
Published in Numerical Algorithms 77:4, 2018, 1141–1157
https://link.springer.com/article/10.1007/s11075-017-0356-3

A derandomization approach to recovering bandlimited
signals across a wide range of random sampling rates

Dan Gordon∗

Abstract

Reconstructing bandlimited functions from random sampling is an important problem in
signal processing. Strohmer and Vershynin obtained good results for this problem by using
a randomized version of the Kaczmarz algorithm (RK) and assigning to every equation a
probability weight proportional to the average distance of the sample from its two nearest
neighbors. However, their results are valid only for moderate to high sampling rates; in
practice, it may not always be possible to obtain many samples. Experiments show that
the number of projections required by RK and other Kaczmarz variants rises seemingly
exponentially when the equations/variables ratio (EVR) falls below 5. CGMN, which is a
CG acceleration of Kaczmarz, provides very good results for low values of EVR and it is
much better than CGNR and CGNE. A derandomization method, based on an extension
of the bit-reversal permutation, is combined with the weights and shown to improve the
performance of CGMN and the regular (cyclic) Kaczmarz, which even outperforms RK.
A byproduct of our results is the finding that signals composed mainly of high-frequency
components are easier to recover.

Keywords. Bandlimited functions; bit-reversal; CGMN; derandomization; extended bit-reversal;
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1 Introduction

Recovery of bandlimited functions from random sampling is an important problem in signal
processing; see, for example [23, 28, 29]. One of the iterative approaches that has been used is
the Kaczmarz algorithm (KACZ) [21], which is a very well known solution method for linear
systems in various applications, such as computerized tomography (CT), where it also known
as ART (algebraic reconstruction technique) [18]. For additional background on iterative algo-
rithms in signal processing, see [3, §7].

KACZ is best described by its simple geometric explanation: starting from some selected point
in the solution space Rn or Cn, the current iterate is repeatedly projected orthogonally onto the

∗Dept. of Computer Science, University of Haifa, Haifa 34988, Israel. Email: gordon@cs.haifa.ac.il

1



hyperplane defined by one of the system’s equations. Usually, the projections follow cyclically
the given order of the linear system. It is also known that for some applications, a random
selection of the equations can provide better results than the cyclic order [4, 19].

We consider an m×n linear system
Ax = b, (1)

where b=(b1, . . . ,bm)
T , and the jth row of A is denoted by a j. Denote by x0,x1, . . . the sequence

of KACZ iterates, and suppose that xk+1 is obtained from xk by projecting xk onto the j th
hyperplane, i.e.,

xk+1 = xk +λ
b j−〈a j,xk〉
‖a j‖2

2
a j, (2)

where 0 < λ < 2 is a relaxation parameter. We can save some computation time by initially
dividing each equation 〈a j,x〉= b j by ‖a j‖2, thus avoiding the division by ‖a j‖2

2 at every step;
this is sometimes called normalizing the equations.

Strohmer and Vershynin [28] consider a randomized version of KACZ, called RK, where equa-
tion j is selected with probability proportional to ‖a j‖2

2. They prove that RK converges at an
exponential rate by estimating the expected error after k iterations in terms of the scaled condi-
tion number of A [9] κ(A). This result is applied to the problem of reconstructing bandlimited
signals from random sampling. Every sample provides one equation, and, based on a concept
of Feichtinger and Gröchenig [11], the equation is assigned a probability weight that is propor-
tional to the average distance of the sample from its two nearest neighbors. For convenience,
we refer to these weights as the FG-weights. In one example in [28], RK is applied to a system
with m = 700 equations and n = 101 variables: every equation is multiplied by the square root
of its corresponding weight, and in RK, the equation is selected with probability proportional
to its weight. Very good results were obtained this way.

However, it is clear from the geometric nature of KACZ and from Eq. (2) that any nonzero
scaling of the equations has no effect, as the scaling factor cancels out. This was pointed out by
Censor, Herman and Jiang [6]. It follows that the good results obtained with RK are due to the
random selection according to the FG-weights.

Several authors extended [28] in various directions. Needell [25] extended the results to mod-
eling noise in the sample readings, and Eldar and Needell [10] used dimension reduction tech-
niques to speed up the calculations on strongly overdetermined systems. More recently, Liu
and Wright [22] presented an accelerated RK algorithm (ARK), based on a method due to Nes-
terov [26].

In this paper we enlarge on this topic and study the application of several Kaczmarz-based
methods to the problem of reconstructing bandlimited signals from random sampling for a wide
range of the equations/variables ratio (EVR). We consider both cyclic and random versions
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of Kaczmarz, as well as three CG methods, including CGMN [1]. For cyclic Kaczmarz and
CGMN, we introduce a “shuffled” order of the equations that is based on an extension of the
well-known bit-reversal permutation; this is referred to as EBR (extended bit-reversal). We also
augment EBR with some of the equations with the largest FG-weights (EBRW) and obtain even
better results.

Our main results can be summarized as follows:
1. For EVR < 5, the number of projections required by all Kaczmarz variants to achieve a

given relative residual rises very steeply, thus rendering these methods virtually useless
below this threshold.

2. For low (∼2) to moderate (6-6.5) values of EVR, CGMN, CGNR and CGNE are the only
viable alternatives. CGMN is much more efficient that CGNR and CGNE, particularly
when applied to the EBRW-ordered equations.

3. For moderate to high values of EVR, the original (cyclic) Kaczmarz on the EBRW-ordered
equations achieves the best results.

4. The worst mode for (cyclic) Kaczmarz and CGMN is to sort the equations according to
the values of their corresponding samples. This problem will be explained in §2.1.

5. It is easier to recover a signal that is composed mainly of high-frequency components than
a signal with the same number of components but at lower frequencies.

6. The “accelerated RK” (ARK) [22] exhibits a typical Kaczmarz-based behavior, but it is
not competitive with the other Kaczmarz variants on this problem.

7. A randomized subset version of the Cimmino algorithm [7] also behaves similarly to the
Kaczmarz variants, but it is also not competitive.

The following sections enlarge on the various solution methods that are used and set up the
problem to be solved. This is followed by the experimental results and the conclusions.

2 Algorithms and derandomization

2.1 Kaczmarz and variants

As mentioned previously, the original Kaczmarz algorithm starts from some selected point and
successively projects the current iterate onto the hyperplane determined by the next equation, in
cyclic order. To avoid confusion between the various Kaczmarz variants, we shall refer to this
as C-KACZ (cyclic Kaczmarz). In [28, §4.1] it is mentioned that the sample points are sorted
in ascending order after they are selected. This means that we can now have two orders of the
equations: the random order corresponding to the (original) random order of the samples, and
the order corresponding to the sorted order of the samples.
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C-KACZ on the sorted equations behaves very differently from all other Kaczmarz variants,
due to the following well known problem, which was also noted by Mayer in [24]. Consider the
simple case shown in Fig. 1: two equations in two variables, with a very small angle between
their normals. Regardless of the initial starting point, the sequence of iterates quickly settles into
a pattern that converges to the solution very slowly. In the case of the equations sorted according
to their corresponding samples, the values of two successive samples are close, resulting in
successive equations with a small angle between their normals. So, the more samples we have,
the smaller the angles between successive hyperplanes. We shall see the effect of this on the
behavior of C-KACZ on the sorted equations.

initial point

Figure 1: Successive Kaczmarz projections between two lines with a small angle between them.

We will use the generic term R-KACZ for randomized Kaczmarz, of which we have two ver-
sions: R-KACZ-SR, in which the equations are selected with simple randomization, and R-
KACZ-FG, where equations are selected according to the FG-weights.

2.2 CG methods

The Conjugate Gradients algorithm (CG) [20] and its variants, as well as other Krylov sub-
space methods, are very well known and used extensively in numerical computations. For
non-symmetric matrices, the CGNR and CGNE methods can be used; see [27]. CGNR is the
application of CG to the system A∗Ax = A∗b, where A∗ is the conjugate transpose of A. CGNR
is also known as CGLS. Also, CGNE is the application of CG to the system AA∗y = b, x = A∗y;
note that Kaczmarz is the application of SOR (successive over-relaxation) to the latter sys-
tem [1].

Since the equations are normalized for the efficiency of the Kaczmarz methods, CGNR and
CGNE were also applied to the normalized equations. It turns out that CGNR on the normalized
equations is actually a CG acceleration of the Cimmino algorithm [7], which is also a projection
technique; this was pointed out in [15, p. 30]. It has also been shown in [15] and related works
that CGNR on the normalized equations is much more efficient than CGNR by itself when the
equations are ill-conditioned due to having many large off-diagonal elements, and/or in the case
of discontinuous coefficients.
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In a landmark paper, Björck and Elfving [1] developed a CG acceleration of Kaczmarz, called
CGMN. Briefly, CGMN can be explained as follows: by applying C-KACZ once to the system
of equations, followed by applying it to the equations in reverse order, one obtains a symmetric
and positive semi-definite iteration matrix, which we denote by B. CGMN is the application of
CG to a certain derived linear system with the matrix B. However, B is not computed; instead,
matrix-vector computations with B are done by running Kaczmarz forward and backward on
the system of equations. CGMN has been used very successfully on linear systems derived
from convection dominated partial differential equations (PDEs); see [14] and its references.

For huge problems which require parallel processing, there is also a block-parallel version of
CGMN, called CARP-CG [16]. CARP-CG is a CG acceleration of CARP [13], which is a
block-parallel version of the Kaczmarz algorithm. CARP and CARP-CG were developed as a
type of domain decomposition technique for the solution of linear systems derived from PDEs.
CGMN and CARP-CG combine the inherent robustness of Kaczmarz with the efficiency of
CG. More relevant to signal processing is the fact that CARP-CG was found to be particularly
adept at solving the difficult numerical problem of the Helmholtz equation at high frequencies
– see [17] and its references. CARP is also a “string-averaging” technique according to the
general definition of this term in [5]. However, there is no actual averaging of intermediate
results in CARP; instead, partial results in different subdomains are combined by averaging
only variables that belong to two or more subdomains.

2.3 Derandomization: the extended bit-reversal permutation

If we want to accelerate KACZ using CGMN, we must use some cyclic order of the equations.
The sorted (according to the samples) order is not suitable due to the small angles between
successive hyperplanes. We can use the original random order of the samples, but this does not
necessarily eliminate all the problematic cases, especially when the number of samples is large.
We therefore introduce a certain “shuffling” order and apply it to the sorted equations. An ideal
shuffle would be the bit-reversal permutation, which is well-known in the signal processing field
as it is implicit in the recursive FFT (fast Fourier transform) [8]. Consider the sequence of num-
bers 0,1, . . . ,7, and suppose we change the position of every number to the position obtained
when its base-2 representation is reversed. E.g., the number 3, whose binary representation is
011, is moved to the position 6, whose binary representation is 110. We then get the sequence
0,4,2,6,1,5,3,7. This way, adjacent numbers are separated. For another reordering approach
to C-KACZ, see [18, p. 209].

The bit-reversal permutation is defined only when the size m of the sequence is a power of 2,
so in order to use it on arbitrarily-sized sequences, we extended it to allow sequences of any
size. We call this the “extended bit-reversal” (EBR) permutation. This should not be confused
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with the term “generalized bit-reversal”, which refers to the use of other radix bases, and also to
mixed radix representations. EBR operates as follows: it is first applied recursively to the lower
half of the sequence, and the positions the elements are doubled. Then, vacant positions are
filled with the rest of the elements. For sequences of odd length, the middle element is placed
at the center and the other elements skip over the central position. The following pseudo-code
details these operations.

begin algorithm EBR
EBR(array a[·], size n) // recursive routine
// Action: a[0] · · ·a[n−1] are filled with the numbers
// 0, . . . ,n−1, ordered by the EBR permutation
if (n = 1) a[0] := 0 ; return
k := bn/2c
// define a shift operator on indices to skip the central position when n is odd:
define S(i) = (if (i < k) then i else i+1)
EBR(a[·], k) // recursive call with half the array size
if (n is even)

for (i = k−1,k−2, . . . ,1) // double the positions of the recursive result
a[2i] := a[i] ; i := i−1

for (i = 1,3, . . . ,n−1) // fill the empty spaces
a[i] := a[i−1]+ k ; i := i+2

else // n is odd – use the shift operator S(i)

for (i = k−1,k−2, . . . ,1) // double the positions of the recursive result
a[S(2i)] := a[i] ; i := i−1

for (i = 1,3, . . . ,n−2) // fill the empty spaces
a[S(i)] := a[S(i−1)]+ k+1 ; i := i+2

a[k] := k // place the middle number in the central position
return

end algorithm EBR

Note that the above formulation works on sequences starting from 0. Since the recursion is only
done on half the array, the complexity of EBR is linear in n. When n is a power of 2, the result
is the standard bit-reversal permutation. EBR separates adjacent elements quite well: it can be
shown that for k ≥ 2 and 2k ≤ n < 2k+1, adjacent elements in a sequence of length n will be
separated in the permuted sequence by at least 2k−2 positions.

By applying EBR to the equations sorted according to the samples, we avoid the problematic
adjacency of equations with a small angle between their normals. However, using only the
EBR-shuffled equations ignores the advantage of utilizing the FG-weights. We therefore added
to the m EBR-shuffled equations a fraction 0 < W < 1 of the equations with the largest FG-
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weights. Based on our experiments, we set W = min(0.2,n/m) and added k = bWmc equations,
so the total number of equations was m+ k. Finding the k largest weights can be done in linear
time by first finding the kth largest weight (wk) in linear time using the well-known selection
algorithm of Blum et al. [2], and then finding k− 1 weights that are larger than wk. The k

equations corresponding to these weights are then appended to the list of the EBR-shuffled
equations. The combined list, called the EBRW-ordered equations, will be used with C-KACZ
and CGMN.

2.4 Other tested methods

Liu and Wright [22] present an acceleration of RK, called ARK. As mentioned in the Introduc-
tion, this method uses an acceleration technique of Nesterov [26] to speed up RK. In [22, §6.3]
the authors write that they do not consider the case m� n because all methods converge rapidly
on such cases. However, we also implemented this method for comparison, together with an
FG-weighted version (ARK-FG).

The above-mentioned Cimmino algorithm [7], which we will denote by CIMM, is also based
on orthogonal projections. However, instead of sequential projections, all the projections are
done from the current iterate and averaged to form the next iterate. Assuming the equations
have been normalized, a typical step of CIMM is the following:

xk+1 = xk +
λ

m

m

∑
j=1

(
b j−〈a j,xk〉a j

)
, (3)

where λ > 0 is a relaxation parameter. It was mentioned earlier that CGNR, applied to the
normal equations, is a CG acceleration of CIMM; however, λ cancels out in this derivation.

In the present problem, there are many pairs of hyperplanes with very small angles between
their normals, and this requires a very large value for λ . An example can be seen in Fig. 2
below, which shows two lines, L1,L2 forming a small angle, and a point x1 between them. x1 is
projected orthogonally towards the lines with a large value of λ , forming the two points y1,y2,
whose average x2 is the next iterate, which is also the intersection of L1 and L2. In the general
case, there is always an optimal value of λ which provides the best rate of convergence.
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Figure 2: One step of CIMM with a large relaxation parameter produces the solution.
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We have implemented a randomized version of CIMM, called R-CIMM, which operates as
follows on the normalized system (1):

begin algorithm R-CIMM
select the following 3 items:

an integer 1≤ s≤ m, a relaxation parameter λ , a starting point x0.
repeat for k = 0,1,2, . . . until convergence:

randomly select a subset S⊆ {1, . . . ,m} of size s.

set xk+1 = xk +
λ

s ∑
j∈S

(
b j−〈a j,xk〉a j

)
.

end algorithm R-CIMM

For the problem considered in this paper, the random selection was made according to the
FG-weights, and the resulting algorithm is denoted by R-CIMM-FG. Note that for s = 1, R-
CIMM-FG is identical to R-KACZ-FG.

3 Experimental results

3.1 Setup of the experiments

We consider the experimental problem set out in [28, §4.1]: A bandlimited function f (t) is
known to be of the form

f (t) =
r

∑
`=−r

x`e2πi`t (4)

with x` ∈ C. r is assumed to be known, and we are given the values of f (t j) for t j ∈ R, j =

1, . . . ,m, and m≥ n, where n = 2r+1. Our problem is to determine x1, . . . ,xn.

In many practical cases, the samples are not given uniformly randomly, so the sampling is
usually called “irregular sampling”. However, for purposes of comparison, our experiments
followed the methodology of [28, p. 270], in which the samples were selected uniformly ran-
domly. Let t1, . . . , tm be the random samples selected uniformly from the interval [0, 1]. We
denote the complex elements f (t j) as f (t j) = u j + iv j, and select u j and v j uniformly randomly
from [−1,1]. Thus, for each 1≤ j≤m, we get one complex equation in the variables x1, . . . ,xn,
with the RHS being the known value of f (t j). We assume that the system of equations is now
as given by Eq. (1).

The FG-weights associated with the samples are defined as follows. Assume that the samples
are sorted in increasing order, so that the order t1, . . . , tm is the actual order of the samples on
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the real line. The FG-weights w j associated with t j for 1≤ j ≤ m are then defined by:

w1 = t1 +(t2− t1)/2,

wm = 1− tm +(tm− tm−1)/2, (5)

w j = (t j+1− t j−1)/2, for 1 < j < m.

w j can be viewed as a measure of the “isolation” of t j from its nearest neighbors, so the random
selection of the equations according to the FG-weights means that the more isolated a sample
is, the more likely the corresponding equation will be used in the R-KACZ-FG process.

3.2 Main results

Similarly to the experiment of [28], we start with the same number of variables – 101. However,
whereas [28] considered only the case of 700 equations, we expand the range from 202 equa-
tions to 1500 equations, and show the number of projections required by the Kaczmarz-based
methods (including CGMN) to reach a relative residual of 10−14. This is shown in Fig. 3. All
the points on the plots are obtained from the average of at least 100 experiments. Not shown in
the figure is the plot of C-KACZ on the sorted equations; its lowest point is at 500 equations,
where it takes an average of 58,230 projections to reach the relative residual goal. The plots start
at 202 equations because convergence to the required goal is problematic with fewer equations.

Generally, we can see from Fig. 3 that the Kaczmarz variants show a very steep increase in the
number of projections below 500 equations, whereas CGMN (except for the sorted equations
case) handles this range quite well. It can be seen that there are three ranges of data:
• the low range, which is handled best by CGMN on the EBRW-ordered equations;
• a small central region around 600 equations in which three methods produce similar re-

sults, and two KACZ methods overtake CGMN on the EBRW-ordered equations;
• the high range, which is handled best by C-KACZ on the EBRW-ordered equations.

The reason for these three ranges is the interplay of the various factors affecting the rate of
convergence. At the low range, the CG acceleration of Kaczmarz is the most effective, with
the EBRW-ordering giving CGMN an edge over the random ordering of the equations. The
significance of the FG-weights is most effective at the low and middle ranges.

However, as the number of equations increases, the samples become more dense, and this has
two effects. Firstly, samples generally become less and less “isolated”, thus reducing the effect
of the FG-weights. Secondly, the problematic issue of equations with small angles between the
normals of their hyperplanes becomes more severe, thereby giving an advantage to shuffling
methods that avoid the proximity of such pairs of equations. So, at some point, C-KACZ on
the EBRW-ordered equations takes the lead. Note that by selecting W = min(0.2,n/m), we add
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Figure 3: Plot of no. of projections to obtain a relative residual of at least 10−14 vs. no. of
equations, for 101 variables. C-KACZ is cyclic Kaczmarz, R-KACZ is randomized Kaczmarz.

20% to the number of equations for EVR<5, but starting from EVR=5, the number of additional
equations decreases according to the diminishing significance of the FG-weights.

The reason why C-KACZ overtakes CGMN on the EBRW-ordered equations at some point is
the following: CGMN requires one double KACZ sweep to initialize the CG process, and then,
every CG iteration also requires a double sweep. However, C-KACZ does not need an initial
double sweep and it can also stop with an odd number of sweeps.

Consider the odd behavior of CGMN on the sorted equations: the number of projections de-
creases and then increases. This is due to the fact that at low EVR values, the small angles
between equation normals are not yet so effective, but as the number of equations (and sam-
ples) increases, the effect of the many adjacent small angles becomes detrimental for CGMN,
and even more so for C-KACZ.

The results pose an intriguing problem: what is the reason for the sudden steep rise in the num-
ber of projections required by the Kaczmarz variants below 500 equations? This rise actually
starts somewhere between 500 and 800 equations, depending on the particular variant of Kacz-
marz being used. It is tempting to conjecture that the problem lies with the high-frequency
components, but the following experiments indicate the opposite. We repeated the main exper-
iments with the same number of equations (101), but now instead of frequencies in the range
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−50≤ k ≤ 50, we set k ∈ {0,±50,±51, . . . ,±100}. The results, shown in Fig. 4, indicate that
now, the Kaczmarz variants can handle systems with less than 500 equations, and they also con-
verge much faster than previously on strongly overdetermined systems. However, the relative
performance of the different methods is similar to the previous cases.
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Figure 4: Plot of no. of projections to achieve a relative residual of 1.E-14 on a system with 101
equations with mostly high-frequency components, using randomized KACZ with FG-weights,
cyclic KACZ and CGMN on the EBRW-ordered equations, and CGNR/CGNE.

3.3 Supplementary experiments

Fig. 5 shows the results for r = 100, i.e., the number of equations is 201. We can see that the
relative behavior of the different methods is essentially similar to the case shown in Fig. 3.

Fig. 6 compares the three CG algorithms, namely, CGMN on the EBRW-ordered equations,
CGNR and CGNE. The latter two methods were ran on the normalized equations. The results
of the ARK method of Liu and Wright [22] are also shown, together with an FG-weighted
version of ARK (ARK-FG). The figure also shows the performance of the randomized Cimmino
method, with a subset size equal to bm/4c.

To compare the number of operations of CGNR and CGNE with the projection methods, we
consider the following: each iteration of CGNR and CGNE involves two matrix-vector prod-
ucts, requiring 2mn multiplications, and additional inner products requiring 2m+ 3n multipli-
cations. Also, a single KACZ projection requires 2n multiplications, so one cycle of C-KACZ,
which consists of m projections, requires 2mn multiplications. We therefore equate every itera-
tion of CGNR and CGNE with m projections.
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As to ARK, we implemented Algorithm 2 from [22]. This requires a choice of λ ∈ [0,λmin],
where λmin is the minimal eigenvalue of A. According to [22, §6.3], λmin ≈ (

√
m/n−1)2. So

we set λ = α(
√

m/n− 1)2, where α < 1 was a parameter. A few sample runs indicated that
α = 0.2 produced the optimal results.

In step 7 of ARK, the hyperplane on which a projection is made is chosen with equal probabil-
ity. ARK-FG modifies this choice and chooses the hyperplane according to the FG-weights. It
can be seen that the FG version of ARK is significantly better than the regular version; how-
ever, similarly to other results, the significance of the FG-weights diminishes as the number of
equations increases.

It is interesting to note that ARK, ARK-FG and R-CIMM-FG exhibit typical Kaczmarz-style
plots as in Figures 3 and 5: the required number of projections rises very steeply below 500
equations. The plots of CGNR and CGNE are virtually identical and they increase almost
monotonically after 300 equations. This is in keeping with the finding of Strohmer and Ver-
shynin [28] that for 700 equations, R-KACZ-FG is better than CGNR.

We also tried the regular Cimmino algorithm, but the results were too high to even fit in the
chart. The minimum number of projections required by CIMM was more than 92,000, obtained
at 1,000 equations. The optimal relaxation parameters for CIMM and R-CIMM-FG were 85
and 75, respectively.

4 Additional considerations

This section deals with some additional issues which require further consideration: performance
of the algorithms when the maximal gap size is increased, and methods of extending the FG-
weights and EBR to higher dimensions.

4.1 Gap size experiments

Feichtinger et al. [12] present important results tying the maximal gap size to the robustness
of several reconstruction methods. Ideally, the maximal gap size, which we will denote by δ ,
should satisfy the inequality δ < 1/(2r), where r is the bandwidth.

We consider the case with r = 50 and n = 300, which gives us 101 variables and 300 equations.
As can be seen from Fig. 3, CGMN was the only projection-based method that could tackle
this case. We applied CGMN to the EBRW-ordered equations, with maximal gap size ranging
from 0.01 to 0.12, and set the stopping criterion with relative residual ≤ 1.E-10. The results are
shown in Table 1. As can be seen, up to a gap size of 0.05, there is no significance difference
between the various results. Note that 0.05 is 5 times larger than the condition set by the above
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inequality for δ . We can also see that up to a gap size of 0.1, CGMN provides reasonable
practical results, though at a heavier price in the number of projections and runtime.

gap proj relres relerr time (S)
none 7977 2.826E-11 3.977E-10 0.0114
0.01 8172 2.256E-11 3.074E-10 0.0116
0.02 8128 2.664E-11 3.629E-10 0.0115
0.03 10353 2.036E-11 2.666E-10 0.0147
0.04 11671 2.438E-11 3.046E-10 0.0166
0.05 13622 2.025E-11 4.108E-10 0.0194
0.06 18835 3.752E-11 1.989E-08 0.0268
0.07 23486 3.044E-11 4.661E-08 0.0334
0.08 33069 4.745E-11 6.143E-07 0.0471
0.09 52120 5.098E-11 1.896E-05 0.0739
0.10 79401 5.498E-11 8.397E-04 0.1127
0.11 188172 8.388E-11 7.549E-03 0.2671
0.12 496735 1.645E-10 8.630E-02 0.7069

Table 1: No. of projections, relative residual, relative error, and time required by CGMN (on the
EBRW-ordered equations) to achieve relative residual ≤ 1.E-10, as a function of the maximal
gap size. CGMN was limited to 1000 iterations, and each entry in the table is the average of
100 runs.

Another point to note from Table 1 is that up to a gap size of 0.11, the relative residual goal
can be achieved, while the relative error steadily deteriorates when δ ≥ 0.06. This means that
as δ increases, CGMN can continue to solve the system of equations, but the modeling of the
problem by the equations deteriorates. As noted by one reviewer, the steep rise in the number
of projections below 500 samples (for the non-accelerated Kaczmarz methods) may be due to
the increased chance of having big gaps in the samples.

4.2 Extension to higher dimensions

A natural question that arises is how can the concepts of the FG-weights and the EBR ordering
be generalized to higher dimensions? With respect to the FG-weights, the answer is simple:
assuming that the sample points lie in some bounded domain of the k-dimensional Euclidean
space, we can construct the corresponding Voronoi diagram; this is a well-known concept in
computational geometry: the domain is divided into disjoint convex cells, each containing a
single sample point. The cell containing a sample point p is the set of all points in the domain
that are closer to p than to any other sample point. Then, the FG-weight of every sample point
p is taken in proportion to the k-dimensional volume of the Voronoi cell containing p. Note that
for k = 1, we get the FG-weights that were used in [28] and in this paper.

As to the EBR ordering, there can be several approaches. The simplest approach is to consider
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the projections of the samples onto one of the coordinate axes, sort the projections according to
that coordinate, and then reorder the points according to the EBR permutation of the projections.
A somewhat better method, particularly when the samples exhibit some linear correlation, is to
construct the straight line L minimizing the sum of the squares of the distances of the sample
points to L. We can then sort the projections of the samples on L and take the EBR-ordering of
the projections.

A different approach is to use another tool from computational geometry – a variation of the
k-d tree, where k is the dimension of the underlying Euclidean space. Assume that the points
lie in some k-dimensional rectangular domain D0, and the axes are labeled x1, . . . ,xk. Consider
the projections of the sample points on all the axes. Our variation of the k-d tree is a binary
tree with D0 as the root, and constructed as follows. Starting from x1, we partition D0 into two
subdomains, D1 and D2, by passing a plane orthogonal to the x1-axis so that the number of
points in D1 and D2 differ by at most one. (Contrary to a regular k-d tree, the partitioning plane
does not pass through a sample point.) D1 and D2 are the two sons of D0, and they are each
split into two subdomains by hyperplanes orthogonal to the x2-axis. This procedure continues
by using the axes in cyclic order. A subdomain containing a single sample point becomes a leaf.

An example of this construction for two dimensions is shown in Fig. 7, with the partitioning
lines at different levels shown in different colors. Note that if the number of points is not a
power of 2, then not all leaves will be at the same level. We now order the samples by the
inorder of the leaves of the k-d tree, and then apply the EBR permutation to this order. Fig. 7
shows both orders. It can also be noted that the k-dimensional volume of each leaf can serve as
an alternative to the Voronoi cell for the FG-weights, though it is not as accurate as the Voronoi
approach for k > 1.

5 Conclusions

The problem of recovering bandlimited functions from random samples has been examined
from several angles: from relatively few samples to a high number of samples, various Kaczmarz-
based algorithms, and a novel derandomization method intended to avoid the problematic issue
of adjacent equations whose hyperplanes form a small angle. Similarly to the results of [28], use
was made of certain weights which measure the “isolation” of each sample w.r.t. its neighbors.

The derandomization technique is a method of shuffling the equations using an extension of the
bit-reversal permutation, and called EBR. The sequence of equations ordered according to EBR
is augmented with a certain fraction of the equations with the largest weights. This combined
list of equations is called the EBRW-ordered equations. The advantage of using EBR is twofold:
it ensures that all the equations will be used, and most importantly, it enables the use of CGMN
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Figure 7: A k-d tree partitioning of 14 points in the plane (k = 2, and partitionings are chosen
between points). The numbers in black are the regular inorder of the leaves, and the numbers in
red show the EBR ordering of the samples.

which accelerates the regular Kaczmarz and solves the problem at low sampling rates.

The main findings of our results is that for low to moderate ratios of the equations to variables,
the best results are obtained when CGMN [1] is applied to the EBRW-ordered equations. For
moderate to high ratios, the best results are obtained with the original (cyclic) Kaczmarz applied
to the EBRW-ordered equations.

When the equations/variables ratio (EVR) falls below 5, all the Kaczmarz variants show a sud-
den and very steep increase in the number of projections required to reach a given relative resid-
ual goal. CGMN, which is a CG acceleration of Kaczmarz, may also exhibit this behavior, but
at a much lower value of EVR and to a much lesser extent, particularly when it is applied to the
EBRW-ordered equations. It was also found that signals composed mainly of high-frequency
components are easier to recover, and this may have some practical applications.

The experiments indicate that sorting the equations according to the order of the samples should
be avoided, for all the cyclic Kaczmarz variants, and also for CGMN. This is due to the fact that
in such an ordering, every pair of adjacent equations contributes two hyperplanes with a very
small angle between their normals. This is a worst-case situation for Kaczmarz, and it was the
motivation for introducing the EBR permutation.

Finally, it is shown that the FG-weights and the EBR-ordering can be extended to higher di-
mensions by using standard tools from computational geometry.
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[12] H. G. Feichtinger, K. Gröchenig, and T. Strohmer. Efficient numerical methods in non-
uniform sampling theory. Numerische Mathematik, 69:423–440, 1995.

[13] D. Gordon and R. Gordon. Component-averaged row projections: A robust, block-parallel
scheme for sparse linear systems. SIAM J. on Scientific Computing, 27:1092–1117, 2005.

[14] D. Gordon and R. Gordon. CGMN revisited: robust and efficient solution of stiff linear
systems derived from elliptic partial differential equations. ACM Trans. on Mathematical
Software, 35(3): 18:1–18:27, Oct. 2008.

17



[15] D. Gordon and R. Gordon. Solution methods for linear systems with large off-diagonal
elements and discontinuous coefficients. Computer Modeling in Engineering & Sciences,
53(1):23–45, Nov. 2009.

[16] D. Gordon and R. Gordon. CARP-CG: a robust and efficient parallel solver for linear
systems, applied to strongly convection-dominated PDEs. Parallel Computing, 36(9):495–
515, Sept. 2010.

[17] D. Gordon, R. Gordon, and E. Turkel. Compact high order schemes with gradient-
direction derivatives for absorbing boundary conditions. J. of Computational Physics,
297(9):295–315, Sept. 2015.

[18] G. T. Herman. Fundamentals of Computerized Tomography: Image Reconstruction From
Projections. Springer, 2nd edition, 2009.

[19] G. T. Herman and L. B. Meyer. Algebraic reconstruction techniques can be made compu-
tationally efficient. IEEE Trans. on Medical Imaging, MI-12:600–609, 1993.

[20] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49:409–436, 1952.
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