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SUMMARY
3D frequency-domain full waveform inversion relies on being able to efficiently solve the 3D Helmholtz
equation. Iterative methods require sophisticated preconditioners because the Helmholtz matrix is typically
indefinite. We review a preconditioning technique that is based on row-projections. Notable advantages of
this preconditioner over existing ones are that it has low algorithmic complexity, is easily parallelizable
and extendable to time-harmonic vector equations.



3D frequency-domain full waveform inversion relies on being able to efficiently solve the 3D Helmholtz
equation. A direct factorization of the matrix –as is commonly done for 2D waveform inversion– is
infeasible because of the huge memory requirements, although some progress has been recently made in
this area (Wang et al., 2011). Iterative methods have a small memory imprint, but require sophisticated
preconditioners because the matrix is indefinite. Over the past years, several preconditioners have been
proposed in the literature, and we briefly discuss a few. A good overview of classical preconditioning
techniques, such as ILU and Schwarz is given by Osei-Kuffuor and Saad (2010). Sourbier et al. (2011)
propose a hybrid method based on these techniques. Preconditioners based on the shifted Laplacian, first
proposed by Bayliss et al. (1983), were further developed by Erlangga et al. (2004) who use a multi-
grid method in conjunction with a complex shift; Riyanti et al. (2007) discuss a parallelization. Stolk
(2010); Haber and MacLachlan (2011) propose preconditioners that are based on asymptotic solutions
of the Helmholtz equation. Recently, Engquist (2011) proposed a ‘sweeping’ preconditioner. All these
methods are generally used in conjunction with iterative methods like GMRES or Bi-CG(STAB).
In this paper we review a preconditioning technique that is particularly appealing because of its sim-
plicity. The main idea is that any system of equations can be transformed into an equivalent, positive
semi-definite system via KACZMARZ row-projections. The resulting system can then be solved effi-
ciently by the Conjugate Gradient (CG) algorithm. The original method is due to Björck and Elfving
(1979), who dubbed the method CGMN. The problem with this approach is that KACZMARZ is in-
herently sequential. Gordon and Gordon (2005) proposed the CARP algorithm, which is a domain
decomposition-based approach to parallelizing KACZMARZ, with data transfer between processors oc-
curring at the subdomain boundaries only. Basically, CARP operates by first partitioning the system of
equations into blocks (which may overlap) and repeats the following two operations until convergence:
i) KACZMARZ row projections are applied to the equations in each block, independently and in par-
allel; ii) any variable shared by two or more blocks is updated to be the average of its values in the
different blocks. Gordon and Gordon (2010) propose a CG acceleration of CARP, which can be seen as
a parallel extension of CGMN. CARP-CG was shown to be particularly useful for problems in which
the system matrix has very large off-diagonal elements, including cases with discontinuous coefficients;
see Gordon and Gordon (2009, 2010). The main advantages of this preconditioner over existing ones
are: i) the preconditioner is independent of the input matrix; ii) the algorithm is embarassingly parallel,
and iii) The costs per iteration are very low.
The paper is organized as follows. First, we briefly review the CARP-CG algorithm. We present some
numerical experiments in 1D to study the behaviour of the preconditioned system in terms of the eigen-
values. Numerical examples on the 3D SEG/EAGE salt model show how CARP-CG scales with fre-
quency. Finally, we draw conclusions and point out directions for future research.

The CARP-CG algorithm

The Kaczmarz method solves a system of equations, Au = b, by cyclically projecting the iterate onto
rows of the matrix (Kaczmarz, 1937). One sweep through the whole matrix is then given by:
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||22. A forward sweep followed by a backward sweep (hereafter referred to as a
double sweep) yields: u := Qu+Rb, where Q = Q0Q1 . . .Q
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are all symmetric rank 1 matrices with eigenvalues 1�w
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. Hence, Q is symmetric
and has eigenvalues 2 [�1,1]. We may now transform the original system of equations to a symmetric
positive semi-definite system: (I�Q)u = Rb.
We never have to explicitly form the matrices Q and R. Instead, we can calculate the action of these
matrices using Algorithm 1 as (I�Q)u+Rb = DKSWP(A,u,b,w). The CARP-CG algorithm applies
CG to solve this equivalent system.
For a k-point stencil, a matrix-vector multiplication with the matrix I�Q via the DKSWP algorithm
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requires (4k +2)N flops (compared to kN for the original matrix A).
In practice, we decompose the domain and perform the row-projections for the blocks in parallel. After a
double sweep the gridpoints near the boundary are communicated and averaged. A detailed description
is given in Gordon and Gordon (2010).

Numerical study in 1D

We study the effects of the discussed preconditioning technique on the 1D Helmholtz equation on the
domain [0,1]. We use a 3-point stencil with Dirichlet boundary conditions. The wavenumber is given
by k(x) = k0 p(x). The profile p is depicted in figure 1 (a). The gridspacing is varied with k0 to ensure
a minimum of 10 gridpoints per wavelength. The solution for k0 = 100 and a pointsource at x = 1

2
is depicted in figure 1 (b). We compare solving the following three equivalent systems with CG: i)

The normal equations: A

T
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where W = diag(w),w
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||2 and iii) the preconditioned system (I�Q)u = Rb for various values
of the relaxation parameter w . The eigenvalues of all three matrices are depicted in figure 1 (c). The
eigenvalues of (I�Q) are increasingly more clustered and move away from zero for larger values of
the relaxation parameter, which is advantageous for iterative solution methods. The number of CG
iterations needed to reach a fixed tolerance for various k0 is shown in figure 1 (d). The preconditioner
significantly lowers the number of iterations needed. However, the number of iterations still increases
with the wavenumber.

Numerical example in 3D

We calculate wavefields in the SEG/EAGE salt model, depicted in figure 2 (a). The Helmholtz equation
is discretized using a 7-point discretization with first order absorbing boundary conditions with grid
spacings of h = 20, 40, 80 and 160 m. We use a point source in the center of the z = 0 plane. The
number of complex variables variesfrom 195,075 to 95,964,960. The total domain is decomposed in 12
horizontal layers and we use a fixed relaxation parameter w = 1.5. All the results are calculated using a
C/MPICH2 implementation of the CARP-CG algorithm on a 12-node SuperMicro cluster with two Intel
Xeon E5520 quad CPUs running at 2.27 GHz and 8 GB memory per node, connected by an Infiniband
network. For the experiments we used only one core per node. The gridspacing is varied with frequency
to ensure a minimum of 7.5 gridpoints per wavelength. The wavefield at 5 Hz is depicted in figure 2 (b).
The convergence histories for different frequencies are depicted in figure 3. Note that the convergence
is extremely regular. Iteration counts and timings for different frequencies and tolerances are shown in
table 1.

Conclusion

CARP-preconditioning can substantially reduce the number of CG iterations needed compared to solv-
ing the normal equations. While this can still lead to a large number of iterations, the iterations them-
selves are very cheap. Success of this approach in practice hinges on an efficient implementation of the
algorithm, since CPU time is the critical factor in practice, not the number of iterations.
The advantage of this approach over existing multi-grid-based approaches are: i) its algorithmic sim-
plicity, ii) its parallelism and good scalability and iii) its independence of the input matrix. The latter
implies that we do not need to re-design the preconditioner if we change the physics (e.g., use an elastic
wave equation). Preliminary bechmarking results (Gordon and Gordon, 2012) suggest that CARP-CG
can outperform a multi-grid preconditioner based on the shifted Laplacian.
Future research will be aimed at studying the influence of the relaxation parameter and the choice of
domain layout as well as comparing CARP-CG to other preconditioners. Higher order schemes will
also be considered. To facilitate benchmarking, the code used for the 3D example can be downloaded
from http://cs.haifa.ac.il/ gordon/soft.html.
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Figure 1 (a) wavenumber k(x) = 100p(x), (b) solution u(x), (c) eigenvalues of corresponding matrices.

The eigenvalues of the normal equations and the normalized normal equations are divided by their

maximum for display purposes. (d) number of CG iterations required to reach a given tolerance.

(a) (b)

Figure 2 velocity model and wavefield at 5hz.
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Figure 3 Convergence history for different frequencies for a fixed number of gridpoints per wavelength.
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e = 10�3 e = 10�5

f N iterations time (s) iterations time (s)
1.25 195075 180 1.34 666 4.98
2.5 1513733 267 12.4 1092 50
5 11995620 443 118.7 1758 471
10 95964960 709 1418 3157 6314

Table 1 Iteration counts and timings for different frequencies and tolerances for a minimum of 7.5

gridpoints per wavelength. N denotes the total number of complex variables.

Algorithm 1 DKSWP(A,u,b,w)
forward sweep

for i = 0 to N�1 do

u := u+w
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end for

backward sweep

for i = N�1 to 0 do

u := u+w
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end for

return u
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