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A compact three-dimensional fourth order scheme
for elasticity using the first-order formulation

Rachel Gordon* Eli Turkel† Dan Gordon‡

Abstract

We develop a compact fourth order scheme for the three-dimensional elastic wave equation
in frequency space, using the first order velocity-stress formulation. The scheme is imple-
mented numerically for homogeneous media on a staggered grid, and both the acoustic and
elastic cases are considered. We use a one-directional point source of impact, for which
Pilant developed a closed solution. Numerical results for the acoustic and the elastic cases
compare favorably with the analytic solutions and show a very significant improvement
over the second order scheme.

Keywords: Compact schemes; Elastic wave equation; First-order formulation; Fourth order
accuracy; Frequency space; Staggered grid.

1 Introduction

In this paper we consider finite difference approximations to the acoustic and elastic wave equa-
tions. The acoustic equations apply mainly in air and other simple media. However, when
considering waves in a solid it is necessary to account for the elastic (or even visco-elastic)
properties of the media. Thus, for example, applications to aerodynamics rely on the wave
equation (or their extension to the Euler and Navier-Stokes equations) while applications to
seismology rely mainly on the elastic wave equations. These equations are time dependent, but
in many applications there is a dominant frequency, so it is appropriate to consider a Fourier
transform which transforms the time dependent equations to the frequency domain. We shall
develop a compact fourth order scheme for the elastic wave equation in the frequency domain.

There are many reasons to study the elastic wave equations. Seismic waves are caused by
earthquakes, volcanic events, and man-made explosions on or below the surface. Another cause
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for their study is known as “exploration geophysics”; see, for example, Virieux and Operto [33]
and Virieux et al. [34]. More details on this topic appear towards the end of this section.

Compact schemes are advantageous for high order schemes in wave equations for three main
reasons: (a) in heterogeneous media, the derivatives of the media parameters are localized, and
so they are more accurate at each spatial point; (b) they are simpler to handle at the boundaries
of the domain; (c) for parallel processing of very large 3D domains, it is necessary to subdivide
the domain for parallel processing and compact schemes are much simpler to use at subdomain
boundaries.

High order accuracy is important in two distinct applications. Firstly, for a given number of
grid points we obtain improved accuracy. Secondly, in three dimensional applications, a very
large grid is necessary to achieve a fixed accuracy. This grid may exceed the capabilities of
the computer both in terms of computer memory and CPU time. Using a high order method
allows us to achieve the same accuracy with a coarser grid. Additionally, in many methods for
inverse problems, it is necessary to solve a linear system many times. Hence, it is important
to improve the efficiency of the solver, and this can be done by improving the accuracy and
reducing the required grid size. We note also that due to the pollution effect [2, 4], the number
of grid points per side N required to obtain a given accuracy is governed by the equation N =

Ck(p+1)/p, where C is a constant, k is the (non-dimensional) wave number, and p is the order of
the accuracy of the scheme.

In this paper we develop a compact fourth-order scheme for the elastic wave equation in fre-
quency space, using the first order (velocity-stress) formulation. For the experimental results,
we implement our scheme in homogeneous media and compare the results with Pilant’s solution
– see [23, §7.4]. We also compare the acoustic case with the Green’s function solution.

The elastic equations in the time domain can be written both as a system of second order partial
differential equations for the displacements (u, v, w) or as a first order system for the displace-
ments and stresses. Note that u, v, w are the displacements in the x, y, z directions, respectively.
In the frequency domain, the displacements are replaced by the velocities, which, for conve-
nience, we also refer to them as (u, v, w). The second order system in the frequency domain
consists of three equations, one for each component. The equation for u is given by

−ρω2u = ∂x

[
λD + 2µ

∂u

∂x

]
+ ∂y

[
µ(

∂u

∂y
+

∂v

∂x
)

]
+ ∂z

[
µ(

∂u

∂z
+

∂w

∂x
)

]
+ F u(x, y, z), (1)

where ρ is the density, ω = 2πf is the angular frequency, f is the frequency, λ and µ are the
Lamé parameters, F u is the forcing term in the x-direction, and D is the divergence of the
velocity vector (u, v, w):

D =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
.

2



For an explanation of the elastic wave equation and the physical meaning of the parameters, see,
for example, Pilant [23] and Pujol [24]. Virieux [32] introduced a fourth order accurate scheme
for the elastic wave equation, using the first order formulation which involves both the velocities
and stresses on a non-compact staggered stencil. Fourth order non-compact schemes for these
equations in the second order formulation have also been developed, see Nilsson et al. [22], and
Sjögreen and Petersson [26]. Komatitisch and Tromp [17] used the spectral element method in
which a different discretization stencil is used at each interior node point in each element, even
on a regular Cartesian grid. In this paper, we introduce a compact fourth-order scheme using
the first order formulation.

In the first order formulation of the elastic wave equation, we have, in addition to the three
velocities (u, v, w), six additional stress terms σij , 1 ≤ i, j ≤ 3, which form a symmetric
matrix. Due to the symmetry, there are only six different values of σij , so for j > i, we replace
σji by σij . In the following, D= ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
, and the forcing terms in the x, y, z directions

are denoted, respectively, by F u, F v, Fw. Then the system is given by

−ρiωu =
∂σ11

∂x
+

∂σ12

∂y
+

∂σ13

∂z
+ F u(x, y, z) (2a)

−ρiωv =
∂σ12

∂x
+

∂σ22

∂y
+

∂σ23

∂z
+ F v(x, y, z) (2b)

−ρiωw =
∂σ13

∂x
+

∂σ23

∂y
+

∂σ33

∂z
+ Fw(x, y, z) (2c)

−iωσ11 = λD + 2µ
∂u

∂x
(2d)

−iωσ22 = λD + 2µ
∂v

∂y
(2e)

−iωσ33 = λD + 2µ
∂w

∂z
(2f)

−iωσ12 = µ(
∂u

∂y
+

∂v

∂x
) (2g)

−iωσ13 = µ(
∂u

∂z
+

∂w

∂x
) (2h)

−iωσ23 = µ(
∂v

∂z
+

∂w

∂y
) (2i)

We consider isotropic elasticity and so disturbance to the media causes two types of waves to
travel through it: compression, or P waves, and shear, or S waves. The velocities of the P and S
waves are denoted, respectively, cp and cs. These velocities are related to the Lamé parameters
λ and µ as follows:

cp =

√
λ+ 2µ

ρ
speed of the compression or P wave (3a)

cs =

√
µ

ρ
speed of the shear or S wave (3b)
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The wave numbers associated with the two wave speeds are kp = ω/cp and ks = ω/cs.

We note that a staggered grid gives higher accuracy than a non-staggered grid for the same
degrees of freedom [29]. Fourth order staggered grid finite difference methods were proposed
by Virieux [32], Levander [18], Graves [13] and Li et al. [19,20], and have been used extensively
for seismic wave simulations. This method discretizes the elastic wave equation as a first order
hyperbolic system using the velocity-stress formulation. For the time domain they achieve only
second order accuracy in time. However, their scheme uses a non-compact stencil to achieve
the higher accuracy which creates difficulties near boundaries. A spectral discretization in two
dimensions was given by Feng et al. [6]. Ma and Ge [21] recently published a compact 4th-order
scheme for 2-dimensional elliptic and parabolic equations.

When the parameter cs is set to zero, equations (2) reduce to the so-called acoustic case, in
which σij=0 for i ̸= j and σii are all equal. In the acoustic case, the system (2) reduces to three
identical Helmholtz equations in σii, i = 1, 2, 3. We test our scheme for both the elastic and
acoustic cases. For the elastic case, we impose Dirichlet boundary conditions (BC) determined
by Pilant’s solution [23, §7.4]. For the acoustic case (cs = 0), we use the high-order gradient
absorbing boundary condition (ABC) developed in [11], as well as Dirichlet BC based on the
Green’s function solution to the Helmholtz equation. In the elastic case, the fourth order scheme
shows a significant improvement over the second order scheme at different grid sizes.

In our tests, we assume that the forcing function has a small finite support. This is a situation
that occurs in many real physical cases, such as explosions, earthquakes and volcano erup-
tions. It also occurs in geophysical prospecting, in which point-wise impacts are created at
many points, and many detectors measure the resulting reverberations. The frequency-domain
implementation of one important reconstruction method, known as “full waveform inversion”
(FWI) involves the repeated numerical solution of the Helmholtz equation or the elastic wave
equation; see Virieux and Operto [33], Kallivokas et al. [15], van Leeuwen and Herrmann [31]
and Fathi et al. [5].

Three major issues affect the accuracy of the solution obtained by any numerical method: the
accuracy of the interior scheme used, the accuracy of the solver, and the absorbing boundary
conditions. The ability to handle variable wave speeds is essential for many applications in
which the domain is heterogeneous. For the solver of the elastic equation, we use the CARP-
CG algorithm [9], which was very useful for solving the Helmholtz equation at high frequencies
[10, 11, 30] and for the elastic wave equation [19, 20]. For the elastic equation, we do not use
any absorbing boundary conditions, as our purpose is to test the accuracy of the compact fourth
order scheme. Instead we compare our numerical results with Pilant’s solution [23, §7.4], with
very favorable results. We also obtain a very significant improvement over the second order
scheme.
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The rest of the paper is organized as follows: Section 2 presents the discretization, Section 3
provides the implementation details. Section 4 presents experimental results on a model with a
known analytic solution, for both the acoustic and elastic cases. We conclude with Section 5.

2 Discretization of the elastic wave equation

We shall now develop a compact fourth order scheme for the first order formulation of the
elastic wave equation. Using a Taylor series expansion, we have (ignore j and k indices):

δxu ≡ ui+1 − ui−1

2h
= ux +

h2

6
uxxx +O(h4)

δx/2u ≡
ui+1/2 − ui−1/2

h
= ux +

h2

24
uxxx +O(h4)

δxxu ≡ ui+1 − 2ui + ui−1

h2
= uxx +

h2

12
uxxxx +O(h4)

or

ux = δxu− h2

6
uxxx +O(h4)

ux = δx/2u− h2

24
uxxx +O(h4) (4)

uxx = δxxu− h2

12
uxxxx +O(h4)

We can see from the two expressions for ux that the coefficient of uxxx in the staggered mesh
is h2/24, which is one fourth of the coefficient of uxxx in a regular mesh. This means that the
truncation error of the staggered mesh is one fourth of that on the non-staggered mesh.

We also need on the boundary a one sided difference for a derivative. This is given by

ux =
−3ui + 4ui+1 − ui+2

2h
+

h2

3
uxxx +O(h4). (5)

For details regarding the development of the the above equations, see [29]. In order to deal with
both a staggered and nonstaggered grid in the same derivation we shall use the notation

ux = δxu− αh2uxxx +O(h4) (6)

where α=1/6 or 1/24 for a nonstaggered or staggered grid, respectively.

For a nonstaggered grid we use the neighbors i−1, i+1, while for a staggered grid we use the
following locations of the variables on an h×h×h cube of grid points:

σ11, σ22, σ33 → (i, j, k)

u → (i+ 1/2, j, k) v → (i, j + 1/2, k) w → (i, j, k + 1/2)

σ12 → (i+ 1/2, j + 1/2, k) σ13 → (i+ 1/2, j, k + 1/2) σ23 → (i, j + 1/2, k + 1/2)
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Our staggered grid implementation is described visually by Fig. 1, which shows the positions
of the nine variables.
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Figure 1: The compact 4th order scheme on a staggered grid, showing the positions of the 9
variables on an h×h×h cube. σ11, σ22, σ33 are located at a grid point (i, j, k), u is located at
(i+1/2, j, k), v is at (i, j+1/2, k), and w is at (i, j, k+1/2). σ12 is at (i+1/2, j+1/2, k), σ13 is
at (i+1/2, j, k+1/2), and σ23 is at (i, j+1/2, k+1/2).

We discretize Eq. (2), in frequency space, where λ and µ may vary in space. We then get:

−ρiωu = δxσ11 + δyσ12 + δzσ13 + F u

− αh2
(
(σ11)xxx + (σ12)yyy + (σ13)zzz

)
+O(h4) (7a)

−ρiωv = δxσ12 + δyσ22 + δzσ23 + F v

− αh2
(
(σ12)xxx + (σ22)yyy + (σ23)zzz

)
+O(h4) (7b)

−ρiωw = δxσ13 + δyσ23 + δzσ33 + Fw

− αh2
(
(σ13)xxx + (σ23)yyy + (σ33)zzz

)
+O(h4) (7c)

−iωσ11 = (λ+ 2µ)δxu+ λ(δyv + δzw)

− αh2 ((λ+ 2µ)uxxx + λ(vyyy + wzzz)) +O(h4) (7d)

−iωσ22 = (λ+ 2µ)δyv + λ(δxu+ δzw)

− αh2 ((λ+ 2µ)vyyy + λ(uxxx + wzzz)) +O(h4) (7e)

−iωσ33 = (λ+ 2µ)δzw + λ(δxu+ δyv)
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− αh2 ((λ+ 2µ)wzzz + λ(uxxx + vyyy)) +O(h4) (7f)

−iωσ12 = µ(δyu+ δxv)− αh2µ(uyyy + vxxx) +O(h4) (7g)

−iωσ13 = µ(δzu+ δxw)− αh2µ(uzzz + wxxx) +O(h4) (7h)

−iωσ23 = µ(δzv + δyw)− αh2µ(vzzz + wyyy) +O(h4) (7i)

We need to eliminate terms with the subscripts xxx, yyy, zzz from equations (7) since these
cannot be approximated to 4th order on a compact stencil. This will be done with the aid of
equations (2). Starting with equations (7a)–(7c), we differentiate (2a) with respect to xx and
get

−iω(ρu)xx =
∂3σ11

∂x3
+

∂3σ12

∂x2∂y
+

∂3σ13

∂x2∂z
+ F u

xx (8)

or
∂3σ11

∂x3
= −

[
∂3σ12

∂x2∂y
+

∂3σ13

∂x2∂z
+ iω(ρu)xx + F u

xx

]
(9)

Using a Taylor expansion, we have

∂3σ11

∂x3
= −

[
δxxyσ12 + δxxzσ13 + iωδxx(ρu) + δxxF

u
]
+O(h2), (10)

with similar expressions for ∂3σ12

∂y3
and ∂3σ13

∂z3
. For convenience, we define ∆h as the second order

approximation of the Laplacian, e.g., ∆hF = (δxx + δyy + δzz)F + O(h2). Substituting (10)
and similar expressions back into (7a,7b,7c), we get

−ρiωu = δxσ11 + δyσ12 + δzσ13 + F u (11a)

+ αh2
[
(δxyy + δxzz)σ11 + (δxxy + δyzz)σ12 + (δxxz + δyyz)σ13

+ iω∆h(ρu) + ∆hF
u
]
+O(h4)

−ρiωv = δxσ21 + δyσ22 + δzσ23 + F v (11b)

+ αh2
[
(δxyy + δxzz)σ21 + (δxxy + δyzz)σ22 + (δxxz + δyyz)σ23

+ iω∆h(ρv) + ∆hF
v
]
+O(h4)

−ρiωw = δxσ31 + δyσ32 + δzσ33 + Fw (11c)

+ αh2
[
(δxyy + δxzz)σ31 + (δxxy + δyzz)σ32 + (δxxz + δyyz)σ33

+ iω∆h(ρw) + ∆hF
w
]
+O(h4)

Since we have at most 2 differences in any direction, this is defined on the compact stencil.
For the stress equations the formulae are more complicated when the parameters ρ, λ and µ are
functions of x, y, z. We assume λ and µ are explicitly known functions of the space variables.

We now follow a similar procedure with the stress equations (7d)–(7i). To eliminate the third
order derivatives w.r.t. to a single variable in (7d)–(7i), we rewrite the relevant equation from
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(2d)–(2f) and differentiate twice. For example, we rewrite (2d) as

ux = −iω
σ11

λ+ 2µ
− λvy

λ+ 2µ
− λwz

λ+ 2µ

and differentiate twice w.r.t. x to get:

uxxx = −iω

(
σ11

λ+ 2µ

)
xx

−
(

λvy
λ+ 2µ

)
xx

−
(

λwz

λ+ 2µ

)
xx

(12)

Similarly, from (2d) we also have

vy = −iω
σ11

λ
− (λ+ 2µ)

λ
ux − wz

Differentiating twice w.r.t. y we get:

vyyy = −iω
(σ11

λ

)
yy

−
(
λ+ 2µ

λ
ux

)
yy

− wyyz (13)

and again from (2d) we also get

wzzz = −iω
(σ11

λ

)
zz
−
(
λ+ 2µ

λ
ux

)
zz

− vyzz (14)

This is then used to replace the O(h2) term on the right hand side of (7d). Note that we have
expressed uxxx, vyyy, wzzz in terms of σ11 and its derivatives, and so the modified version of (7d)
will involve only σ11 and u, v, w and their mixed derivatives.

We now repeat this procedure with equations (2e) and (2f), and modify the remaining equations
(7e) to (7i). Finally, substituting these expressions into Equations (7d) to (7i), we get

−iωσ11 = (λ+ 2µ)δxu+ λ(δyv + δzw) (15a)

+ αh2

[
iω

(
(λ+ 2µ)

( σ11

λ+ 2µ

)
xx

+ λ

((σ11

λ

)
yy

+
(σ11

λ

)
zz

))
+ (λ+ 2µ)

( λ

λ+ 2µ
(vy + wz)

)
xx

+ λ

((λ+ 2µ

λ
ux

)
yy

+
(λ+ 2µ

λ
ux

)
zz
+ vyzz + wyyz

)]
+O(h4)

−iωσ22 = (λ+ 2µ)δyv + λ(δxu+ δzw) (15b)

+ αh2

[
iω

(
(λ+ 2µ)

( σ22

λ+ 2µ

)
yy

+ λ
((σ22

λ

)
xx

+
(σ22

λ

)
zz

))
+ (λ+ 2µ)

( λ

λ+ 2µ
(ux + wz)

)
yy

+ λ

((λ+ 2µ

λ
vy

)
xx

+
(λ+ 2µ

λ
vy

)
zz
+ uxzz + wxxz

)]
+O(h4)
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−iωσ33 = (λ+ 2µ)δzw + λ(δxu+ δyv) (15c)

+ αh2

[
iω

(
(λ+ 2µ)

( σ33

λ+ 2µ

)
zz
+ λ

((σ33

λ

)
xx

+
(σ33

λ

)
yy

))
+ (λ+ 2µ)

( λ

λ+ 2µ
(ux + vy)

)
zz

+ λ

((λ+ 2µ

λ
wz

)
xx

+
(λ+ 2µ

λ
wz

)
yy

+ uxyy + vxxy

)]
+O(h4)

−iω
1

µ
σ12 = δyu+ δxv (15d)

+ αh2

[
iω

(( 1
µ
σ12

)
xx

+
( 1
µ
σ12

)
yy

)
+ uxxy + vxyy

]
+O(h4)

−iω
1

µ
σ13 = δzu+ δxw (15e)

+ αh2

[
iω

(( 1
µ
σ13

)
xx

+
( 1
µ
σ13

)
zz

)
+ uxxz + wxzz

]
+O(h4)

−iω
1

µ
σ23 = δzv + δyw+ (15f)

+ αh2

[
iω

(( 1
µ
σ23

)
yy

+
( 1
µ
σ23

)
zz

)
+ vyyz + wyzz

]
+O(h4)

The derivatives in the O(h2) terms are all replaced by second order central differences. Since
these are all mixed derivatives they can be computed on the compact stencil. At a boundary, we
specify Dirichlet boundary conditions based on Pilant’s solution (see next section).

3 Implementation details

3.1 The Acoustic case

This case is obtained when cs = 0 (see Eq. (3a)), from which it follows that µ = 0 and λ = ρc2p.
Setting µ = 0 in Eq. (2), we get:

σij = 0 for i ̸= j

σ ≜ σ11 = σ22 = σ33 =
−λ

iρω
(ux + vy + wz)

σx = −iρωu− F u

σy = −iρωv − F v

σz = −iρωw − Fw

∴ σxx + σyy + σzz = −iρω(ux + vy + wz)− F

= −iρω
iρω

−λ
σ − F,

9



where F = F u
x + F v

y + Fw
z

∴ ∆σ +
ρ2ω2

λ
σ = −F. (16a)

Eq. (16a) is the Helmholtz equation with the wavenumber k =
ρω√
λ

. The Green’s function

solution to this equation in n-dimensional space is the convolution

σ(x) =

∫
Rn

G(x− y)F (y)dy, (17)

where x and y are points in Rn and G is the Green’s function for Rn. In 3D, G is the following
function:

G(x) =
eik∥x∥

4π∥x∥
. (18)

For the acoustic case, we assume that the impact function F is the delta function at the point of
impact, so the integral in Eq. (17) reduces to the Green’s function G(x) (Eq. (18)).

For the boundary conditions, we added an extra layer of grid points on all sides of the domain.
We used two types of boundary conditions (BC): Dirichlet BC based on the Green function,
and absorbing boundary conditions (ABC) according to the “gradient method” introduced by
the authors in [11]. The gradient ABC was implemented by using both the extra layer and the
outermost layer of the original domain.

The “gradient method” (GM) is based on Sommerfeld’s radiation condition [27, §28]:

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0 , (19)

where u is the wavefield, r is the distance from a point source, r is unit vector pointing away
from the source, and ∂u

∂r
is the directional derivative of u in the radial direction. Note that in this

case, ∂u
∂r

= ∇u, where ∇u is the gradient of u. This led us in [11] to realize that in absorbing
boundary conditions, at any point p on the boundary, directional derivatives of u should be taken
in the direction of ∇u at p, regardless of the orientation of the boundary at p. We called this
approach the “Gradient Method” (GM).

An example of the application of GM to the Engquist-Majda (EM) is the following. The first
order EM is un − iku = 0, where n is the outward pointing normal to the boundary. The
application of GM to EM consists of changing n to g, where g is the unit vector in the direction
of the gradient of u at the boundary point. This gives us ug − iku = 0 as the equivalent GM
boundary condition.

Bayliss, Gunzberger and Turkel [1] developed a sequence of ABCs of increasing order. The
first order ABC of the series, called BGT1, is the following:

∂u

∂r
+

(
1

r
− ik

)
u = 0, (20)
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where r and r are the same as in (19). BGT was originally developed for a spherical domain
with a point of impact at the center, so r is also the gradient of u at the boundary. Hence,
according to the GM principle, the BGT ABCs can be used in any convex-shaped domain, with
the point of impact at any interior point.

For the acoustic case, we used the second order BGT, which is the following:

BGT2: urr + α(r)ur + β(r)u = 0, (21)

where
α(r) =

(
4

r
− 2ik

)
and β(r) =

(
2

r2
− k2 − 4ik

r

)
.

3.2 The elastic case

Pilant’s solution. Pilant [23, §7.4] (see case “Elastic Media – Point Force”) developed an exact
solution for the 3D case with a one-directional single point source of impact. Pilant’s solution
for an impact force in the z-direction (see [23, Eq. 7-88]) is

W =
−F (ω)

4πρω2

[
∇∇

(eikpR
R

ez −
eiksR

R
ez

)
− k2

s
eikpR

R
ez

]
, (22)

where W = (u, v, w), ez is the unit vector in the z direction (the direction of the impact), R
is the distance from the source of impact, F (ω) =

∫∞
−∞ f(t)eiωtdt, where f(t) is the force of

impact in the z direction at time t. We also assume this type of point source of impact, so in
the terminology of this paper, Pilant’s F (ω) is our Fw(x0, y0, z0), where (x0, y0, z0) is the point
source of impact. Note that since we assume that the force of impact is in the z direction, then
the terms F u and F v of equations (2a) and (2b) are zero.

Eq. (22) was expanded in [12, Eq. 45] to the following expressions for the displacements:

u =
Fw(x0, y0, z0)

4πρR5ω2
xz

[
(R2k2

p − 3− 3ikpR)e−ikpR − (R2k2
s − 3− 3iksR)e−iksR

]
(23a)

v =
Fw(x0, y0, z0)

4πρR5ω
yz

[
(R2k2

p − 3− 3ikpR)e−ikpR − (R2k2
s − 3− 3iksR)e−iksR

]
(23b)

w =
Fw(x0, y0, z0)

4πρR5ω

[
(x2 + y2 − 2z2)(e−ikpR − e−iksR) +(

z2R2k2
p + i(x2 + y2 − 2z2)Rkp

)
e−ikpR + (23c)(

(x2 + y2)R2k2
s − i(x2 + y2 − 2z2)Rks

)
e−iksR

]
As noted in [20, p. 1070], the displacements in (23) should be multiplied by −iω in order to
obtain the velocities. Clearly, Fw(x0, y0, z0) can be taken as a constant, which we assumed to
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be 109. Our purpose in this paper is to test the accuracy of the compact fourth order scheme, so
we applied Dirichlet boundary conditions taken from Pilant’s solution – Eq. (23).

3.3 Solution methods

For the elastic case, we used the block-parallel CARP-CG algorithm [9]. In previous work,
this algorithm was found to be very efficient on the Helmholtz equation with very high fre-
quencies [10], convection-dominated PDEs [9], and in general, on linear systems with large
off-diagonal elements and/or discontinuous coefficients [8]. CARP-CG is the parallel equiv-
alent of the Björck and Elfving’s CGMN algorithm [3]. It was also used in several previous
works on elasticity; see [14, 19, 20]. The following is a brief outline of CARP-CG.

CARP-CG is a CG acceleration of CARP (component-averaged row projections) [7], which is a
block-parallel extension of KACZ – the Kaczmarz algorithm [16]. KACZ is inherently sequen-
tial: starting from an arbitrary initial point, it sweeps through the equations by successively
projecting the current iterate towards the hyperplane defined by the next equation. The extent
of the projection is determined by the value of a relaxation parameter. It is well known that
KACZ is SOR (successive over-relaxation) on the normal equations system AATy=b, x=AT .
CARP divides the equations into blocks (which may overlap) and assigns each block to a pro-
cessor. Every variable shared by several blocks is copied to all processors whose assigned
block of equations contains that variable. The following two steps are then repeated until con-
vergence:

• Operating in parallel, each processor executes a KACZ sweep on the equations of its assigned
block. For each shared variable, the processor uses its copy of that variable.

• The new value of every shared variable is obtained by averaging all its copies, and it is then
distributed to the processors which share it.

For PDE problems defined over some domain, CARP is actually a form of domain decomposi-
tion, with blocks corresponding to subdomains. This way, shared variables are limited to grid
points at subdomain boundaries. It is shown in [7, 9] that in some superspace of the problem
space, CARP is actually KACZ with cyclic relaxation parameters (i.e., each equation has its
own fixed relaxation parameter). This provides a convenient theoretical proof of convergence,
and enables the CG acceleration of CARP as follows: by running CARP in a double (forward
and backward) sweep of the equations, one obtains a symmetric positive semi-definite iteration
matrix B (even if the original matrix is nonsymmetric). Thus, CG can be applied to B to obtain
CARP-CG. CARP-CG has also been implemented in the extensive PHIST solver toolkit [28].

For the acoustic case (µ = 0), we found that GMRES [25], with a restart value of 20 (see expla-
nation below), was more efficient than CARP-CG for frequencies 5, 10, and 20, and slightly less
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efficient than CARP-CG for f=30, so we used GMRES for all frequencies. The improved per-
formance of CARP-CG at high frequencies is not surprising as it was already observed in [10].

Explanation of restarted GMRES: given a linear system Ax = b and some initial estimate x0,
GMRES creates successively larger Krylov subspaces Kn= span{r0, Ar0, A2r0, . . . , A

n−1r0},
where r0 = b − Ax0. In order to avoid the space blowup created by GMRES, it is customary
to stop the process after some number of iterations n, and restart GMRES with the solution
estimate obtained after n iterations. This procedure is called GMRES(n), or GMRES with a
restart of n.

4 Experimental results

4.1 Evaluation methodology

Our model is similar to the one used by Li et al. in [20], with some differences: the main
difference is that our stencil is compact. Also, [20] uses a PML boundary condition, while we
use Dirichlet BC based on Pilant’s solution. We also assume a different number of grid points
per side. Li et al. [20] introduce a method of optimizing a non-compact stencil and present
profiles of the wave fields. Our approach concentrates on the new compact stencil, and besides
wavefields, we also provide a global error comparison compared with Pilant’s solution.

The domain consists of a 20003 meters cube, divided by a grid of 1403 grid points. An extra
grid point was added on each side for the BGT2 ABC (for the acoustic case) and the Dirichlet
boundary condition (for the elastic case). The impact function was simulated by setting a cube
of 8×8×8 grid points at the center of the domain, and setting Dirichlet boundary condition on
the outer surface of the cube, according to Eq. (23). For the acoustic case, we used the same
cube to simulate the impact function by setting the Green’s function on its boundaries. Note
that according to the staggered grid method shown in Fig. 1, the Dirichlet boundary condition
requires not only values on the outer surface of the small cube, but also values which are interior
and at a distance of h/2 from the outer surface. The same applies to the Dirichlet boundary
conditions on the outer boundary.

Other parameters were as follows:

• Wave speeds: elastic case — cp = 5000 m/s, cs = 2500 m/s;
acoustic case — cp = 2500 m/s, cs = 0.

• Density: ρ = 1000 kg/m3.

• The values of λ and µ are determined, in each case, from Eq. (3).

• Frequencies used in the experiments: f=5, 10, 20, 30 Hz.
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• Number of grid points per wavelength: there are two such numbers, Np and Ns determined
by cp and cs. Np = cpNx/(fL) and Ns = csNx/(fL), where Nx is number of grid points on
each side, and L = 2000 meters.

• The position of the point of impact is at the center. In the acoustic case, the impact is a 3D
delta function. In the elastic case, the impact is in the z-direction and its value is determined
by F ω(x0, y0, z0), which we set at 109

• In this paper, we use the following definition of the relative error: let x∗ be the vector of the
true solution (as given by Pilant’s solution in our case), and x′ is a calculated solution after
several iterations. Then, the relative error is defined as ∥x∗ − x′∥/∥x∗∥. In the tables of the
following section, the relative error was evaluated with σ11 for the acoustic case and w for the
elastic case.

There are extreme differences in the order of magnitude of the various variables, and these
differences cause numerical difficulties. To reduce this problem, we followed the method used
by He et al. [14, p. 7], in which the values of σij are divided by the scaling factor ρcp. After
some experimenting, we found that the scaling factor 1.5ρcp produced better results. Note that
the coefficients of the scaled σij have to be multiplied by the same scaling factor. In the acoustic
case, the impact function of the Helmholtz equation is taken as the delta function, so the values
of the variables are very much smaller than those of the elastic case, but we still need to use
the scaling factor 1.5ρcp (which is half the size of the factor in the elastic case) to avoid the
numerical problems.

4.2 The acoustic case

Summary of this case: we used the GMRES algorithm [25] with a restart value of 20, and
calculated the values of σ11 with two boundary conditions: Dirichlet boundary conditions based
on the Green’s function solution, and the Gradient Method ABC using BGT2 (21). Tests were
ran with frequencies 5, 10, 20 and 30 Hz, and the results were checked at regular intervals.

Table 1 shows the relative error and the number of iterations required to reach the best relative
error, for each frequency. It can be seen that the gradient ABC produced better results than the
Dirichlet BC, and at significantly fewer iterations.

Figures 2–4 show plots of three values, taken at various lines parallel to the x-axis, at frequency
f=20. The red plot shows the Green’s function solution, the green plot shows the solution with
Dirichlet boundary conditions, and the black plot shows the solution with the gradient ABC
(BGT2). The indices j and k are, respectively, the y and z values that determine the line. These
figures also show that the gradient ABC produced better results than the Dirichlet BC.
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Boundary condition freq.: f=5 f=10 f=20 f=30

Gradient ABC rel-err 1.12E-3 3.89E-4 5.30E-4 2.07E-3
(BGT2) no. it. 1500 1250 3000 3000

rel-err 1.57E-3 1.01E-3 1.42E-3 1.29E-3
Dirichlet BC

no. it. 8000 8000 6000 10000

Table 1: Runtime results for the acoustic case at all tested frequencies, showing relative error of
σ11 and number of iterations, for the two types of boundary conditions.

Figure 2: Acoustic case: j=43, k=64.
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Figure 3: Acoustic case: j=50, k=64.

Figure 4: Acoustic case: j=64, k=64.
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4.3 The elastic case

In this case, we used the CARP-CG algorithm [9], which produced much better results than
GMRES in this case. We calculated the values of u, v and w with Dirichlet boundary conditions
based on Pilant’s solution (23). Table 2 shows the best relative error results that were obtained
for frequencies 5, 10, 20 and 30. Note that Ns is the number of grid points per wavelength –
see Subsection 4.1. Also, the relative error in the following tables and figures is based only on
the values of w.

frequency: f=5 f=10 f=20 f=30

Ns 35 17.5 8.75 5.83

relative error 7.50E-3 2.74E-2 1.02E-1 2.41E-1

Table 2: Runtime results for the fourth-order elastic case at all tested frequencies on a grid of
1403, showing relative error.

We now compare the relative errors obtained by the 2nd-order and 4th-order schemes for dif-
ferent grid sizes and frequencies. In this comparison, we let the program run until the relative
error reached its lowest point. Tables 3 to 6, and corresponding Figures 5 to 8, show the results
for frequencies f=5, f=10, f = 20 and f=30.

grid 703 803 903 1003 1103 1203

Ns 17.50 20.00 22.50 25.00 27.50 30.00

2nd order 6.00E-2 5.52E-2 5.58E-2 5.46E-2 5.14E-2 4.71E-2
4th order 3.57E-2 3.27E-2 3.26E-2 1.42E-2 6.20E-3 4.20E-3

Table 3: Relative errors obtained with the 2nd- and 4th-order schemes for different grid sizes,
for frequency f=5.

grid 703 803 903 1003 1103 1203 1303 1403

Ns 8.75 10.00 11.25 12.50 13.75 15.00 16.25 17.50

2nd order 4.59E-1 3.78E-1 2.97E-1 2.35E-1 1.91E-1 1.52E-1 1.26E-1 1.10E-1
4th order 1.29E-1 1.21E-1 1.23E-1 1.06E-1 8.22E-2 5.37E-2 3.74E-2 2.74E-2

Table 4: Relative errors obtained with the 2nd- and 4th-order schemes for different grid sizes,
for frequency f=10.
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Figure 5: Plots of the relative error for different grid sizes, for the 2nd- and 4th-order schemes,
for frequency f=5.

Figure 6: Plots of the relative error for different grid sizes, for the 2nd- and 4th-order schemes,
for frequency f=10.
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grid 703 803 903 1003 1103 1203 1303 1403 1503 1603

Ns 4.38 5.00 5.63 6.25 6.88 7.50 8.13 8.75 9.375 10

2nd order 8.42E-1 8.05E-1 6.64E-1 6.20E-1 6.47E-1 6.65E-1 6.55E-1 6.20E-1 5.71E-1 5.17E-1
4th order 3.27E-1 3.21E-1 2.31E-1 1.42E-1 1.02E-1 1.02E-1 1.02E-1 1.02E-1 9.40E-2 9.25E-2

Table 5: Relative errors obtained with the 2nd- and 4th-order schemes for different grid sizes,
for frequency f=20.

Figure 7: Plots of the relative error with different grid sizes, for the 2nd- and 4th-order schemes,
for frequency f=20.
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grid 703 803 903 1003 1103 1203 1303 1403 1503 1603

Ns 2.91 3.33 3.75 4.17 4.58 5.00 5.42 5.83 6.25 6.67

2nd order 9.96E-1 9.36E-1 9.65E-1 9.41E-1 9.14E-1 8.77E-1 8.11E-1 7.54E-1 7.35E-1 7.51E-1
4th order 7.63E-1 7.04E-1 5.23E-1 4.23E-1 4.34E-1 4.06E-1 3.25E-1 2.41E-1 1.74E-1 1.28E-1

Table 6: Relative errors obtained with the 2nd- and 4th-order schemes for different grid sizes,
for frequency f=30.

Figure 8: Plots of the relative error with different grid sizes, for the 2nd- and 4th-order schemes,
for frequency f=30.

These results show that the fourth order scheme is significantly better than the second order
scheme. E.g., for f =10, the accuracy obtained with the 2nd-order scheme with a grid of size
1303 is achieved by the 4th-order scheme with a grid of size 703, which is only 15.6% of the
1303-grid. Similar results can be seen for f=30, but for f=5 and f=20, the 2nd-order scheme
does not reach any of the results obtained by the 4th-order scheme (at the grid sizes that were
tested). It can also be seen from the above tables that the most significant factor affecting the
accuracy is the number of grid points per wavelength – Ns.
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Figures 9–14 show plots of two values, taken at various lines parallel to the x-axis of the do-
main: Pilant’s solution and the computational results obtained with Dirichlet boundary condi-
tion (based on Pilant’s solution). The indices j and k are, respectively, the y and z values that
determine the line. Note that the first two plots show the values of u, and the others show the
values of w. The computational results show a good agreement with Pilant’s solution, with a
small exception at the center of Figure 11.

Figure 9: elastic case for u : j=51, k=65.
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Figure 10: elastic case for u : j=65, k=65.

Figure 11: elastic case for w : j=9, k=65.
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Figure 12: elastic case for w : j=37, k=65.

Figure 13: elastic case for w : j=51, k=65.
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Figure 14: elastic case for w : j=65, k=65.
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5 Conclusions

We presented a compact fourth order scheme for the elastic wave equation in the frequency
domain, using the first order velocity-stress formulation. The new scheme was discretized on
a staggered grid, assuming a homogeneous medium. We presented results for both the acous-
tic and the elastic cases. For the boundary conditions of the acoustic case, we used both the
Dirichlet BC and the second order BGT boundary condition of [1] (which is also suitable for
any convex domain according to the Gradient Method of [11]); the BGT boundary condition
provided better computational results and at fewer iterations.

For the elastic case, we used Dirichlet BC based on Pilant’s solution [23, §7.4] and expanded in
[12, 20]. We showed that the fourth order scheme shows good agreement with Pilant’s solution
and provides significantly better results than the second order scheme.

Future work on this topic should implement our scheme for heterogeneous media, compare
its performance with non-compact fourth order schemes, and test its performance on various
geophysical models, using PML boundary conditions. Another topic would be to implement
the optimization introduced in [20] to our scheme.
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