz + αux. (21)

Define:

M = cp cos
2(θ) + α sin2(θ) = cp − (cp − α) sin2(θ) (22a)

N = cs cos
2(ϕ)− β sin2(ϕ) = cs − (cs + β) sin2(ϕ)

= cs −
c2s
c2p
(cs + β) sin2(θ) by (18b) (22b)

As a reminder:

Clayton–Engquist α=β=0 so M=cpcos
2(θ) N=cs cos

2(ϕ) = cs(1−
c2s
c2p

sin2(θ))

Stacey α=β=cp−cs so M=cp−cs sin
2(θ) N=cs−cp sin

2(ϕ)=cs(1−
cs
cp
) sin2(θ)

Petersson–Sjögreen α=cp−
c2s
cp
, β=cs so M= cp−

c2s
cp

sin2(θ),

N=cs(1−2 sin2(ϕ))=cs(1−2
c2s
c2p

sin2(θ)).

We differentiate (20) and substitute into (21). This yields, in 2D,

0 = −ut + csuz + βwx = ωkp sin(θ)− k2p(cs + β) sin(θ) cos(θ)

+
(
ωkp sin(θ) + k2p(cs + β) sin(θ) cos(θ)

)
RPP

+
(
ωks cos(ϕ) + k2sN

)
RPS (23)

0 = −wt + cpwz + αux = ωkp cos(θ)− k2pM

−
(
ωkp cos(θ) + k2pM

)
RPP

+
(
ωks sin(ϕ) + k2s(cp − α) sin(ϕ) cos(ϕ)

)
RPS

We have two equations for RPP and RPS where α and β are parameters to be chosen. θ and ϕ are the
angles of incidence and the reflection angle of the S wave. We next solve the two equations for the two
unknown reflection amplitudes. Then

det = kpks
{
ω2 (sin(θ) sin(ϕ) + cos(θ) cos(ϕ))

+ ω cos(θ) (ksN+kp(β+cs) sin(θ) sin(ϕ))

+ ω cos(ϕ) (kpM+ks(cp−α) sin(θ) sin(ϕ))

+ kpks ((cp − α)(β + cs) sin(θ) sin(ϕ) cos(θ) cos(ϕ) +MN)}
RPP = kpks

{
ω2 (cos(θ) cos(ϕ)− sin(θ) sin(ϕ)) (24)

+ ω (cos(θ)(ksN+kp(β + cs) sin(θ) sin(ϕ))

− cos(ϕ)(kpM+ks(cp−α))) sin(θ) sin(ϕ)

+ kpks ((cp − α)(β + cs) sin(θ) sin(ϕ) cos(θ) cos(ϕ)−MN)} /det
RPS = −2k2p sin(θ) cos(θ)

(
ω2 − k2p(β + cs)M

)
/det

Lemma 1. If 0 < α≤cp and −cs≤β≤2(cp − cs) then det is positive and |RPP |≤1.
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Proof. We wish all the individual terms to be positive. Then the result for |RPP | follows by the triangle
inequality. So we require that cp−α, β+cs,M ,N all be positive. M is positive if α>0 and so we need
N to be positive. All the various sines and cosines are all positive and so the result follows.

It only remains to find the condition for N ≥ 0. We examine (22b). The angle ϕ is the reflection angle
which we cannot control and so we have expressed N also in terms of θ. Since θ is arbitrary between

(0, π2 ) we require that β≤ c2p
cs
−cs=

c2p−c2s
cs

=(cp−cs)
cp+cs
cs

. So a sufficient condition for N to be positive
is β≤(cp−cs)(1+

cp
cs
). Since, cs≤cp a sufficient condition for N to be positive is β≤2(cp − cs).

Lemma 2. We consider angles close to normal, i.e θ << 1. Then |RPP |= O(θ2) and |RPS |= O(θ).
For the Stacey formula |RPS |= O(θ3).

Proof. For small θ and ϕ we have M = cp, N = cs with an error of O(θ2). So by inspection det =
kpks{ω2 + ω(kpcp + kscs) + kpcpkscs}. But ω=kscs=kpcp and so det = (ω + kpcp)

2 + O(θ2). By
a similar argument Rpp =

kpks
det (ω

2 − k2pc
2
p + O(θ2)) = O(θ2). However, for general β RPS is only

O(θ). To increase the accuracy we need β + cs = cp + O(θ) or β = cp − cs which is the formula
of Stacey. At this point there is no limitation on α. However, by considering an incoming S wave we
require α = cp− cs. Hence, we have shown that if we consider the general formula (21) (which includes
LK) the only formula that has reflections of the order of O(θ2) is that of Stacey.

So for the Stacey scheme we have sin(ϕ)= cs
cp

sin(θ), cos(ϕ)=
√

1− sin2(ϕ).

det

ω2kpks
= sin(θ) sin(ϕ) + cos(θ) cos(ϕ)

+ (cos(θ)+cos(ϕ))(1+sin(θ) sin(ϕ))− cp
cs

cos(θ) sin2(ϕ)− cs
cp

cos(ϕ) sin2(θ)

+ sin(θ) sin(ϕ) cos(θ) cos(ϕ) + 1− cp
cs

sin2(ϕ)− cs
cp

sin2(θ) + sin2(θ) sin2(ϕ)

|RPP |= {sin(θ) sin(ϕ)− cos(θ) cos(ϕ)

+ (cos(θ)−cos(ϕ))(1+sin(θ) sin(ϕ))− cp
cs

cos(θ) sin2(ϕ)+
cs
cp

cos(ϕ) sin2(θ)

+ sin(θ) sin(ϕ) cos(θ) cos(ϕ)−1+
cp
cs

sin2(ϕ)+
cs
cp

sin2(θ)−sin2(θ) sin2(ϕ)

}
/

det

ω2kpks

|RPS |= 2
k4pcpcs

ω2kpks
sin3(θ) cos(θ)/

det

ω2kpks
(25)

= 2
kp
ks

cs
cp

sin3(θ) cos(θ)/
det

ω2kpks

= 2
c2s
c2p

sin3(θ) cos(θ)/
det

ω2kpks

The term ω2kpks cancels between the numerator and denominator. The remaining expression for |RPS |
depends only on sin(θ) and the ratio cs

cp
. We can no longer determine analytically the conditions on cs

cp
so

that |RPS |≤ 1. We calculate numerically both |RPS | and |RPS |. In figure 1 we plot the maximum over
all incident angles as a function of cs

cp . In the top figure the maximum is close to zero for a ratio less than
0.7 and so hard to see in the figure. This shows that the reflection coefficient for both the reflected P and

S waves are less than 1 for all ratios of cs to cp. We note that cs
cp

=
√

µ
λ+2µ =

√
1

2+λ/µ ≤
√

1
2 ≈ .717.

For most media cs
cp

≈ .5. Hence, for a P wave impinging on the absorbing boundary the reflected P wave
has an amplitude close to zero and the reflected S wave has an amplitude of about 10% of the incoming
wave.
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Figure 1: top plot of |RPP |, bottom plot RPS as a function of cs
cp

.

Engquist and Majda [13] showed that for their first order ABC, for the acoustic wave equation, one has
(changing to our notation) for the reflected wave

R =

(
cos(θ)− 1

cos(θ) + 1

)
≈ θ2 (26)

where θ is the angle of incidence normal to the top surface.

Clayton–Engquist ignores terms like sin(θ) cos(θ) while Stacey ignores terms that behave like sin3(θ).
In both cases for a wave impinging normal on the boundary θ=0 the two formulae have no error with
respect to the first order wave equation ABC which itself has no error. For waves that are close to normal,
sin(θ)<<1, the extra error in the Stacey formula is small compared to the first order error already exist-
ing in Engquist-Majda (26) (θ2). However, the extra error in the Clayton–Engquist, Petersson–Sjögreen
and hence Lysmer–Kuhlemeyer are larger than the first order error already existing in the Engquist-Majda
ABC.

5 Spherical Coordinates

We next extend the previous results to spherical coordinates. From [4] we know that even for the acoustic
case there is a difference between two and three space dimensions. We shall only consider the 3D case.
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The spherical coordinates are defined by

r2 = x2 + y2 + z2 (27)

tan(θ) =
y

x

cos(ϕ) =
z

r

So

rx =
x

r
ry =

y

r
rz =

z

r
(28)

θx = − y

x2 + y2
θy =

x

x2 + y2
θz = 0

ϕx =
xz

r2
√

x2 + y2
ϕy =

yz

r2
√

x2 + y2
ϕz = −

√
x2 + y2

r2

The solution to the wave equation has an expansion

p(t, r, θ, ϕ) =

j=∞∑
j=1

fj(ct− r, θ, ϕ)

rj

We recall that the velocities can be expressed in terms of the divergence and curl of potentials (13) and
these potentials solve a wave equation (16). Let −→u = (u, v, w) be the Cartesian components of the
velocity then we have

−→u =

j=∞∑
j=1

grad(
fj(cpt− r, θ, ϕ)

rj
) +

j=∞∑
j=1

curl(
−→gj (cst− r, θ, ϕ)

rj
) (29)

We write explicitly the first term of the series with −→g1 = (g11, g12, g13). Let (u, v, w) be the Cartesian
components of the velocity. Then

u =
∂(f1r )

∂x
+

∂(g13r )

∂y
−

∂(g12r )

∂z

v =
∂(f1r )

∂y
+

∂(g11r )

∂z
−

∂(g13r )

∂x
(30)

w =
∂(f1r )

∂z
+

∂(g12r )

∂x
−

∂(g11r )

∂y

We next convert the Cartesian derivatives to spherical derivatives. We emphasize that we have spherical
derivatives of the Cartesian components, To convert from Cartesian derivatives to spherical derivatives
we have

∂

∂x
= cos(θ) sin(ϕ)

∂

∂r
− sin(θ)

r sin(ϕ)

∂

∂θ
+

cos(θ) cos(ϕ)

r

∂

∂ϕ

∂

∂y
= sin(θ) sin(ϕ)

∂

∂r
+

cos(θ)

r sin(ϕ)

∂

∂θ
+

sin(θ) cos(ϕ)

r

∂

∂ϕ

∂

∂z
= cos(ϕ)

∂

∂r
− sin(θ)

r

∂

∂ϕ

We denote by f ′ the derivative of f(ct − r, θ, ϕ) with respect to the first argument. For ease we shall
drop the subscript 1 for f and the first subscript of g,

u = −1

r

(
cos(θ) sin(ϕ)f ′ + sin(θ) sin(ϕ)g′3 − cos(ϕ)g′2

)
+O(

1

r2
)

v = −1

r

(
sin(θ) sin(ϕ)f ′ + cos(ϕ)g′1 − cos(θ) sin(ϕ)g′3

)
+O(

1

r2
) (31)

w = −1

r

(
cos(ϕ)f ′ + cos(θ) sin(ϕ)g′2 − sin(θ) sin(ϕ)g′1

)
+O(

1

r2
)
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Therefore,

ut + cpur +
u

r
=

1

r
(cp − cs)

(
sin(θ) sin(ϕ)g′′3 − cos(ϕ)g′′2

)
ut + csur +

u

r
= −1

r
(cp − cs) cos(θ) sin(ϕ)f

′′

vt + cpvr +
v

r
=

1

r
(cp − cs)

(
cos(ϕ)g′′1 − cos(θ) sin(ϕ)g′′3

)
(32)

vt + csvr +
v

r
= −1

r
(cp − cs) sin(θ) sin(ϕ)f

′′

wt + cpwr +
w

r
=

sin(ϕ)

r
(cp − cs)

(
cos(θ)g′′2 − sin(θ)g′′1

)
wt + cswr +

w

r
= −1

r
(cp − cs) cos(ϕ)f

′′

We can then take combinations of these equations to eliminate the right hand sides. We therefore, arrive
at the following ABCs

cos(ϕ) [wt + cpwr]+sin(ϕ)
[
cos(θ)(ut + csur+

u

r
)+sin(θ)(vt + cpvr+

v

r
)
]
=0

sin(θ)(ut + cpur)− cos(θ)(vt + csvr +
v

r
)=0 (33)

cos(ϕ)(ut + cpur)− cos(θ) sin(ϕ)(wt + cswr +
w

r
)=0

6 Stress-Velocity Formulation

From (5) we ignore the x and y derivatives. This yields

ρut = τ13z τ13t = ρc2suz (34a)

ρvt = τ23z τ23t = ρc2svz (34b)

ρwt = τ33z τ33t = ρc2pwz (34c)

τ11t = λwz (34d)

τ22t = λwz (34e)

τ12t = 0 (34f)

Note, that the first three lines each form a decoupled set of two equations. cs is a double eigenvalue, cp is a
single eigenvalue and zero is a triple eigenvalue. The eigenvectors corresponding to cs are u± 1

ρcs
τ13 and

v± 1
ρcs

τ23 while the eigenvectors corresponding to cp are w± 1
ρcp

τ33. These are exactly the expressions
that appear in the Lysmer–Kuhlemeyer ABC (12).

Thus, at the top we must specify three boundary conditions corresponding to the incoming waves. The
three zero eigenvalues do not determine if a boundary condition is required. Instead of the Lysmer–
Kuhlemeyer ABC we can use the more general ABC (21) that we have discussed. We use the first order
elastic equations (5) to eliminate the terms ux and wx in (21). This results in:

(τ13)t=ρcsut−ρcs(β − cs)wx

(τ23)t=ρcsvt−ρcs(β − cs)wy (35)

(τ33)t=
λ

α
wt+cp(ρcp−

λ

α
)wz λ=ρ(c2p − 2c2s).
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As before, α = λ
ρcp

and β = cs recovers the Petersson–Sjögreen / Lysmer–Kuhlemeyer ABC while
choosing α=β=cp − cs (i.e. β−cs=cp−2cs) yields Stacey’s formula.

In addition, we have three waves that correspond to a zero eigenvalue, i.e. they contain no normal, z,
derivatives. These are given by

τ12t = µ(uy + vx)

τ11t − τ22t = (ρc2p − λ)(ux − vy) (36)

ρc2pτ11t − λτ33t = (ρc2p − λ)
(
(ρc2p + λ)ux + λvy

)
= 2ρ2c2s

(
2(c2p − c2s)ux + (c2p − 2c2s)vy

)
.

7 Higher Order and Frequency Domain

In this section we consider both second order ABCs and extensions to the frequency domain. Stacey
presents a second order ABC (his scheme P5) as:

uzt = −csuzz +
cp − cs
cp − 2cs

(wxt + 2cswxz) +
cpcs

cp − 2cs
uxx (37)

wzt = −cpwzz −
cp − cs
2cp − cs

(uxt + 2cpuxz)−
cpcs

2cp − cs
wxx.

We now use the elastic wave equation (4) to replace uzz and wzz by time derivatives. We shall do
this twice once when we completely remove the zz derivatives and once where we replace half the zz
derivatives; each approach has its advantage.

We first eliminate the zz derivatives in (37) using the elastic wave equation (4). This results in

utt+csuzt−
cs(cp − cs)

cp − 2cs
wxt−

cp
2

(2c2p − 4cpcs + c2s)

cp − 2cs
uxx−

cp(cp − cs)
2

cp − 2cs
wxz=0 (38)

wtt+ cpwzt+
cp(cp − cs)

2cp − cs
uxt+

cs
2

(2c2s − 4cpcs + c2p)

2cp − cs
wxx−

cs(cp − cs)
2

2cp − cs
uxz=0

This has the form that there is no second normal derivative to the surface. This is an advantage for both
finite differences and finite elements. This is especially advantageous for the frequency version, to be
presented, where the time differences no longer appear. Stacey notes that there may be problems when
cp ≈ 2cs. In addition to the term cp − 2cs in the denominator of the second equation the coefficient of
uxx and wxx can become zero.

Note: eq. 35 in [43] has an error and the coefficient in Uxz in his notation should be β(α−β)2

α(2α−β) .

We next modify (37) by replacing only half of the zz derivatives using (4). This results in

utt + 2csuzt − 2
cs(cp − cs)

cp − 2cs
wxt + c2suzz − cp

(cp − cs)
2

cp − 2cs
uxx

−
(cp − cs)(c

2
p − cpcs + 2c2s)

cp − 2cs
wxz = 0 (39)

wtt + 2cpwzt + 2
cp(cp − cs)

2cp − cs
uxt + c2pwzz + cs

(cp − cs)
2

2cp − cs
wxx

+
(cp − cs)(2c

2
p − cpcs + c2s)

2cp − cs
uxz = 0
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We write (39) in vector form as a matrix acting on the first order Stacey form (9). So we express (39) as(
∂

∂t
−B2

∂

∂x
− C2

∂

∂z

)(
∂

∂t
−B1

∂

∂x
− C1

∂

∂z

)(
u
v

)
where

B1 =

(
0 cp − cs

cp − cs 0

)
C1 = C2 =

(
cs 0
0 cp

)

B2 =

(
0 − cp(cp−cs)

cp−2cs
cs(cp−cs)
2cp−cs

0

)

The term
(
∂
∂t −B1

∂
∂x − C1

∂
∂z

)(u
v

)
= 0 is the first order Stacey ABC. Forming higher order ABCs by

multiplying a matrix times the previous lower order terms is the procedure used in several sequences of
ABCs for the acoustic wave equation e.g. [4], [13]. Thus, it is possible that this approach will lead to
local ABCs with an order of accuracy greater than two.

8 Computations

To compare some of the absorbing boundary conditions we consider the three dimensional elastic equa-
tions in frequency space. We use our fourth order accurate scheme [21] in stress-velocity variables, see
also [6]. The staggering is shown in Fig. 2, which shows a grid sized cube and the positions of the points
at which the nine variables are located. These positions are described in the caption.

w

v

u

τ

τ

τ
13

23

12

nn

z

τ

(i,j,k)

(i+1,j,k)

(i,j+1,k)

(i,j+1,k+1)

(i+1,j,k+1)

(i+1,j+1,k)

(i,j,k+1)

n=1,2,3

x
y

Figure 2: The compact 4th order scheme on a staggered grid, showing the positions of the 9 variables
on a cube of 8 adjacent grid points. τ11, τ22, τ33 are located at a grid point (i, j, k), u is located at
(i+1/2, j, k), v is at (i, j+1/2, k), and w is at (i, j, k+1/2). τ12 is at (i+1/2, j+1/2, k), τ13 is at
(i+1/2, j, k+1/2), and τ23 is at (i, j+1/2, k+1/2).

12



For the elastic wave equation in the frequency domain we replace the time derivative by iω. By an abuse
of notation we denote(u, v, w) as the velocities in frequency space. The first order elastic equations (5)
become

iρωu = τ11x + τ12y + τ13z + F u(x, y, z) (40a)

iρωv = τ12x + τ22y + τ23z + F v(x, y, z) (40b)

iρωw = τ13x + τ23y + τ33z + Fw(x, y, z) (40c)

iωτ11 = ρc2pux + λ(vy + wz) (40d)

iωτ22 = ρc2pvy + λ(ux + wz) (40e)

iωτ33 = ρc2pwz + λ(ux + vy) (40f)

iωτ12 = ρc2s(uy + vx) (40g)

iωτ13 = ρc2s(uz + wx) (40h)

iωτ23 = ρc2s(vz + wy) (40i)

Due to the staggering, the variables are not at the same location. Consider the first equation in (40). We
center this equation at the position of τ13 i.e. at (i+ 1/2, j, k + 1/2). u is located at (i+ 1/2, j, k) and
so we need to average u in the k direction. τ13 is at the right location as is wx. Similarly, the second
equation is centered at (i.j + 1/2, k + 1/2) with v averaged in the k direction and the third equation is
centered at (i, j, k) with w averaged in the k direction.

The Lysmer and Kuhlemeyer (LK) ABC contains no time derivatives and so remains the same (12)
in frequency space. We describe the implementation of the boundary conditions along the absorbing
boundary z = 0. In (40) we have nine variables and so need nine equations for these variables at or
near the boundary. Three are given by the ABC of LK which corresponds to the characteristic variables.
Three are given by the variables corresponding to the zero eigenvalues (36). The final three equations
correspond to equations from the elastic system.

Thus, the 9 relationships we have at z=0 are:

τ13 = ρcsu

τ23 = ρcsv

τ33 = ρcpw

iω(τ11 − τ22) = (ρc2p − λ)(ux − vy) (41)

iω(ρc2pτ11 − λτ33) = 2µ (2(λ+ µ)ux + λvy)

iρωw = τ13x + τ23y + τ33z

iωτ12 = ρc2s(uy + vx)

iωτ13 = ρc2s(uz + wx)

iωτ23 = ρc2s(vz + wy).

The first three equations contain no derivatives but the variables are defined at different locations. Hence,
a variable needs to be averaged to get second order accuracy. The last four equations are the same as the
original elastic equations and so do not need any averaging. The middle equations involve τnn which
are at the same location. The RHS involves ux and vy which centers at the same location and so no
averaging is needed. Thus, all the equations can be calculated without using points outside the domain.
In summary, averaging is needed only for the LK equations which are the first three equations of (41).

With a different ABC we appropriately replace the first three equations of (41) with an equation that in
general will contain the velocities and first derivatives. Thus, for the first order formula of Stacey (9), in
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frequency space, we have

iωu = csuz + (cp − cs)wx

iωv = csvz + (cp − cs)wy (42)

iωw = cpwz + (cp − cs)(ux + vy).

Each equation contains a z derivative which would require information outside the domain. However, by
(40h) we can express uz in terms of wx and τ13. Similarly, by (40i) we can express vz in terms of wy and
τ23. Finally, by (40f) we can express wz in terms of ux + vy and τ33.

We next extend the second order ABC of Stacey to three dimensions in frequency space. Let s=sin(θ).
Stacey develops (in 2D) a set of equations P5 that has an error O(s4). Unfortunately, the equations for
u and v have a term cp − 2cs in some of the denominators. These denominators can be problematic for
some Poisson ratios. The lower order ABC P4, which has behaves as O(s3), does not have this difficulty.
Hence, as recommended by Stacey we use P4 for u and v and P5 for w. This yields

iωu=−csuzz − (cp − cs)(vxy + wxz)− (cp −
cs
2
)uxx

iωv=−csvzz − (cp − cs)(uxy + wyz)− (cp −
cs
2
)vyy (43)

iωwz=−cpwzz−
cp−cs
2cp−cs

(iω(ux+vy)+2cp(uxz+vyz))

− cpcs
2(2cp−cs)

(wxx+wyy).

We again eliminate the normal second derivatives by using the frequency space version of (4). This
yields

− ω2u+ iωcsu− (c2p − cpcs +
c2s
2
)uxx − c2suyy − cp(cp − cs)(wxz + vxy)=0 (44a)

− ω2v + iωcsv − (c2p − cpcs +
c2s
2
)vyy − c2svxx − cp(cp − cs)(wyz + uxy)=0 (44b)

− ω2w+iωcp

(
wz+

(cp−cs)

2cp−cs
(ux+vy)

)
− cs

(cp − cs)
2

2cp − cs
(uxz + vyz)

+
cs(c

2
p + 2c2s − 4cpcs)

2(2cp−cs)
(wxx + wyy)=0. (44c)

We can further eliminate wz using the frequency version of (5). This gives iωτ33 = ρc2pwz +λ(ux + vy)

or wz =
iωτ33−λ(ux+vy)

ρc2p
. We thus, can calculate all derivatives to second order accuracy without using

information outside the domain. Equation (44c) above can then be written as

− ω2(w +
τ33
ρcp

)−iω

(
λ

ρcp
− cp(cp−cs)

2cp−cs

)
(ux+vy)−

cs(cp − cs)
2

2cp−cs
(uxz + vyz)

+
cs(c

2
p + 2c2s − 4cpcs)

2(2cp−cs)
(wxx + wyy)=0. (45)

This contains no normal second derivatives. As Stacey notes there are no singularities at cp = 2cs.
However, the equations for u and v have a lower order accuracy than the equation for w.

Equations (44a), (44b) and (45) will be used as ABC on the z = 0 boundary. For the z = 2000 boundary,
we shall also use (44a) and (44b) for u and v, and the following equation for w:

− ω2(w − τ33
ρcp

)+iω

(
λ

ρcp
− cp(cp−cs)

2cp−cs

)
(ux+vy)−

cs(cp − cs)
2

2cp−cs
(uxz + vyz)

+
cs(c

2
p + 2c2s − 4cpcs)

2(2cp−cs)
(wxx + wyy)=0. (46)
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For applications, we modify (44) for the x=0 boundary as follows:

− ω2w + iωcsw − (c2p − cpcs +
c2s
2
)wzz − c2swyy − cp(cp − cs)(uxz + vyz)=0 (47a)

− ω2v + iωcsv − (c2p − cpcs +
c2s
2
)vyy − c2svzz − cp(cp − cs)(wyz + uxy)=0 (47b)

− ω2u+iωcp

(
ux+

(cp−cs)

2cp−cs
(vy+wz)

)
− cs

(cp − cs)
2

2cp − cs
(vxy + wxz)

+
cs(c

2
p + 2c2s − 4cpcs)

2(2cp−cs)
(uyy + uzz)=0. (47c)

Similarly to Eq. (45), we can replace Eq. (47c) with the following equation:

− ω2(u+
τ11
ρcp

)−iω

(
λ

ρcp
− cp(cp−cs)

2cp−cs

)
(vy+wz)−

cs(cp − cs)
2

2cp−cs
(vxy + wxz)

+
cs(c

2
p + 2c2s − 4cpcs)

2(2cp−cs)
(uyy + uzz)=0. (48)

Equations (47a), (47b) and (48) will be used as the ABC on the boundary x = 0. For the x = 2000
boundary, we shall use (47a), (47b), and the following equation for w:

− ω2(u− τ11
ρcp

)+iω

(
λ

ρcp
− cp(cp−cs)

2cp−cs

)
(vy+wz)−

cs(cp − cs)
2

2cp−cs
(vxy + wxz)

+
cs(c

2
p + 2c2s − 4cpcs)

2(2cp−cs)
(uyy + uzz)=0. (49)

We shall now compare two different absorbing boundary conditions, namely, the first and second order
Stacey formulae: (42) and (44).

9 Experimental results

9.1 Methodology

In order to evaluate the accuracy of the ABCs given above by (42) and (44),, we will compare results
on a problem that has a known analytic solution. The problem (in frequency space) which we consider
is a cube of size 2000 meters on all sides, with an impact point at the center in the z direction. The
x, y, z axes defining the domain go from zero to 2000. This problem has a known analytic solution —
see Pilant [36, Eq. 7-88], Pujol [37, Eq. 9.5.20], and the references therein. The solution presented by
Pilant considers a point impact in one direction, was used by [21, 23, 30] and others. The two solutions
are mathematically identical, and we chose to use Pujol’s solution for this paper.

We present Pujol’s formulation of the wave function in 3D, assuming that the impact is in the z-direction,
at a point (x0, y0, z0). Let (x, y, z) be the point at which we wish to evaluate the values of u, v, w. We
first evaluate the following terms:

α =

√
λ+ 2µ

ρ
, β =

√
µ

ρ
(50a)

r =
√
(x− x0)2 + (y − y0)2 + (z − z0)2 (50b)

γ1 =
x− x0

r
, γ2 =

y − y0
r

, γ3 =
z − z0

r
(50c)
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The values of u, v, w at a point (x, y, z) are given by the following:

u =
γ1γ3F (ω)

4πρr

[
1

α2
e−iωr/α

(
1− 3α

ωr

( α

ωr
+ i
))

−

1

β2
e−iωr/β

(
1− 3β

ωr

( β

ωr
+ i
))]

(51a)

v =
γ2γ3F (ω)

4πρr

[
1

α2
e−iωr/α

(
1− 3α

ωr

( α

ωr
+ i
))

−

1

β2
e−iωr/β

(
1− 3β

ωr

( β

ωr
+ i
))]

(51b)

w =
F (ω)

4πρr

[
1

α2
e−iωr/α

(
γ23 −

(
3γ23 − 1

) α

ωr

( α

ωr
+ i
))

−

1

β2
e−iωr/β

(
γ23 −

(
3γ23 − 1

) β

ωr

( β

ωr
+ i
))]

, (51c)

where F (w) is the impact force in the z-direction. As noted in [30, p. 1070], the displacements in (51)
should be multiplied by −iω to obtain the velocities for the frequency domain. Fw(x0, y0, z0) can be
taken as a constant, which we assume to be 109. Note that since the impact is a single point, the above
solution is also the Green’s function for the problem.

Our evaluation method consists of calculating the global relative error (rel-err) and various plots showing
both the analytic real and the calculated solutions. Rel-err is calculated as follows: if x∗ is the true
solution and x′ is a calculated solution then, rel-err is defined as ∥x∗−x′∥/∥x∗∥. The real analytic
solution is taken from Eq. (51) (after multiplying it by iω). The error in the calculated solution is due
mainly to three factors: the absorbing boundary conditions, the fourth order accuracy of the numerical
solution, and the grid spacing. To account for the latter two factors, we shall also compare the following
two relative errors: rel-err with an ABC on all sides, and rel-err with Dirichlet BC on all sides.

For the solver, we used the block-parallel CARP-CG algorithm [18], which is a Conjugate Gradient
(CG) acceleration of CARP [16]. CARP is a parallel version of the Kaczmarz algorithm [27] for solving
linear systems. The CG acceleration of CARP follows the lines of the (non-parallel) CGMN algorithm
of Björck and Elfving [8]. CARP-CG is ideally suited for the parallel solution of PDE problems defined
over a domain. In previous work, it was found to be very efficient for solving the Helmholtz equation
with very high frequencies [19] and convection-dominated PDEs [18] and in general, linear systems
with discontinuous coefficients and/or very large off-diagonal elements [17]. It was also used in several
previous works, such as [21, 24, 29, 30, 45]. CARP-CG is available from the PHIST toolkit [44]. The
mechanism of CARP-CG for solving a PDE over some domain is as follows: the domain is partitioned
into subdomains by surfaces passing between grid points. The equations in each subdomain are treated
in parallel by separate processors, and the results are unified by averaging the values of borderline grid
points. This process is repeated until the residual falls below a given threshold. The proofs of correctness
of CARP and CARP-CG appear in [16, 18].

The process of subdividing a domain into subdomains is known as Domain Decomposition (DD). Many
papers have been written about the problematic issue of applying DD to the Helmholtz equation; see,
for example, Gong et al. [14] and the references therein. The problem occurs at boundaries between
subdomains, and even more severely at cross-points, where three or more subdomains meet. In reference
[15], it is shown that CARP-CG has no problem at boundaries and cross-points. The reason for this is
that in some superspace of the problem space, the subdomain operations and the averaging operations
constitute a CG acceleration of the Kaczmarz algorithms. One advantage is that the operations across

16



boundaries are independent of the problems solved, be they convection-diffusion problems, elastic wave
problems, or the Helmholtz equation. Other subdomain methods, such as those in [14] and the references
therein, are specific to the Helmholtz equation, and there is no indication that they apply to elasticity or
other problems. It is well known that all ABCs are inaccurate for glancing waves parallel to the boundary.

Stacey’s first order ABC in frequency space (42) is applied as is on the surface z = 0. The explicit
solution that we are using is the Pilant/Pujol solution given by (51) which is directed in the z direction.
This has the effect that it is grazing along the x and y boundaries which creates difficulties for any ABC.
We tried a simple cyclic permutation of u, v, w and the corresponding derivatives, but this produced very
poor results, as expected. Hence, for this solution it is necessary to modify the ABC along the x and
y boundaries. Note, for a general case where there are no grazing waves a cyclic permutation of the z
ABC should work fine. We found that some minor adjustments produced quite good results. For the side
y = 0, we took the x = 0 equations and switched the roles of u and v, and x and y. For the opposite
surfaces, the right-hand sides of the corresponding equations were taken as the negation of the respective
0-sides due to the antisymmetry of some of the variables and derivatives. The resulting equations for the
six surfaces are the following:

z=0 : iωu = csuz + (cp − cs)wx

iωv = csvz + (cp − cs)wy (52a)

iωw = cpwz + (cp − cs)(ux + vy)

z=2000 : iωu = −csuz − (cp − cs)wx

iωv = −csvz − (cp − cs)wy (52b)

iωw = −cpwz − (cp − cs)(ux + vy)

x=0 : iωu = cpux + (cp − cs)(vy + wz)

iωv = csvz + (cp − cs)wy (52c)

iωw = cswx + (cp − cs)uz

x=2000 : iωu = −cpux − (cp − cs)(vy + wz)

iωv = −csvz − (cp − cs)wy (52d)

iωw = −cswx − (cp − cs)uz

y=0 : iωu = csuz + (cp − cs)wx

iωv = cpvy + (cp − cs)(ux + wz) (52e)

iωw = cswy + (cp − cs)vz

y=2000 : iωu = −csuz − (cp − cs)wx

iωv = −cpvy − (cp − cs)(ux + wz) (52f)

iωw = −cswy − (cp − cs)vz

Besides the equations (52), we also apply the last six equations of (40) on the six surfaces to account for
the variables τij .

The equations for the 8 edges of the surfaces z = 0 and z = 2000 are identical to the equations of the
corresponding z-surface. The equations for the following 3 edges are identical to the y-surface that they
belong to: the edge defined by x= y=0, the edge defined by x=0, y=2000, and the edge defined by
x=2000, y=0.

This leaves us with the problematic edge defined by x = y = 2000, for which none of the above pos-
sibilities were satisfactory. We therefore resorted to the second-order ABC of Bayliss, Gunzburger and
Turkel [5], denoted BGT2. In [20], it was shown that for the Helmholtz equation, several ABCs with
directional derivatives orthogonal to the boundary can be improved very significantly if the directional
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derivative is taken in the direction of the gradient of the wavefront. In the case of a single point source,
the gradient of the wave front and the directional derivative are identical.

In the following definition of BGT2 for the Helmholtz equation, r is the distance from the impact point,
and r (boldface) is the vector pointing from the impact point; so ur and urr are directional derivatives
in the direction of r.

urr +

(
4

r
− 2ik

)
ur +

(
2

r2
− k2 − 4ik

r

)
u = 0 (53)

For the elastic wave equation, Eq. (53) was applied to u, v and w. k was replaced by (kp + ks)/2.

The second order Stacey ABC was applied as follows:

• On the surface z=0, we used equations (44a) and (44b) for u and v, and (45) for w.

• On the surface z=2000, we also used (44a) and (44b) for u and v, and (46) for w.

• On the surface x=0, we used equations (47a) and (47b) for u and v, and (48) for w.

• On the surface x=2000, we also used (47a) and (47b) for u and v, and (49) for w.

In the next section, it will be seen that Stacey’s second order ABCs produced worse results than the first
order ABCs, so there was no reason to apply it to the y=0 and y=2000 surfaces.

9.2 Numerical results

As mentioned previously, the 20003 m3 cube was divided by a grid of 1403 grid points. One extra grid

point was added to all sides for the boundary conditions. The impact function was simulated by setting a

cube of 83 grid points at the center of the domain with Dirichlet boundary conditions on the outer surface

of the cube, as determined by Eq. (51). Other parameters:

• Wave speeds: cp=5000 m/s, cs=2500 m/s;

• Density: ρ=1000 kg/m3.

• λ and µ are determined by cp and cs according to Eq. (2).

• L=140 is the number of grid points per side, and N =2000 is the length of a side of the

cube in meters.

• Frequencies used in the experiments: f=5, 10, 20 Hz.

• As mentioned previously, the impact is at the center towards the z=10 plane. The value

of the impact, F (ω) in Eq. (51), is set at 109.

In Tables 1–3 below we present the global relative error of w when applying Stacey’s first and second
order ABCs on some of the sides, at frequencies f = 5, 10, 20. In Table 4 we compare the accuracies
achieved with Stacey’s first order ABC and Dirichlet boundary conditions on all six sides.

Frequency: f=5 f=10 f=20

Stacey 1st. 0.118 0.126 0.192

Stacey 2nd. 0.234 0.158 0.216

Table 1: Relative error obtained with Stacey 1st. and 2nd. order ABC on the surface z = 0, with the
Green’s function solution.

Below, we present 15 plots of the values of u, v, w along lines parallel to the x, y, z axes, at three different
distances from the center, as determined by the i, j, k indices, which vary from 1 to 140 (the grid size).
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Frequency: f=5 f=10 f=20

Stacey 1st. 0.123 0.104 0.155

Stacey 2nd. 0.242 0.201 0.235

Table 2: Relative error with Stacey 1st. and 2nd. order ABC on the surfaces z = 0 and z = 2000, with
the Green’s function solution.

Frequency: f=5 f=10 f=20

Stacey 1st. 0.146 0.158 0.170

Stacey 2nd. 0.593 0.448 0.574

Table 3: Relative error with Stacey 1st. and 2nd. order ABC on the surfaces x = 0, x = 2000, z = 0 and
z = 2000, with Dirichlet BC on the other sides.

Frequency: f=5 f=10 f=20

Stacey 1st. 0.172 0.179 0.183

Dirichlet BC 0.0131 0.0335 0.0106

Table 4: Comparison of the relative errors obtained with Stacey 1st. order ABC and Dirichlet BC on all
six sides.

i, j, k are the indices along the x, y, z-axes, respectively. The plots show the difference between the
calculation with Stacey’s 1st. order ABC and the Green’s function (which is the true solution). The
frequency for these results was set at f=10.
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Figure 3: Plot of w parallel to the z-axis, with i=j=20.

19



z
0 500 1000 1500 2000

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

w

[m]

 f=10; Stacey 1st order ABC Calc. Vs. Analytic Solution; i=50,j=50

[m/s]

Analytic Solution

Calculation

Figure 4: Plot of w parallel to the z-axis, with i=j=50.
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Figure 5: Plot of w parallel to the z-axis, with i=j=65.
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Figure 6: Plot of w parallel to the x-axis, with j = k = 20. Note that this plot is identical to that of w
parallel to the y-axis.
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Figure 7: Plot of w parallel to the x-axis, with j = k = 50. Note that this plot is identical to that of w
parallel to the y-axis.
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Figure 8: Plot of w parallel to the x-axis, with j = k = 65. Note that this plot is identical to that of w
parallel to the y-axis.
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Figure 9: Plot of u parallel to the z-axis, with i = j = 20. Note that this plot is identical to that of v
parallel to the z-axis.
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Figure 10: Plot of u parallel to the z-axis, with i= j = 50. Note that this plot is identical to that of v
parallel to the z-axis.
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Figure 11: Plot of u parallel to the z-axis, with i= j = 65. Note that this plot is identical to that of v
parallel to the z-axis.
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Figure 12: Plot of u parallel to the x-axis, with j = k = 20. Note that this plot is identical to that of v
parallel to the y-axis.
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Figure 13: Plot of u parallel to the x-axis, with j = k = 50. Note that this plot is identical to that of v
parallel to the y-axis.
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Figure 14: Plot of u parallel to the x-axis, with j = k = 65. Note that this plot is identical to that of v
parallel to the y-axis.
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Figure 15: Plot of v parallel to the x-axis, with j = k = 20. Note that this plot is identical to that of u
parallel to the y-axis.
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Figure 16: Plot of v parallel to the x-axis, with j = k = 50. Note that this plot is identical to that of u
parallel to the y-axis.
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Figure 17: Plot of v parallel to the x-axis, with j = k = 65. Note that this plot is identical to that of u
parallel to the y-axis.
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10 Conclusions

The absorbing boundary condition of Lysmer–Kuhlemeyer is equivalent to that of Petersson–Sjögreen.
It is also a set of characteristic variables of the first order system. Of all the first order ABCs of the form
(21), only that of Stacey achieves the accuracy O(θ2) similar to that which the first order Engquist-Majda
achieves for the acoustic wave equation. The second order ABC can be expressed as the multiplication
of a new matrix times the first order ABC. A similar formula is derived in spherical coordinates that
generalizes the Bayliss–Turkel ABC to the elastic wave equation. Extensions to the first order system
and the frequency domain are also presented. Stacey’s first order ABC was extended from the z = 0
plane to all six surrounding planes, and numerical results show that it achieves good performance, with
a global relative error of around 18%. It was also extended to second order, but this extension achieved
poor results.
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