
CGMN Revisited: Robust and Efficient Solution
of Stiff Linear Systems Derived from Elliptic
Partial Differential Equations

DAN GORDON

University of Haifa

and

RACHEL GORDON

The Technion–Israel Institute of Technology

Given a linear system Ax = b, one can construct a related “normal equations” system AATy = b, x =
ATy. Björck and Elfving have shown that the SSOR algorithm, applied to the normal equations,
can be accelerated by the conjugate gradient algorithm (CG). The resulting algorithm, called

CGMN, is error-reducing and it always converges (in theory), even when the equation system is

inconsistent and/or nonsquare. SSOR on the normal equations is equivalent to the Kaczmarz
algorithm (KACZ), with a fixed relaxation parameter, run in a double (forward and backward)

sweep on the original equations. CGMN was tested on nine well-known large and sparse linear

systems obtained by central-difference discretization of elliptic convection-diffusion partial differ-
ential equations (PDEs). Eight of the PDEs were strongly convection-dominated, and these are

known to produce very stiff systems with large off-diagonal elements. CGMN was compared with

some of the foremost state-of-the art Krylov subspace methods: restarted GMRES, Bi-CGSTAB
and CGS. These methods were tested both with and without various preconditioners. CGMN con-

verged in all the cases, while none of the above algorithm/preconditioner combinations achieved

this level of robustness. Furthermore, on varying grid sizes, there was only a gradual increase in
the number of iterations as the grid was refined. On the eight convection-dominated cases, the

initial convergence rate of CGMN was better than all the other combinations of algorithms and
preconditioners, and the residual decreased monotonically. The CGNR algorithm was also tested,

and it was as robust as CGMN, but slower.

Categories and Subject Descriptors: 15A06 [Linear and multilinear algebra]: Linear equations; 65F10 [Nu-
merical linear algebra]: Iterative methods for linear systems; 65F50 [Numerical linear algebra]: Sparse ma-
trices; 65N12 [Partial differential equations]: Stability and convergence of numerical methods.

General Terms: Algorithms, Performance, Reliability, Theory.

Additional Key Words and Phrases: CGMN, CGNR, conjugate-gradient, convection-dominated,

elliptic equations, Kaczmarz, linear systems, normal equations, partial differential equations, row
projections, SOR, SSOR, sparse linear systems, stiff equations.

1. INTRODUCTION

Large sparse linear systems are obtained when solving various problems in scientific, engi-
neering and biomedical applications. Furthermore, many solution methods for non-linear
problems, optimization problems and eigenvalue problems, require repetitive solutions of

Author’s address: D. Gordon, Dept. of Computer Science, University of Haifa, Haifa 31905, Israel. Email:
gordon@cs.haifa.ac.il

R. Gordon, Dept. of Aerospace Engineering, The Technion–Israel Inst. of Technology, Haifa 32000, Israel. Email:
rgordon@tx.technion.ac.il

Note: This preprint contains the figures in color and minor corrections.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009, Pages 18:1–18:27.



2 · D. Gordon and R. Gordon

linear systems as an intermediate step. Direct solvers are usually preferred because of their
robustness, but they cannot handle the huge matrices that often occur in practice. Iterative
solvers are therefore the only viable method in many cases, but they often fail on huge
and ill-conditioned systems. The approach taken in many cases is to combine one of the
many available solvers with a suitable preconditioner which is sometimes tailor-fit to the
problem at hand. However, such a solver/preconditioner combination may be hard to find,
so there is always a need for robust general-purpose methods that are applicable to a wide
range of problems.

This paper concentrates on large sparse linear systems arising from the discretization
of elliptic convection-diffusion partial differential equations (PDEs), using the central-
difference scheme (CDS). In this class of problems, some of the most challenging cases
occur when the convection term is large, leading to large off-diagonal elements in the as-
sociated system matrix. Such systems arise frequently in computational fluid dynamics
(CFD) applications when the Péclet number is high—see [Ferziger and Perić 2002], and
[Gresho and Sani 1998]. Our main finding is that the CGMN algorithm of [Björck and
Elfving 1979] is a very robust and efficient solution method for a wide range of such linear
systems.

Krylov subspace methods are widely considered to be the leading techniques for solving
sparse linear systems. Among the better-known of these methods are the conjugate gradient
(CG) [Hestenes and Stiefel 1952], CGNR and CGNE [Saad 2003, §8.3.1], Bi-CG [Lanczos
1952; Fletcher 1976], Bi-CGSTAB (stabilized Bi-CG) [van der Vorst 1992], CGS (CG-
Squared) [Sonneveld 1989], and GMRES [Saad and Schultz 1986]. All these methods can
be used with and without preconditioners, but the robustness problem is still a hindrance
in many applications.

Given a system of linear equations

Ax = b, (1)

one can construct two related “normal equations” systems

ATAx = ATb, (2)
AATy = b, x = ATy. (3)

An important property of the system matrices of (2) and (3) is that their diagonal elements
are relatively large, even when A has large large off-diagonal elements. Hence, solution
methods based on the normal equations tend to be very robust. Of course, there may be a
price to pay because their condition number is the square of the condition number of A, but
CG-acceleration can be used to offset this problem, as will be shown.

In a seminal paper, [Björck and Elfving 1979] present several CG-type acceleration
techniques for projection algorithms. One of their algorithms, called CGMN, is a CG
acceleration of the SSOR algorithm [Saad 2003, §4.1] applied to the normal equations sys-
tem (3). It is well known that SSOR applied to (3) is equivalent to the Kaczmarz algorithm
(KACZ), with a fixed relaxation parameter, run in a double (forward and backward) sweep
on the original equations. In [Björck and Elfving 1979], CGMN is also referred to as an
SSOR preconditioning of CG. CGMN converges even when the system (1) is inconsistent
and/or nonsquare. This is due to the fact that the normal equations systems are square and
KACZ converges in a cyclic manner even on inconsistent systems—see [Tanabe 1971].

Our interest in CGMN grew out of our work on accelerating our block-parallel CARP
algorithm [Gordon and Gordon 2005] using the same principles as in CGMN. CARP is
ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 3

equivalent to KACZ in some superspace, but taken with cyclic relaxation parameters. A
generalization of CGMN, called CGMNC, was developed in [Gordon and Gordon 2008]
to enable the use of cyclic relaxation parameters. CGMNC in the superspace is mathemat-
ically equivalent to a CG-acceleration of CARP, called CARP-CG. This algorithm is as
robust as CARP, but converges significantly faster. When applied to linear systems derived
from strongly convection-dominated elliptic PDEs, CARP-CG is very competitive with
several prominent Krylov subspace algorithms combined with various preconditioners.

These positive results led to an examination of the original CGMN on a single processor,
and the results are presented in this paper. CG-acceleration of block projection schemes
was studied quite extensively in the context of parallelism; see [Arioli et al. 1992; Arioli
et al. 1995; Bramley et al. 1990; Bramley and Sameh 1991; 1992; Kamath and Sameh
1989]. These techniques are based on applying the CG-acceleration methods of [Björck
and Elfving 1979] to the block-projection methods of [Elfving 1980]. However, CGMN
itself has received little attention as a sequential solution method for linear systems de-
rived from PDEs. In [Kamath and Weeratunga 1990; 1992], CG-accelerated block-SSOR
is compared with CGMN (which is referred to as a CG-acceleration of “symmetric Kacz-
marz”), using only the unity relaxation parameter. They conclude that on a single pro-
cessor, CGMN is preferable, whereas the CG-accelerated block-SSOR is preferable in a
parallel processing environment.

In this study, CGMN is compared with restarted GMRES, CGS, and Bi-CGSTAB, which
were all tested with and without a number of standard preconditioners. It was also com-
pared with CGNR. Note that CGNR can also be regarded as a CG-acceleration of the Cim-
mino algorithm [Cimmino 1938]. The algorithms were tested on nine well-known large
and sparse linear systems obtained by CDS discretization of elliptic convection-diffusion
PDEs. Eight of the PDEs were strongly convection-dominated, and these are known to pro-
duce very stiff systems with large off-diagonal elements. CGMN converged in all the cases,
whereas most of the others failed on the stiff problems. Furthermore, the convergence of its
residual on the eight stiff problems was monotonic, whereas CGS and Bi-CGSTAB were
oscillatory to some extent. CGMN’s robustness was also apparent on various grid sizes,
with the number of iterations increasing only gradually with grid refinement. CGNR was
as robust as CGMN, but it was slower.

In addition to its robustness, our runtime results with CGMN showed that it was partic-
ularly efficient on the eight problems derived from the PDEs with large convection terms.
On the one test case with a small convection term, the convergence rate of CGMN was
mediocre, while most of the other methods performed quite well on this case. From these
results we can conclude that CGMN is particularly advantageous on systems with large
off-diagonal elements.

Note that in this study we are primarily interested in the numerical solution of the al-
gebraic equation system derived from the PDEs by central-difference discretization (on a
uniform mesh). In some cases, the algebraic equations cannot provide accurate solutions to
the PDEs. For example, if the mesh Péclet number is large, then the (exact) solution of the
derived linear system is sometimes oscillatory and it may diverge widely from the analytic
solution of the PDE at some grid points—see [Ferziger and Perić 2002, Ch. 3,4], [Gresho
and Sani 1998], and also [Saad 2003, §2.2.4]. There are several approaches to this problem;
e.g., the use of upwind schemes, hybrid methods combining upwind schemes with CDS,
variable meshes, higher-order schemes, and more. Upwind schemes are less accurate since

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



4 · D. Gordon and R. Gordon

they are only first-order and introduce artificial diffusion—see [Ferziger and Perić 2002].
Even so, it is interesting to compare the solutions obtained by CGMN with the analytic
solution of the PDEs. Our results in this regard are mixed: in four cases we obtained excel-
lent results, in four cases the results are reasonable for some applications (such as CFD),
and in one case, they are poor.

The rest of this paper is organized as follows. Section 2 presents some essential back-
ground and the CGMNC algorithm. Sections 3 and 4 describe the setup of the numerical
experiments and the results, and Section 5 concludes with a summary and some future
research directions.

2. MATHEMATICAL BACKGROUND

This section presents the background leading to the CGMN algorithm. Actually, we will
present CGMNC, which is CGMN extended to allow for cyclic relaxation parameters.
Even though our experiments deal only with CGMN, cyclic relaxation parameters are po-
tentially useful for certain problems. For example, in solving the Navier-Stokes equations
for boundary-layer problems in CFD, different regions may have widely-varying equation
coefficients, so it may be advantageous to use different relaxation parameters in the differ-
ent regions.

Throughout the rest of the paper, we assume that all vectors are column vectors, and
we use the following notation: 〈p, q〉 denotes the dot product of two vectors p and q,
which is also pTq. By ‖ r‖ we denote the L2-norm of a vector. If A is an m×n matrix, we
denote by ai r the ith row-vector of A; i.e., ai r = (ai1, . . . ,ain)T . Unless noted otherwise,
we shall assume that the matrix A of equation system (1) is of dimension m×n (m rows
and n columns). Throughout the rest of the paper we assume that every column of A
is nonzero. Such a column of zeros, if it existed, can be removed as a preliminary step
since it corresponds in effect to coefficients of a “fictitious” variable, i.e., one whose value
can be arbitrary. Also, we can assume that every equation contains at least one nonzero
coefficient.

One of the earliest algorithms, denoted as KACZ, is due to [Kaczmarz 1937]. KACZ
starts from an arbitrary point x0 ∈ Rn as the initial iterate, and in each step, the current
iterate is projected orthogonally towards a hyperplane defined by one of the equations. The
hyperplanes are chosen in cyclic order. Each projection may involve a relaxation parameter
λ which determines the extent of the projection towards the hyperplane: the projection is
either in front of the hyperplane, exactly on the hyperplane, or beyond the hyperplane,
according to whether λ < 1, λ = 1, or λ > 1, respectively. We shall henceforth assume
that every relaxation parameter λ satisfies the inequalities 0≤ λ ≤ 2.

The term “cyclic relaxation parameters” means that for every 1≤ i≤m, there is a relax-
ation parameter λi which is always used with the projection towards the ith hyperplane. In
our application of KACZ, the projections are always performed with an entire sweep (or
pass) of all the equations, and as far as we are aware, this is the standard practice in all ap-
plications of KACZ. Our formulation of KACZ incorporates this practice in the algorithm.
KACZ with cyclic relaxation parameters λ1, . . . ,λm, is the following:

ALGORITHM 1. (KACZ):

set x0 ∈ Rn to an arbitrary value.

for k = 0,1,2, . . . until convergence do
ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 5

set y0 = xk.
for i = 1,2, . . . ,m do

yi = yi−1 + λi
bi−〈ai r, yi−1〉
‖ai r‖2 ai r (4)

enddo
set xk+1 = ym.

enddo

KACZ has been studied very extensively, both theoretically and experimentally. In the
context of image reconstruction from projections in computerized tomography, it is also
known as ART (algebraic reconstruction technique)—see [Herman 1980]. Its convergence
with relaxation parameters, for consistent systems, was shown in [Herman et al. 1978]
and [Trummer 1981]. In [Tanabe 1971], it is shown that when the system is inconsistent,
KACZ with a fixed relaxation parameter converges cyclically; this means that for each
hyperplane, the sequence of projections onto that hyperplane converges to a limit. This
result was extended in [Eggermont et al. 1981] to the case of cyclic relaxation parameters,
and it holds true even when the system (1) is nonsquare. This particular result is essential
to the extension of CGMN to CGMNC. See also [Elfving 2004] and the references therein.

The division by ‖ai r‖2 in KACZ means that KACZ is a geometric algorithm in the fol-
lowing sense: the sequence of iterates produced by KACZ depends only on the hyperplanes
defined by the equations, and not on any particular algebraic representation. This is due
to the fact that if we divide the ith equation by some constant ci 6= 0, then the sequence of
iterates produced by KACZ is unchanged, i.e., KACZ does not depend on the scaling of the
equations. See [Gordon and Mansour 2007] for an application of this property. We shall
henceforth assume that the equations are scaled by normalizing them, i.e., for 1 ≤ i ≤ m,
the ith equation has been divided by ‖ai r‖. In practice, this scaling makes KACZ more
efficient. Equation (4) in Algorithm 1 can now be replaced by

yi = yi−1 + λi
(
bi−〈ai r, yi−1〉

)
ai r (5)

Note that in addition to dividing the ith equation by ‖ai r‖, we can also multiply it by
√

λi
and thus save some additional time during the iterations. This option was not implemented.

We introduce three operators describing the internal Kaczmarz sweep: KSWP (the in-
ternal loop of KACZ), BKSWP is similar to KSWP, but with the equations traversed back-
wards, and DKSWP is KSWP followed by BKSWP.

Definition 2.1. Let A and b be as in (1), but after all the equations have been nor-
malized. Let Λ = (λ1, . . . ,λm) be a vector of relaxation parameters, and x ∈ Rn. Then
KSWP(A,b,x,Λ) is defined as ym, where y0, . . . ,ym are obtained by executing the follow-
ing code segment:

begin
set y0 = x.
for i = 1,2, . . . ,m do

yi = yi−1 + λi
(
bi−〈ai r, yi−1〉

)
ai r

enddo
end

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



6 · D. Gordon and R. Gordon

BKSWP(A,b,x,Λ) is defined similarly, except that the equations are traversed in the re-
verse order. Finally, DKSWP(A,b,x,Λ) = BKSWP(A,b,KSWP(A,b,x,Λ),Λ). If all the
relaxation parameters are fixed, i.e., λi = λ for 1≤ i≤m, then we will just write λ instead
of Λ as the fourth parameter of KSWP, BKSWP and DKSWP.

One of the most basic iterative techniques is SOR (successive overrelaxation); see [Saad
2003, §4.1]. One can apply SOR, with a relaxation parameter λ , to the normal equations
system (3); this algorithm is known as SOR-NE. However, it is well known that SOR-NE
is equivalent to KACZ with the same fixed relaxation parameter λ . We extend SOR on the
normal equations to allow for a vector of cyclic relaxation parameters Λ, and call the result
SORC-NE. The result, which is identical to KACZ, is the following:

ALGORITHM 2. (SORC-NE):

set x0 ∈ Rn to an arbitrary value.

for k = 0,1,2, . . . until convergence do
xk+1 = KSWP(A,b,xk,Λ)

enddo

The symmetric SOR (SSOR) is similar to SOR, but with the forward sweep followed by a
backward sweep. We also extend SSOR to allow a vector Λ of cyclic relaxation parame-
ters, and call the resulting algorithm, applied to the normal equations (3), the SSORC-NE
algorithm:

ALGORITHM 3. (SSORC-NE):

set x0 ∈ Rn to an arbitrary value.

for k = 0,1,2, . . . until convergence do
xk+1 = DKSWP(A,b,xk,Λ)

enddo

Note that a double KACZ sweep with cyclic relaxation parameters is in fact a regular
KACZ sweep, also with cyclic relaxation parameters, applied to the system obtained from
(1) by duplicating the original equations in reverse order. The vector of relaxation pa-
rameters is also doubled by repeating the first m values in reverse order. Hence, by the
above-mentioned result of [Eggermont et al. 1981], SSORC-NE converges even when (1)
is inconsistent and/or nonsquare.

The conjugate gradient algorithm (CG), which can be applied when the system matrix A
of (1) is square, is the following:

ALGORITHM 4. CG:

set x0 ∈ Rn to an arbitrary value.

set p0 = r0 = b−Ax0.

for k = 0,1,2, . . . until convergence do
ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 7

qk = Apk

αk = ‖rk‖2/〈pk, qk〉

xk+1 = xk +αk pk

rk+1 = rk−αkqk

βk = ‖rk+1‖2/‖rk‖2

pk+1 = rk+1 +βk pk

enddo

It is well known that if A is symmetric and positive definite, then CG converges, in theory,
to a solution of (1). In [Björck and Elfving 1979, Lemma 5.1], it is shown that the same
holds true if A is only positive semidefinite, provided the system (1) is consistent. In fact,
the above lemma provides more detailed information about the convergence properties of
such a case, based on the (unique) representation of x0 as x0 = x′+x′′, where x′ ∈Range(A)
and x′′ ∈ Null(A) (recall that Range(A) and Null(A) are orthogonal complements and that
Range(A)+Null(A) = Rn).

CG can also be applied to the normal equations systems (2) and (3), and the resulting
algorithms are known respectively as CGNR and CGNE [Saad 2003, §8.3]. Note that the
matrices AAT and ATA are always symmetric and positive semidefinite, so by the above-
mentioned lemma, both CGNR and CGNE converge, in theory, when the system (1) is
consistent (even if it is nonsquare).

The following description extends the one given in [Björck and Elfving 1979] for the
CGMN algorithm by allowing different relaxation parameters for different equations. This
is essential to the parallel extension of CGMN [Gordon and Gordon 2008], but it could
also be useful in cases where different equations have very different characteristics due to
varying materials or external governing forces. Assume as before that the system (1) is
normalized (each equation is divided by the L2-norm of its coefficients). Denote by Ai the
symmetric n×n matrix obtained from ai r as follows:

Ai = ai raT
i r =

 ai1
...

ain

(ai1, . . . ,ain) .

Let Λ be a vector of relaxation parameters. Denoting Qi = I − λiAi, we obtain the
following representation for the KACZ inner iteration of the normalized system (Equation
(5)):

yi = Qi yi−1 +λibiai r. (6)

Hence, in a complete double sweep, we obtain the following representation for the SSORC-
NE (Algorithm 3) iteration:

xk+1 = Qxk +Rb, (7)

where Q = Q1 · · ·QmQm · · ·Q1 and R is the resulting matrix multiplying b. Note that the
matrices Qi are symmetric, so Q is also symmetric. However, in SSORC-NE, the inner loop
is also obtained by the operator DKSWP, so for any vector x ∈ Rn, we have the identity

Qx+Rb = DKSWP(A,b,x,Λ). (8)
ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



8 · D. Gordon and R. Gordon

As noted earlier, SSORC-NE converges, and let x∗ be a convergence point. Then x∗ is a
fixed point of the iteration (7), i.e., x∗ = Qx∗+ Rb ⇒ (I−Q)x∗ = Rb. Therefore, x∗ is a
solution of the system

(I−Q)x = Rb . (9)

It follows that the system (9) is consistent. Also, since Q is symmetric, so is (I−Q), which
is the system matrix of (9). Furthermore, in [Gordon and Gordon 2008, Theorem 1] it is
shown that (I−Q) is positive semidefinite. Hence, by [Björck and Elfving 1979, Lemma
5.1], CG can be applied to (3), and its convergence (in theory) is guaranteed. The CGMNC
algorithm is the application of CG to the system (9). Note that neither of the two matrices
in (9) have to be computed explicitly: using the identity of Equation (8), matrix-vector
products are computed by suitable double sweeps of KACZ, as explained below.

ALGORITHM 5. CGMNC [Gordon and Gordon 2008]:

set x0 ∈ Rn to an arbitrary value.
set p0 = r0 = Rb− (I−Q)x0 = Qx0 +Rb− x0 = DKSWP(A,b,x0,Λ)− x0.
note: the rightmost equality follows from eq. (8).
for k = 0,1,2, . . . until convergence do

qk = (I−Q)pk = pk−DKSWP(A,0, pk,Λ)

note: the above equality follows from eq. (8) with b = 0.

αk = ‖rk‖2/〈pk, qk〉

xk+1 = xk +αk pk

rk+1 = rk−αkqk

βk = ‖rk+1‖2/‖rk‖2

pk+1 = rk+1 +βk pk

enddo

The required number of operations of Algorithm 5, for each iteration, can be evaluated
as follows:

—From Definition 2.1, the execution of KSWP requires m scalar products of the type
〈ai r,yi−1〉, where ai r is a sparse vector and yi−1 is dense. This is equivalent to one
matrix-vector product of type Ax, where A is sparse and x is dense. Also required are
m operations of the type αx + y, where α is a constant and x and y are dense vectors.
However, these m operations are clearly equivalent to multiplying a very sparse matrix A
by a dense vector x, where A has 1’s on the main diagonal, some number on the diagonal
above it, and zero elsewhere. Hence we consider it to be at most one-half of an Ax
operation.

—Looking at the main loop of Algorithm 5, we see that each iteration requires one opera-
tion of the type DKSWP(A,0, pk,Λ), which is a double KSWP operation with b = 0, so
it requires 3 Ax operations.

—Counting the other operations in Algorithm 5, we get the following total number of
operations of each type:

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 9

—3 matrix-vector operations Ax, where A is sparse and x is dense,
—4 operations of the type αx+ y,
—2 scalar products 〈x,y〉, where both x and y are dense.

For comparison, note that (the un-preconditioned) GMRES requires one Ax operation, and
CGS and Bi-CGSTAB require two.

As to the memory requirements of Algorithm 5, we can easily see that a careful coding
of the main loop requires memory for 4 (dense) vectors, in addition to A and b. The only
significant difference in respect to memory requirements between CGMN and the other
methods is that restarted GMRES requires km vectors, where k is the dimension of the
Krylov subspace used.

3. SETUP OF THE NUMERICAL EXPERIMENTS

Tests were run on a Pentium IV 2.8GHz processor with 3GB memory. The code was com-
piled with the GNU compilers. This section describes the test problems, the nonsymmetric
solvers and preconditioners which were used, implementation details, and the stopping
tests.

3.1 The test problems

We examined nine well known problems derived from convection-diffusion elliptic PDEs.
Problems 1–7 were collected from a variety of sources [Kincaid and Young 1981; Kuck
et al. 1986; Kamath and Sameh 1989; Bramley et al. 1990; Elman and Golub 1990], and
were also used as test problems in several other works [Bramley and Sameh 1991; 1992;
Arioli et al. 1992; Arioli et al. 1995; Gordon and Gordon 2005]. Problems 3 and 7 also
contain a reaction term. Problem 8 is from [Saad 2003, §3.7, Problem F3D] (also available
from the SPARSKIT library [Saad 1990]). The problems are typical of many fields such as
CFD, heat transfer and structural mechanics, and are commonly used in a wide variety of
scientific, engineering and industrial applications. Problem 9 is derived from problem 8 by
increasing the convection coefficient; this was done in order to examine the effect of such a
change on the performance of the different solution methods. In the following description
of the test problems, we use the standard notation ∆u = uxx +uyy +uzz.

(1) ∆u + 1000ux = F .
(2) ∆u + 1000exp(xyz)(ux +uy−uz) = F .
(3) ∆u + 100xux− yuy + zuz +100(x+ y+ z)u/xyz = F .
(4) ∆u − 105x2(ux +uy +uz) = F .
(5) ∆u − 1000(1+ x2)ux +100(uy +uz) = F .
(6) ∆u − 1000 [(1−2x)ux +(1−2y)uy +(1−2z)uz] = F .
(7) ∆u − 1000x2ux +1000u = F .
(8) ∆u − ∂ (10exyu)/∂x−∂ (10e−xyu)/∂y = F .
(9) ∆u − ∂ (1000exyu)/∂x−∂ (1000e−xyu)/∂y = F .

Problems 1–7 have the following analytical (preassigned) solutions:

Problem 1: u(x,y,z) = xyz(1− x)(1− y)(1− z).
Problem 2: u(x,y,z) = x+ y+ z.
Problems 3-7: u(x,y,z) = exp(xyz)sin(πx)sin(πy)sin(πz).

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



10 · D. Gordon and R. Gordon

The expression for the right-hand side function F in problems 1–7 is computed analyti-
cally, using the preassigned solution. For problems 8 and 9, the right-hand-side function F
is irrelevant, because the equation system was set up by first computing the system matrix
A, and then computing b = Av, where v was chosen as v = (1,1, . . . ,1)T (similarly to the
approach taken in [Saad 2003, §3.7, Problem F3D]). All the test problems were solved on
the unit cube domain [0,1]×[0,1]×[0,1]. In problems 1–7, Dirichlet boundary conditions
were used, as determined by the preassigned solutions. For problems 8 and 9, the bound-
ary conditions were taken as u = 0. The problems were discretized using a uniform grid
with the same number of grid points in each direction, and the equations were obtained by
using a seven-point centered difference scheme. Test runs were made for problems of size
80×80×80 = 512,000 equations. Additional tests were also made on smaller grid sizes in
order to study how the various algorithms perform as the grid is steadily refined.

3.2 Algorithms and preconditioners

CGMN is compared with several of the leading state-of-the-art methods, used with and
without preconditioners. We used four Krylov-based iterative nonsymmetric solvers: CGNR
[Saad 2003, §8.3], restarted GMRES [Saad and Schultz 1986], CGS [Sonneveld 1989] and
Bi-CGSTAB [van der Vorst 1992]. As mentioned, all the equations were normalized before
applying the various solvers, by dividing each equation by the L2-norm of its coefficients.
The following preconditioners were used with GMRES, CGS and Bi-CGSTAB: ILUT,
Neumann and Least-Squares. We also tried the Jacobi and the symmetric Gauss-Seidel
preconditioners but they failed in all the cases. For details of these preconditioners, see for
example [Saad 2003, Ch. 10 & 12]. In all, CGMN was compared to 13 different combi-
nations of algorithms and preconditioners (not counting the failed preconditioners). The
comparisons used the AZTEC software library [Tuminaro et al. 1999], which is designed
for the solution of large sparse systems of linear equations.

In all the tested algorithms, the initial estimate was taken as x0 = 0. Restarted GMRES
(denoted as RGMRES) was run with Krylov subspace size k = 10; larger values of k did
not improve the robustness of RGMRES on our test problems, until k became a significant
fraction of the problem size (with a large increase of the required storage). The Neumann
and Least-Squares polynomial preconditioners were run with AZTEC’s default polynomial
order parameter of 3.

The ILUT preconditioner that was implemented is the one supplied by AZTEC; it does
not use pivoting. This preconditioner [Saad 2003] depends on two parameters: the drop
tolerance (the value below which elements are taken as zero), and the fill-in, which con-
trols the maximum number of nonzeros allowed in each column/row of the incomplete LU
factors. We used the default AZTEC values for ILUT’s parameters: drop tolerance = 0 and
fill-in = 1.0 (i.e., no additional elements). Note that experimenting with ILUT’s parameters
requires a search in a two-dimensional parameter space in order to find the optimal values
for each particular problem and for each preconditioned algorithm. Since the default values
produced good results when ILUT worked, we did not experiment with them.

3.3 Implementation details

Numerical PDE approximations on 3-dimensional grids (structured and unstructured) ex-
hibit spatial locality, since each equation centered about a grid point involves only its neigh-
boring grid points. For the structured 3-dimensional grids that we used, the resulting co-
efficient matrix is a 7-point stencil matrix. Our implementation of the data structures used
ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 11

by CGMN is similar to that of AZTEC. The system matrix was stored in the sparse matrix
format called DMSR (distributed modified sparse row) [Tuminaro et al. 1999], which is a
generalization of the MSR format [Saad 2003, §3.4].

3.4 Stopping tests

There are several stopping criteria which one may apply to iterative systems. Our stopping
criterion was to use the relative residual: ‖b−Ax‖/‖b−Ax0‖ < 10−7. In some of the
cases, this was not attainable. Since this stopping criterion depends on the scaling of the
equations, we first normalized the equations (for all the tested methods) by dividing each
equation by the L2-norm of its coefficients. In order to limit the time taken by the methods
implemented in AZTEC, the maximum number of iterations was set to 5000. The AZTEC
library has several other built-in stopping criteria: numerical breakdown, numerical loss of
precision and numerical ill-conditioning.

4. RESULTS AND DISCUSSION

4.1 Convergence results

In this subsection, we present the runtime results for problems 1–9 with 512,000 equations.
For each problem, the plot for CGMN was obtained with the optimal λ . In §4.2 the depen-
dence of the runtimes on λ will be studied. Note that we did not attempt to improve on
the AZTEC code, nor did we optimize all the parameters of all the preconditioner coeffi-
cients. Most likely, such experimentation would have improved the runtime performance
of CGMN’s competitors to a certain extent. Hence, the figures should be viewed as an
approximation to the relative performance of CGMN and the other solution methods.

Figures 1–9 show which algorithms converged on test problems 1–9. Only the plots of
the converged algorithms are shown, with two exceptions: Bi-CGSTAB (without a pre-
conditioner) on problem 1 and CGS+ILUT on problem 5; their convergence was either too
slow or too oscillatory to be relevant. The plots show the relative residual versus the execu-
tion time for the nine test problems. Since x0 = 0, the relative residual is ‖b−Ax‖/‖b‖, and
it is denoted by res/res(0). The plots for the preconditioned algorithms include the setup
time for the preconditioner; this time interval was added to the time of the first iteration.

CGMN and CGNR are the only algorithms that converged on problem 3, so the conver-
gence plot of KACZ is also shown for comparison. KACZ also converged, but much more
slowly. Problems 3 and 7 are hard for solvers such as GMRES because they are indefinite,
with eigenvalues surrounding the origin. It is well known that the eigenvalue distribution
and the conditioning of the matrix of eigenvectors is more important for the convergence of
GMRES than the conditioning of the system matrix. See also [Arioli et al. 1992; Bramley
and Sameh 1991; 1992].

The following conclusions can be drawn from the convergence data:

(1) Robustness: CGMN and CGNR converged on all the problems—a property not shared
by any other algorithm/preconditioner combination. Also, on some of the problems,
most of the other methods failed.

(2) Efficiency: On problems 1–6 and 9, the convergence rate of CGMN shows up as better
than that of the other methods. This difference is especially pronounced on problems
2,3,4,6 and 9.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



12 · D. Gordon and R. Gordon

time [sec.]

re
s

/r
es

(o
)

0 10 20 30 40 50
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

CGMN (λ=1.75)
CGNR
RGMRES
RGMRES + ILUT
RGMRES + Neum.
CGS + ILUT
CGS + Neum.
Bi-CGSTAB + ILUT
Bi-CGSTAB + Neum.

Problem 1

Fig. 1. Convergence results for problem 1.

Time [sec.]

re
s

/r
es

(0
)

0 10 20 30 40 50 60 70 80 90 100
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Problem 2

CGMN (λ=1.55)
CGNR
RGMRES
RGMRES + Neum.
RGMRES + Lst-sq.

Fig. 2. Convergence results for problem 2.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 13

Time [sec.]

re
s/

re
s(0

)

0 20 40 60 80 100 120 140
10-5

10-4

10-3

10-2

10-1

100

101

Problem 3

CGMN (λ = 1.6)
CGNR
KACZ (λ = 1.7)

Fig. 3. Convergence results for problem 3.

Time [sec.]

re
s

/r
es

(0
)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Problem 4

CGMN (λ = 1.0)
CGNR
RGMRES
RGMRES + Neum.
RGMRES + Lst-sq.
Bi-CGSTAB + Neum.

Fig. 4. Convergence results for problem 4.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



14 · D. Gordon and R. Gordon

Time [sec.]

re
s

/r
es

(0
)

0 10 20 30 40 50
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Problem 5

CGMN ( λ = 1.75)
CGNR
RGMRES
RGMRES + ILUT
RGMRES + Neum.
Bi-CGSTAB + ILUT

Fig. 5. Convergence results for problem 5.

Time [sec.]

re
s

/r
es

(0
)

0 5 10 15 20 25 30 35 40 45 50
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Problem 6

CGMN (λ = 1.30)
CGNR
RGMRES
RGMRES + Neum.
CGS + ILUT
Bi-CGSTAB + ILUT

Fig. 6. Convergence results for problem 6.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 15

Time [sec.]

re
s

/r
es

(0
)

0 20 40 60 80 100 120

10-5

10-4

10-3

10-2

10-1

100

101

102

103

Problem 7

CGMN (λ = 1.7)
CGNR
CGS + ILUT
Bi-CGSTAB + ILUT

Fig. 7. Convergence results for problem 7.

time [sec.]

re
s

/r
es

(o
)

0 20 40 60 80 100
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Problem 8

CGMN (λ= 1.90)
CGNR
RGMRES
Bi-CGSTAB
RGMRES + ILUT
RGMRES + Neum.
RGMRES + Lst-sq.
CGS + ILUT
CGS + Neum.
CGS + Lst-sq.
Bi-CGSTAB + ILUT
Bi-CGSTAB + Neum.
Bi-CGSTAB + Lst-sq.

Fig. 8. Convergence results for problem 8.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



16 · D. Gordon and R. Gordon

time [sec.]

re
s

/r
es

(o
)

0 10 20 30 40 50
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Problem 9

CGMN (λ= 1.50)
CGNR
RGMRES
RGMRES + Neum.
RGMRES + Lst-sq.

Fig. 9. Convergence results for problem 9.

(3) Initial rate of convergence: On problems 1–7 and 9, CGMN’s initial rate of conver-
gence was very good as compared to the other methods.

(4) Monotonicity: On problems 1–7 and 9, CGMN’s convergence was monotonic, whereas
CGS and Bi-CGSTAB were oscillatory to some extent. Some very slight deviations
from monotonicity appeared in CGMN’s behavior on problem 8.

(5) Problem 7: CGMN and CGNR seem to stagnate, but they actually continued to im-
prove at a very gradual rate. Also, the comparison between CGMN and Bi-CGSTAB
with ILUT depends on the prescribed relative residual: for 3.5×10−4, CGMN is the
fastest method; otherwise, it is Bi-CGSTAB with ILUT.

(6) Problem 8: CGMN performed worse than most of the other algorithm/preconditioner
combinations, whereas CGNR performed very poorly. Hence, CGMN should not be
considered as a first choice for problems with a small convection term. This fact
suggests that it may be worthwhile to search for preconditioners for CGMN.

(7) Problem 9: As mentioned, this problem is derived from problem 8 by increasing the
convection term from 10 to 1000. There are two very significant differences between
the plots of problems 8 and 9: most of the successful methods for problem 8 failed
on problem 9, and the covergence rate of CGMN (and CGNR) show a great improve-
ment relatively to the other methods. It is also interesting to note that CGMN, CGNR
and restarted GMRES actually performed better on problem 9 than on problem 8 (in
absolute terms).

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 17

4.2 Comparison of the numerical solution with the analytic solution

In this section we present a comparison between the numerical solution of the linear sys-
tem, as obtained with CGMN, and the analytic solution of the associated PDE. Denote the
analytic solution by u, and by xk the kth iterate. The relative error between the numerical
and the analytic solution is defined as err-an = ‖u− xk‖/‖u‖. The maximal error, denoted
by err-max, is simply the maximal difference between u and xk at any grid point. Table I
presents the relative residual (rel-res) obtained by CGMN, err-an, err-max, and the number
of iterations used by CGMN, for the nine test problems.

Problem res/res(0) err-an err-max iter
1 1.40E-14 7.40E-16 3.52E-17 180
2 7.14E-15 2.57E-15 6.15E-14 330
3 1.70E-05 2.13E-04 1.73E-03 300
4 3.50E-14 3.99E-04 2.05E-03 1500
5 1.34E-14 2.97E-04 3.33E-04 180
6 7.26E-15 2.40E-04 3.06E-04 120
7 8.10E-05 6.84E-02 1.69E-01 1635
8 3.65E-14 2.45E-15 1.44E-14 1050
9 6.75E-15 1.22E-15 6.66E-15 270

Table I. Difference between the numerical solution and the analytic solution of the PDEs.

We can see that on problems 1,2,8 and 9 CGMN solves the original PDE with excellent
precision, on problems 3–6 the solution is reasonable for many applications, such as CFD,
and on problem 7, the result is poor. As noted in the introduction, the problem is inherent
in the CDS discretization at the given mesh size. Note in particular the large discrepancy
between the relative residual and the relative (analytic) error in problems 4, 5 and 6.

4.3 Error and residual results of the algebraic systems

In order to evaluate the purely algebraic behavior of CGMN, problems 1–9 were recal-
culated as follows: The right-hand-side b was determined as b = Ax∗, with x∗ being the
analytic solution at the grid points for problems 1–7 and (1, . . . ,1)T for problems 8 and
9. Note that this way we have the precise algebraic solution of the linear systems, and the
error results are not dependent on how well the algebraic systems model the PDEs. The
relative error at the kth iteration is defined as rel-err = ‖xk− x∗‖/‖x∗‖. The relative resid-
ual is calculated as before, and it is denoted in this subsection by “rel-res”. Figures 10 and
11, which show the convergence plots of rel-err and rel-res for problems 1–9, lead to the
following conclusions:

(1) The convergence of the error is monotonic. This is in agreement with [Björck and
Elfving 1979, Theorem 5.1].

(2) The convergence of rel-res is almost monotonic, with some very slight deviations in
problem 8.

(3) With the exception of problems 3 and 7, the plots of rel-err and rel-res are very similar.

(4) In problems 3 and 7, rel-res decreases much more than rel-err.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



18 · D. Gordon and R. Gordon

Iter

re
l-r

es
,

re
l-e

rr

0 50 100 150 200 250
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rel-res
rel-err

Problem 1

Iter

re
l-r

es
,

re
l-e

rr

0 100 200 300 400
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rel-res
rel-err

Problem 2

Iter

re
l-r

es
,

re
l-e

rr

0 200 400 600 800 1000 1200 1400
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

rel-res
rel-err

Problem 3

Iter

re
l-r

es
,

re
l-e

rr

0 300 600 900 1200 1500 1800
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rel-res
rel-err

Problem 4

Fig. 10. Relative residual and error of CGMN for problems 1–4.

4.4 Convergence behavior as a function of grid size

In this subsection we study the behavior of CGMN when the grid size is varied. We
compare CGMN with CGNR and with restarted GMRES and Bi-CGSTAB; the latter two
were tested by themselves and with the ILUT preconditioner. The choice of GMRES, Bi-
CGSTAB and ILUT was based on the fact that these combinations can be considered as
being generally the most prominent in the convergence plots shown in Figures 1–9 (after
CGMN). The algorithms were tested until the following relative residuals of were achieved:
2×10−4 for problem 3, 5×10−4 for problem 7, and 10−4 for the other problems. Figures
12 and 13 show bar plots based on the runtimes of these algorithms on problems 1–9, for
grid sizes of 10×10×10, 20×20×20, 40×40×40 and 80×80×80. For each grid size,
the runtimes were normalized with respect to CGMN. No bar plots are shown when the
algorithm did not converge.

Figures 12 and 13 show that CGMN is consistently robust for varying grid sizes. This
fact suggests that CGMN could be a good candidate for multilevel applications; this is
a topic for further research. On problems 1–7 and 9, the performance of CGMN on the
coarse grids was relatively better than the other methods (when they converged); this fact
is significant since convection-dominated PDEs are known to be problematic on coarse
grids; see [Ferziger and Perić 2002]. Note that relatively to CGMN, CGNR performs quite
well on the 10×10×10 grid, but its performance deteriorates as the grid is refined.
ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 19

Iter

re
l-r

es
,

re
l-e

rr

0 50 100 150 200 250 300
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rel-res
rel-err

Problem 5

Iter

re
l-r

es
,

re
l-e

rr

0 25 50 75 100 125 150 175
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rel-res
rel-err

Problem 6

Iter

re
l-r

es
,

re
l-e

rr

0 500 1000 1500 2000 2500
10-5

10-4

10-3

10-2

10-1

100

rel-res
rel-err

Problem 7

Iter

re
l-r

es
,

re
l-e

rr

0 200 400 600 800 1000 1200
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rel-res
rel-err

Problem 8

Iter

re
l-r

es
,

re
l-e

rr

0 50 100 150 200 250 300 350 400 450
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

rel-res
rel-err

Problem 9

Fig. 11. Relative residual and error of CGMN for problems 5–9.

Tables II and III provide additional information. Shown in the tables are both the run-
times and the number of iterations for each of the nine cases, on all the tested grid sizes.
Also shown are the optimal values of λ for CGMN for each of the grid sizes. We can see
that in all cases, the optimal λ shows a gradual increase as the grid is refined.

Some comments on how the number of iterations changes as the grid is refined. Denote
the grid sizes by `×`×`. We can see that except for case 8, the number of iterations
required by CGMN increases approximately linearly or even sublinearly with `. However,

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



20 · D. Gordon and R. Gordon

Grid Size

Ru
n-

tim
e

Ra
tio

0

2

4

6

8

10

12

14

16

18

Problem 1: Run-time Ratio

CGMN
CGNR
RGMRES
RGMRES+ILUT
BiCGSTAB+ILUT

10x10x10 20x20x20 40x40x40 80x80x80

Grid Size

Ru
n-

tim
e

Ra
tio

0

2

4

6

8

10

Problem 2: Run-time Ratio

CGMN
CGNR
RGMRES

10x10x10 20x20x20 40x40x40 80x80x80

Grid Size

Ru
n-

tim
e

Ra
tio

0

1

2

3

4

5

6

Problem 3: Run-time Ratio

CGMN
CGNR

10x10x10 20x20x20 40x40x40 80x80x80

Grid Size

Ru
n-

tim
e

Ra
tio

0

2

4

6

8

10

12

Problem 4: Run-time Ratio

CGMN
CGNR
RGMRES

10x10x10 20x20x20 40x40x40 80x80x80

Fig. 12. Runtime ratios relative to CGMN, for varying grid sizes.

on problems 3 and 7, there is a nonlinear jump when going from 40×40×40 to 80×80×80,
as the number of iterations approximately triples.

4.5 Convergence of CGMN as a function of λ

Table IV shows the values of the optimal λ for problems 1–9. Figure 14 show how the
number of iterations of CGMN depends on the choice of λ . The number of iterations
shown in these figures was the number required to achieve a relative residual of 10−7,
except for problem 3 with 10−4 and problem 7 with 5×10−4, on the uniform 80×80×80
grid.

From these figures, we can see that the dependence is always a concave function, so
finding the optimal λ is simple, and it can be easily automated. One should also note
that in all cases, except for case 8, the variation in the number of iterations shows only
very moderate changes in the neighborhood of the optimal λ . This means that it is not
necessary to find the optimal λ with high precision. In case 8, the slopes are relatively
sharper. The optimal values of λ for cases 4 and 8 are in a certain sense “outliers”. For the
other problems, λ = 1.6 would be a good initial estimate for the current grid size. Again,
the thorny case for CGMN is problem 8.
ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 21

Grid Size

Ru
n-

tim
e

Ra
tio

0

2

4

6

8

10

12

Problem 5: Run-time Ratio

CGMN
CGNR
RGMRES
RGMRES+ILUT
BiCGSTAB+ILUT

10x10x10 20x20x20 40x40x40 80x80x80

Grid Size

Ru
n-

tim
e

Ra
tio

0

2

4

6

8

10

Problem 6: Run-time Ratio

CGMN
CGNR
RGMRES
BiCGSTAB+ILUT

10x10x10 20x20x20 40x40x40 80x80x80

Grid Size

Ru
n-

tim
e

Ra
tio

0

2

4

6

8

10

12

Problem 7: Run-time Ratio

CGMN
CGNR
RGMRES
BiCGSTAB+ILUT

10x10x10 20x20x20 40x40x40 80x80x80

Grid Size

Ru
n-

tim
e

Ra
tio

0

2

4

6

8

Problem 8: Run-time Ratio

CGMN
CGNR
RGMRES
RGMRES+ILUT
BiCGSTAB
BiCGSTAB+ILUT

10x10x10 20x20x20 40x40x40 80x80x80

Grid Size

Ru
n-

tim
e

Ra
tio

0

2

4

6

8

Problem 9: Run-time Ratio

CGMN
CGNR
RGMRES
RGMRES+ILUT
BiCGSTAB+ILUT

10x10x10 20x20x20 40x40x40 80x80x80

19.0

↑

Fig. 13. Runtime ratios relative to CGMN, for varying grid sizes.

5. CONCLUSIONS AND FURTHER RESEARCH

This paper reexamined the CGMN algorithm, which was introduced in [Björck and Elfv-
ing 1979] as a CG-acceleration of the SSOR algorithm applied to the normal equations
system. CGMN is also equivalent to a CG-acceleration of a double (back and forth) Kacz-
marz sweep of the original equations. The mathematical results guarantee that it always
converges (at least in theory), even if the equation system is inconsistent and/or nonsquare.
Furthermore, the error reduction is monotonic according to [Björck and Elfving 1979,

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



22 · D. Gordon and R. Gordon

no. it. time no. it. time no. it. time no. it. time

6 6.73E-04 12 1.36E-02 22 2.48E-01 38 3.65

λ = 1.30 --- λ = 1.50 --- λ = 1.50 --- λ = 1.70 ---

CGNR 12 6.80E-04 36 2.27E-02 76 5.09E-01 168 10.71

RGMRES 32 4.88E-03 180 2.34E-01 162 2.71 220 32.77

RGMRES+ILUT 7 6.06E-03 7 4.48E-02 8 6.90E-01 14 13.02

BiCGSTAB+ILUT 4 4.06E-03 4 4.06E-02 4 0.62 8 11.58

no. it. time no. it. time no. it. time no. it. time

42 4.71E-03 42 4.77E-02 58 6.54E-01 112 10.77

λ = 0.90 --- λ = 1.10 --- λ = 1.40 ---  λ = 1.60 ---

CGNR 115 6.52E-03 167 1.06E-01 306 2.05 568 36.21

RGMRES 354 4.68E-02 261 3.39E-01 242 4.01 321 47.82

no. it. time no. it. time no. it. time no. it. time

6 6.73E-04 12 1.36E-02 31 3.49E-01 96 9.23

λ = 1.00 --- λ = 1.20 --- λ = 1.50 --- λ = 1.70 ---

CGNR 16 9.07E-04 49 3.10E-02 187 1.25 778 49.6

no. it. time no. it. time no. it. time no. it. time

92 1.03E-02 106 1.19E-01 136 1.53 226 21.73

λ = 0.90 --- λ = 0.90 --- λ = 1.00 --- λ = 1.30 ---

CGNR 239 1.35E-02 337 2.13E-01 541 3.62 1211 77.2

RGMRES 858 1.12E-01 965 1.26 1029 17.06 725 108

no. it. time no. it. time no. it. time no. it. time

23 2.58E-03 27 3.06E-02 29 3.27E-01 45 4.32

λ = 1.20 --- λ = 1.40 --- λ = 1.50 --- λ = 1.70 ---

CGNR 66 3.74E-03 101 6.38E-02 122 8.16E-01 231 14.73

RGMRES 185 2.44E-02 247 3.20E-01 206 3.38 232 34.56

RGMRES+ILUT 32 1.05E-02 27 8.49E-02 26 1.11 37 20.5

BiCGSTAB+ILUT 17 6.80E-03 14 6.68E-02 11 0.81 13 13.56

CGMN

CGMN

CGMN

CGMN

CGMN

80*80*80=512,000
Problem 1

10*10*10=1,000 20*20*20=8,000 40*40*40=64,000

80*80*80=512,000
Problem 5

10*10*10=1,000 20*20*20=8,000 40*40*40=64,000

80*80*80=512,00040*40*40=64,00020*20*20=8,000

Problem 3
10*10*10=1,000 20*20*20=8,000 40*40*40=64,000

10*10*10=1,000
Problem 2

40*40*40=64,000 80*80*80=512,000
Problem 4

80*80*80=512,000

10*10*10=1,000 20*20*20=8,000

Table II. Runtimes and number of iterations for problems 1–5.

Thm. 5.1].
CGMN was compared with CGNR, restarted GMRES, CGS and Bi-CGSTAB on nine

test cases of linear systems derived from elliptic convection-diffusion PDEs by central-
difference discretization on a uniform grid. Eight of the test cases consisted of stiff linear
systems derived from PDEs with a very large convection term (i.e., high Péclet number).
In all, CGMN was compared with 13 different combinations of algorithms and precondi-
tioners. CGMN and CGNR were the only algorithm which converged on all the test cases,
ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 23

no. it. time no. it. time no. it. time no. it. time

31 3.48E-03 18 2.04E-02 22 2.48E-01 33 3.17

λ = 0.90 --- λ = 0.90 --- λ = 1.00 --- λ = 1.20 ---

CGNR 72 4.08E-03 47 2.97E-02 73 4.88E-01 153 9.75

RGMRES --- --- 68 8.87E-02 86 1.41 175 26.07

BiCGSTAB+ILUT --- --- --- --- --- --- 42 24.96

no. it. time no. it. time no. it. time no. it. time

8 8.98E-04 8 9.08E-03 14 1.58E-01 39 3.75

λ = 1.00 --- λ = 1.10 --- λ = 1.40 --- λ = 1.80 ----

CGNR 15 8.50E-04 21 1.33E-02 64 4.28E-01 215 13.71

RGMRES 67 8.81E-03 --- --- --- --- --- ---

BiCGSTAB+ILUT --- --- --- --- 77 2.58 89 43.5

no. it. time no. it. time no. it. time no. it. time

21 2.36E-03 52 5.90E-02 132 1.49 344 33.08

λ = 1.70 --- λ = 1.80 --- λ = 1.90 --- λ = 1.93 ---

CGNR 96 5.44E-03 337 2.13E-01 1196 8.00 4093 260.93

RGMRES 29 3.80E-03 59 7.70E-02 135 2.21 394 58.69

RGMRES+ILUT 9 6.62E-03 19 7.34E-02 36 1.37 64 29.27

BiCGSTAB 20 2.74E-03 35 4.86E-02 69 0.93 136 19.86

BiCGSTAB+ILUT 6 4.23E-03 11 5.93E-02 21 1.08 41 24.61

no. it. time no. it. time no. it. time no. it. time

33 3.80E-03 34 3.81E-02 49 5.46E-01 71 7.32

λ = 1.10 ---- λ = 1.10 --- λ = 1.30 ---- λ = 1.50 ---

CGNR 101 5.72E-03 111 7.05E-02 187 1.25 347 22.13

RGMRES 222 2.79E-02 204 2.68E-01 179 2.97 252 35.75

RGMRES+ILUT 386 7.23E-02 --- --- --- ---- --- ---

BiCGSTAB+ILUT 117 2.35E-02 --- --- --- --- --- ---

CGMN

80*80*80=512,000

CGMN

CGMN

CGMN

Problem 9
10*10*10=1,000 20*20*20=8,000 40*40*40=64,000

80*80*80=512,000

Problem 8
10*10*10=1,000 20*20*20=8,000 40*40*40=64,000 80*80*80=512,000

Problem 7
10*10*10=1,000 20*20*20=8,000 40*40*40=64,000

Problem 6
10*10*10=1,000 20*20*20=8,000 40*40*40=64,000 80*80*80=512,000

Table III. Runtimes and number of iterations for problems 6–9.

Problem 1 2 3 4 5 6 7 8 9
λ 1.75 1.55 1.60 1.00 1.75 1.30 1.70 1.90 1.50

Table IV. Optimal values of λ for problems 1–9.

demonstrating that both methods are extremely robust. In terms of runtime performance,
CGMN was much better than CGNR. On seven of the test cases, CGMN appeared to per-
form better than any other combinations of algorithms and preconditioners. In one test
case, the relative performance of CGMN and Bi-CGSTAB (with ILUT) depended on the
desired convergence goal. CGMN performed worse than most methods on the one test

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



24 · D. Gordon and R. Gordon

λ

It
er

at
io

n
s

1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300
problem 1
problem 2
problem 3
problem 5
problem 6
problem 7
problem 9

λ

It
er

at
io

n
s

0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

1200

problem 4
problem 8

Fig. 14. No. of iterations to achieve the prescribed convergence on problems 1–9.

case which was not strongly convection-dominated.
In the eight convection-dominated test cases, CGMN’S initial rate of convergence was

very good, and the relative residual decreased monotonically. This property indicates that
it is potentially useful for applications in which solving a linear system is a frequent inter-
mediate step, such as quasi-linearization methods for non-linear systems.

It should be noted that CGMN requires a relaxation parameter λ to achieve optimal
results. However, the dependence of the convergence rate on the choice of λ is a concave
function, so the optimal λ can be determined quite efficiently and even automatically. On
the eight convection-dominated problems, the rate of convergence is not very sensitive to
small deviations from the optimal λ , so there is no need to find the optimal λ with high
precision.

In comparing CGMN to the other algorithms, the following differences can be noted:
GMRES requires more memory due to the need to store the Krylov subspace basis, and
CGS and Bi-CGSTAB are somewhat oscillatory. With regard to CGNR, note that although
it is not generally considered useful (see [Saad 2003, §8.3.1]), it performed quite well
on the eight convection-dominated problems. It is therefore a reasonable second choice,
particularly on coarse grids or when the required convergence goal is not too small. One
advantage of CGNR is that it is parameter-free.

To summarize, we can conclude from our experiments that CGMN is especially useful
on stiff linear systems derived from elliptic PDEs which are strongly convection-dominated.
The reason for the robustness of CGMN and CGNR is apparently due to the fact that both
are based on the normal equations. A convection-dominated PDE, when discretized with
central difference schemes, gives rise to large off-diagonal elements, whereas in the normal
equations systems, the diagonal elements are usually the largest.

Several research directions and further applications are suggested by this work:

—Finding preconditioners for CGMN which will improve its performance, especially in
cases such as problem 8.

—Application of CGMN to other problems requiring the solution of large sparse linear
systems, such as computerized tomography and electron tomography—see [Fernández

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



CGMN Revisited: Robust and Efficient Solution of Stiff Linear Systems · 25

et al. 2008].

—Application of CGMN as a solver of intermediate linear systems obtained in several
methods for solving nonlinear systems. For example, eigenvalue problems and CFD.

—Application of CGMN to other types of stiff linear systems with large off-diagonal ele-
ments.

ACKNOWLEDGMENTS

The authors are indebted to the anonymous reviewers whose many detailed and instructive
comments were a great help in improving the paper.

REFERENCES

ARIOLI, M., DUFF, I. S., NOAILLES, J., AND RUIZ, D. 1992. A block projection method for sparse matrices.
SIAM J. on Scientific & Statistical Computing 13, 47–70.

ARIOLI, M., DUFF, I. S., RUIZ, D., AND SADKANE, M. 1995. Block lanczos techniques for accelerating the
block cimmino method. SIAM J. on Scientific & Statistical Computing 16, 1478–1511.

BJÖRCK, Å. AND ELFVING, T. 1979. Accelerated projection methods for computing pseudoinverse solutions
of systems of linear equations. BIT 19, 145–163.

BRAMLEY, R., CHEN, H.-C., MEIER, U., AND SAMEH, A. 1990. On some parallel preconditioned CG
schemes. In Proc. International Conf. on Preconditioned Conjugate Gradient Methods, Nijmegen, The Nether-
lands, June 1989, O. Axelsson and L. Yu. Kolotilina, Eds. Lecture Notes in Mathematics, vol. 1457. Springer-
Verlag, Berlin, 17–27.

BRAMLEY, R. AND SAMEH, A. 1991. Domain decomposition for parallel row projection algorithms. Applied
Numerical Mathematics 8, 303–315.

BRAMLEY, R. AND SAMEH, A. 1992. Row projection methods for large nonsymmetric linear systems. SIAM
J. on Scientific & Statistical Computing 13, 168–193.

CIMMINO, G. 1938. Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. La Ricerca Scientifica
XVI, Series II, Anno IX 1, 326–333.

EGGERMONT, P. P. B., HERMAN, G. T., AND LENT, A. 1981. Iterative algorithms for large partitioned linear
systems, with applications to image reconstruction. Linear Algebra & Its Applications 40, 37–67.

ELFVING, T. 1980. Block-iterative methods for consistent and inconsistent linear equations. Numerische Math-
ematik 35, 1–12.

ELFVING, T. 2004. A projection method for semidefinite linear systems and its applications. Linear Algebra &
its Applications 391, 57–73.

ELMAN, H. AND GOLUB, G. 1990. Iterative methods for cyclically reduced non-self-adjoint linear systems.
Mathematics of Computation 54, 190 (Apr.), 671–700.

FERNÁNDEZ, J.-J., GORDON, D., AND GORDON, R. 2008. Efficient parallel implementation of iterative recon-
struction algorithms for electron tomography. J. of Parallel & Distributed Computing 68, 5 (May), 626–640.

FERZIGER, J. H. AND PERIĆ, M. 2002. Computational Methods for Fluid Dynamics, 3rd. ed. Springer-Verlag,
Berlin.

FLETCHER, R. 1976. Conjugate gradient methods for indefinite systems. In Proc. Dundee Biennial Conf. on
Numerical Analysis, 1975, G. A. Watson, Ed. Lecture Notes in Mathematics, vol. 506. Springer-Verlag, Berlin,
73–89.

GORDON, D. AND GORDON, R. 2005. Component-averaged row projections: A robust, block-parallel scheme
for sparse linear systems. SIAM J. on Scientific Computing 27, 1092–1117.

GORDON, D. AND GORDON, R. 2008. CARP-CG: a robust and efficient parallel solver for linear systems,
applied to strongly convection-dominated elliptic partial differential equations. Tech. rep., Dept. of Computer
Science, Univ. of Haifa, Israel. Dec. Submitted for publication. http://cs.haifa.ac.il/∼gordon/carp-cg.pdf.

GORDON, D. AND MANSOUR, R. 2007. A geometric approach to quadratic optimization: an improved method
for solving strongly underdetermined systems in CT. Inverse problems in Science & Engineering 15, 8 (Dec.),
811–826.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.



26 · D. Gordon and R. Gordon

GRESHO, P. AND SANI, R. 1998. Incompressible Flow and the Finite Element Method: Advection-Diffusion
and Isothermal Laminar Flow. John Wiley & Sons, Ltd., Chichester, England.

HERMAN, G. T. 1980. Image Reconstruction From Projections: The Fundamentals of Computerized Tomogra-
phy. Academic Press, New York.

HERMAN, G. T., LENT, A., AND LUTZ, P. H. 1978. Relaxation methods for image reconstruction. Communi-
cations of the ACM 21, 152–158.

HESTENES, M. R. AND STIEFEL, E. 1952. Methods of conjugate gradients for solving linear systems. Journal
of Research of the National Bureau of Standards 49, 409–436.

KACZMARZ, S. 1937. Angenäherte Auflösung von Systemen linearer Gleichungen. Bulletin de l’Académie
Polonaise des Sciences et Lettres A35, 355–357.

KAMATH, C. AND SAMEH, A. 1989. A projection method for solving non-symmetric linear systems on multi
processors. Parallel Computing 9, 3, 291–312.

KAMATH, C. AND WEERATUNGA, S. 1990. Implementation of two projection methods on a shared memory
multiprocessor: DEC VAX 6240. Parallel Computing 16, 375–382.

KAMATH, C. AND WEERATUNGA, S. 1992. Projection methods for the numerical solution of non-self-adjoint
elliptic partial differential equations. Numerical Methods for Partial Differential Equations 8, 59–76.

KINCAID, D. AND YOUNG, D. 1981. Adapting iterative algorithms developed for symmetric systems to non-
symmetric systems. In Elliptic Problem Solvers, M. Schultz, Ed. Academic Press, New York, 353–359.

KUCK, D., DAVIDSON, E., LAWRIE, D., AND SAMEH, A. 1986. Parallel super-computing today and the cedar
approach. Science 231, 967–974.

LANCZOS, C. 1952. Solution of systems of linear equations by minimized iterations. Journal of Research of the
National Bureau of Standards 49, 33–53.

SAAD, Y. 1990. SPARSKIT: a basic tool kit for sparse matrix computations. Tech. Rep. RIACS-90-20, Research
Institute for Advanced Computer Science, NASA Ames Research Center, Moffet Field, CA.

SAAD, Y. 2003. Iterative Methods for Sparse Linear Systems, 2nd. ed. SIAM, Philadelphia, PA.
SAAD, Y. AND SCHULTZ, M. H. 1986. GMRES: a generalized minimal residual algorithm for solving nonsym-

metric linear systems. SIAM J. on Scientific & Statistical Computing 7, 856–869.
SONNEVELD, P. 1989. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. on Scientific

& Statistical Computing 10, 36–52.
TANABE, K. 1971. Projection method for solving a singular system of linear equations and its applications.

Numerische Mathematik 17, 203–214.
TRUMMER, M. R. 1981. Reconstructing pictures from projections: On the convergence of the ART algorithm

with relaxation. Computing 26, 189–195.
TUMINARO, R. S., HEROUX, M. A., HUTCHINSON, S. A., AND SHADID, J. N. 1999. AZTEC user’s guide.

Tech. Rep. SAND99-8801J, Sandia National Laboratories, Albuquerque, New Mexico.
VAN DER VORST, H. A. 1992. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution

of nonsymmetric linear systems. SIAM J. on Scientific & Statistical Computing 13, 631–644.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 18, August 2009.


