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COMPONENT-AVERAGED ROW PROJECTIONS: A ROBUST,
BLOCK-PARALLEL SCHEME FOR SPARSE LINEAR SYSTEMS∗

DAN GORDON† AND RACHEL GORDON‡

Abstract. A new method for the parallel solution of large sparse linear systems is introduced.
It proceeds by dividing the equations into blocks and operating in block-parallel iterative mode; i.e.,
all the blocks are processed in parallel, and the partial results are “merged” to form the next iterate.
The new scheme performs Kaczmarz row projections within the blocks and merges the results by
certain component-averaging operations—hence it is called component-averaged row projections, or
CARP. The system matrix can be general, nonsymmetric, and ill-conditioned, and the division into
blocks is unrestricted. For partial differential equations (PDEs), if the blocks are domain-based, then
only variables at the boundaries between domains are averaged, thereby minimizing data transfer
between processors. CARP is very robust; its application to test cases of linear systems derived from
PDEs shows that it converges in difficult cases where state-of-the-art methods fail. It is also very
memory efficient and exhibits an almost linear speedup ratio, with efficiency greater than unity in
some cases. A formal proof of convergence is presented: It is shown that the component-averaging
operations are equivalent to row projections in a certain superspace, so the convergence properties of
CARP are identical to those of Kaczmarz’s algorithm in the superspace. CARP and its convergence
proof also apply to the consistent convex feasibility problem.
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1. Introduction. Iterative methods for solving large sparse linear systems of
equations are advantageous over the classical direct solvers, especially for huge sys-
tems. Methods of parallelizing iterative algorithms [20, 29] divide the equations into
blocks and usually fall into one of two modes of operation. In the block-sequential
(also called block-iterative) mode, the blocks are processed sequentially, but the com-
putations on each block’s equations are done in parallel. Examples of block-sequential
methods are found in [1, 6, 10]. In the second mode of operation, sometimes referred
to as block-parallel, the blocks are assigned to different processors to be processed in
parallel, and the results from all the blocks are then combined in some manner to
produce the next iterate. Typical examples of block-parallel schemes are parallel ver-
sions of Bi-CGSTAB [35], RGMRES [30], conjugate gradient (CG), and CG-squared
(CGS) [31]; other examples include those in [2, 4, 9, 12, 13].

Kaczmarz’s row projection method (KACZ) [23] was one of the first iterative
methods used for large nonsymmetric systems. Its main advantages are robustness,
guaranteed convergence on consistent systems, and cyclic convergence on inconsistent
systems [8, 16, 32]. KACZ was also independently discovered in the context of im-
age reconstruction from projections, where it is called ART (algebraic reconstruction
technique) [21]. Kaczmarz’s algorithm, by its nature and mathematical definition,
is inherently sequential since, at each iterative step, the current iterate is projected
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onto the hyperplane defined by the next equation. In the context of partial differ-
ential equations (PDEs), current approaches to parallelizing KACZ have taken the
block-sequential approach by replacing row projections with block projections and
processing the blocks sequentially; see [6, 7, 24].

In this paper we present a block-parallel method of parallelizing Kaczmarz’s al-
gorithm for PDEs without block projections. Our approach stems from domain-
decomposition considerations: After partitioning the domain into subdomains and
assigning subdomains to processors, each processor is assigned the block of equations
whose central node lies in its subdomain(s). Starting from some initial estimate,
each processor performs a sequence of row projections on the hyperplanes defined by
its block’s equations, as in KACZ, and the results from the various blocks are then
“merged” together to form the next iterate. The merge operation takes variables,
which belong to two or more blocks, and replaces their different values (in the differ-
ent domains) by their average. Thus, only variables bordering subdomain boundaries
are averaged, so communication between processors is limited. Domain boundaries
can even overlap, which means that the blocks of equations need not be disjoint.

We call this algorithm component-averaged row projections, or CARP. The princi-
ple of component-averaging also appeared, in a different form, in the CAV and BICAV
algorithms of Censor, Gordon, and Gordon in [11, 10]. The main idea there was to
utilize the sparsity of the system matrix of image-reconstruction problems. Note that
the “string-averaging” algorithm [9, 12] also performs block-parallel row projections,
but the resulting vectors of the separate blocks are combined by taking their regular
(weighted) average.

CARP is completely general and places no restriction on the system matrix or the
selection of the blocks. A formal proof of convergence is presented. It relies on a novel
result which shows that the averaging operations are equivalent to row projections in
a certain superspace. From this, it follows that the convergence properties of CARP
are identical to those of Kaczmarz’s algorithm in the superspace, and that CARP can
also be used for nonsquare systems. CARP and its convergence proof, which uses a
result of Aharoni and Censor [1], are also valid for the consistent case of the convex
feasibility problem.

CARP provides a very robust parallel iterative method for solving large sparse
linear systems derived from PDEs. It converges in difficult cases where state-of-the-art
parallel versions of RGMRES, CGS, and Bi-CGSTAB fail. Since CARP is a linear
iterative method, its convergence rate is theoretically limited; see [20, sec. 3.2.5].
Hence, it is not as efficient as some of the nonlinear methods to which it is compared
in this paper. However, some of the nonlinear methods fail to converge on several
of the test cases. In terms of its parallel behavior, CARP exhibits an almost linear
speedup ratio, as well as efficiency greater than unity on some of the test cases.

CARP is memory efficient, compared to block-based projection methods such as
those in [2, 3, 6, 7] or Krylov-based methods, since each processor operates on its
equations one at a time. The memory requirement for each processor is just the
submatrix of its local equation coefficients and the local part of the iterated solution
vector; there is no need to store any other data related to a domain’s submatrices,
as in other methods. Furthermore, for many problems, there is no need even to store
the equation coefficients since they can be calculated “on the fly” as needed. Another
advantage is that there is no need to preprocess the system matrix, so CARP is
suitable for quasi-linearization methods for nonlinear problems, in which the system
matrix is modified repeatedly.

The rest of the paper is organized as follows. Section 2 places our work in relation
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to previous work. Section 3 presents the mathematical background, the formulation
of CARP, the convergence proofs, and some extensions. Section 4 presents numerical
results comparing the new approach with state-of-the-art parallel techniques, and
section 5 concludes with a discussion and future research directions.

2. Relation to previous work. Block projection methods (see Elfving [17])
use block projections instead of the row projections of KACZ [23] or Cimmino’s al-
gorithm [14]. Hence, such methods require computation and storage of data related
to the inverses of submatrices. This data consists of Cholesky factors of the normal
equation matrices or the LU factors of the augmented system matrices. As mentioned,
this gives CARP an advantage with regard to memory and applicability to nonlinear
systems.

Bramley and Sameh [6], following Kamath and Sameh [24], parallelized block
KACZ with CG-acceleration under five partitioning schemes on regular grids. The
method was very robust, but there was no clear-cut “best” partitioning scheme: The
RP9 scheme produced the fastest runtime results on most of the test problems, but it
requires inverse submatrix data, and it is unsuitable for unstructured grids. The RP27
scheme does not need submatrix data, but it performed best on only one problem and
it is suitable only for structured grids. The cube-4 scheme is adaptable to unstructured
grids, but it also uses data related to submatrix inverses, and its runtime is the worst
or second worst of the schemes tested.

In [7], the above approach was extended to include also CG-acceleration of block-
Cimmino and a new projection method called V-RP. These methods, using the RP9
scheme from [6], were compared with RGMRES and CGNE, both with and without
preconditioning. Arioli et al. [2] studied parallel CG-acceleration of block-Cimmino
for different block partitionings. Their study was restricted to block-tridiagonal sys-
tems, though their technique may be applicable to other cases. This method also
requires data related to submatrix inverses, with the above disadvantages. In [3],
this research was extended to include block-Lanczos acceleration, which improved the
runtime performance (over the CG-acceleration) for some ill-conditioned systems.

Three of the most successful and commonly used parallel techniques for large
sparse nonsymmetric systems are RGMRES [29], CGS [31], and Bi-CGSTAB [35].
These methods, which can be used with or without preconditioners, often converge
faster than the (linear) projection methods. However, they are not as robust as row
projection methods and fail in some difficult cases.

As mentioned, the convergence proof of CARP relies on extending the Euclidean
space into a certain superspace. Pierra [27, 28] introduced the concept of extending
the Euclidean space into a product space, and this idea was used by Combettes [15]
to prove the convergence of Cimmino’s algorithm. In the product space extension,
each coordinate is “extended” to a fixed number of coordinates in the superspace.
Our technique of a superspace extension is a generalization of the product space
concept, allowing extensions of only some of the coordinates, as well as different-sized
extensions for different coordinates.

3. Mathematical development.

3.1. Background, motivation, and presentation of CARP. Consider the
following system of m linear equations in n variables:

n∑
j=1

xja
i
j = bi for 1 ≤ i ≤ m, or, in matrix form: Ax = b.(1)
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In KACZ, each iterate is projected onto a hyperplane (defined by one of the equations)
in a cyclic manner. KACZ has been studied very extensively, both theoretically and
experimentally. Its convergence with relaxation parameters, for consistent systems,
has been shown by Herman, Lent, and Lutz [22] and by Trummer [33]. Tanabe [32]
proved that when the system is inconsistent, it converges cyclically; i.e., for each
hyperplane, the sequence of projections on that hyperplane converges to a limit. See
also [8] for further results in that direction.

Throughout the rest of the paper we assume that every column of A is nonzero.
Such a column, if it exists, can be removed as a preliminary step since it corresponds
in effect to coefficients of a “fictitious” variable, i.e., one whose value can be arbitrary.
For 1 ≤ i ≤ m, we denote by ai the ith row vector of the matrix A in (1) and by
〈u, v〉 the dot product of two vectors u, v. KACZ can be described as follows: Starting
from an arbitrary point x0 in the n-dimensional Euclidean space, the kth iterate xk

is projected toward the next hyperplane, and the hyperplanes are chosen in cyclic
order. To simplify our notation, we denote by i(k) the kth index taken cyclically from
1 to n, i.e., i(k) = (k mod m) + 1. The regular KACZ algorithm (with relaxation
parameters) is the following.

Algorithm 1 (KACZ).

Initialization: x0 ∈ R
n is arbitrary.

Iterative step: Given xk, compute

xk+1 = xk + λk

bi(k) − 〈ai(k), xk〉
‖ai(k)‖2

ai(k) .(2)

If we assume that the equations are normalized, i.e., for 1 ≤ i ≤ n, the ith
equation is divided by ‖ai‖, then (2) can be replaced by

xk+1 = xk + λk

(
bi(k) − 〈ai(k), xk〉

)
ai(k) .(3)

It is easy to see that the sequence of points produced by KACZ is identical to the one
obtained by first normalizing the equations and replacing (2) by (3).

The motivation for CARP was to parallelize KACZ for PDEs using domain de-
composition, but without using block projections with their inherent limitations. This
led to a block-parallel method in which the domain is divided into subdomains (pos-
sibly overlapping), which can be assigned to different processors. Each processor is
assigned the block of those equations whose central node lies in its subdomain(s).
Starting from some initial estimate, the following two main steps are repeated until
convergence: In the first step, consecutively executed row projections are performed
in every block (as in KACZ) on all the equations of the block; in fact, more than
one sweep can be carried out. In the second step, every variable shared by two or
more blocks is replaced by the average of its values in the separate blocks. Thus,
only variables bordering a neighboring domain are averaged. The above approach is
formalized as follows.

The equations of the linear system (1) are divided into blocks, B1, . . . , Bt, which
are not necessarily disjoint. For each 1 ≤ j ≤ n, denote by Ij the index set of the
blocks which contain an equation with a nonzero coefficient of xj ; i.e., Ij = {1 ≤ q ≤
t | xj has a nonzero coefficient in some equation of Bq}. Let sj = |Ij | (the size of Ij).
The following definition explains and formalizes the merge operation of CARP.

Definition 1. Let B = {B1, . . . , Bt} be as above. The component-averaging
operator relative to B is a mapping CAB : (Rn)t → (Rn), defined as follows: Let
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x1, . . . , xt ∈ R
n. Then CAB(x1, . . . , xt) is the point in R

n whose jth component is
given by

CAB(x1, . . . , xt)j =
1

sj

∑
q∈Ij

xq
j ,

where xq
j is the jth component of xq, for 1 ≤ q ≤ t.

We can now present the CARP algorithm. In the following, given a block of
equations Bq and a point x ∈ R

n, we use the term “KACZ sweep” to refer to the
operation of successively projecting x onto the hyperplanes defined by the equations
of Bq, as in KACZ (Algorithm 1); this is formalized as follows.

Definition 2. Let Bq, 1 ≤ q ≤ t, be a block of equations of the system (1),
and let {i1, . . . , ir} be the set of indices of Bq’s equations. For x ∈ R

n, we define an
operator KSWP(Bq, x) : R

n → R
n as follows. x0 = x, and for 0 ≤ j < r, define

xj+1 = xj + λj

bij − 〈aij , xj〉
‖aij‖2

aij ,

where the λj’s are relaxation parameters. Then KSWP(Bq, x) = xr.
Algorithm 2 (CARP).

Initialization: x0 = (x0
1, . . . , x

0
n) ∈ R

n is arbitrary.
Iterative step: Given xk, do:
1. For every 1 ≤ q ≤ t, in parallel, execute some finite number of KACZ sweeps

on all the equations of Bq. For every 1 ≤ q ≤ t, denote the resulting point by
x̄q. Formally, for some pk ≥ 1, x̄q = KSWP pk(Bq, x

k).
2. xk+1 = CAB(x̄1, . . . , x̄t).

Appendix A provides a detailed implementation of CARP, allowing separate pro-
cessors for the different blocks.

3.2. Convergence proofs. The proof of convergence of CARP proceeds along
the following lines. We first transform the system (1) into a system of equations in
some superspace R

sof R
n. In R

s, the equations belonging to different blocks do not
share any common variables, so the parallel processing of the separate blocks is equiv-
alent to regular sweeps of KACZ in R

s. We then prove a general averaging lemma,
according to which, operations of component averaging are equivalent to certain row
projections. From this it follows that CARP is just KACZ in R

s.
Assume w.l.o.g. that for some 1 ≤ r ≤ n the variables x1, . . . , xr are exactly the

ones shared by two or more blocks, i.e., s1, . . . , sr ≥ 2 and sr+1 = · · · = sn = 1.
Denote s =

∑n
j=1 sj , and consider the space R

s. In order to simplify our notation,
we will use y instead of x for vectors and components of R

s, and index vectors of R
s

as follows:

y =

⎛⎜⎝y1,1, . . . , y1,s1︸ ︷︷ ︸
s1 elements

, . . . , yr,1, . . . , yr,sr︸ ︷︷ ︸
sr elements

, yr+1, . . . , yn︸ ︷︷ ︸
n−r elements

⎞⎟⎠ .

We now define the following expansion mapping E : R
n → R

s:

E(x1, . . . , xn) = (y1,1, . . . , y1,s1 , . . . , yr,1, . . . , yr,sr , yr+1, . . . , yn) ,

where yj,1 = · · · = yj,sj = xj for 1 ≤ j ≤ r and yj = xj for r < j ≤ n.
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Each Ij (the index set of the blocks which contain a nonzero coefficient of xj) has
sj elements, so it can be represented as Ij = {qj,1, qj,2, . . . , qj,sj}. For every 1 ≤ j ≤ n
and 1 ≤ � ≤ sj , variables of the form yj,� will be used to “represent” the “copy” of
xj in the block Bqj,� , as follows: For 1 ≤ j ≤ r and 1 ≤ � ≤ sj , replace xj by yj,� in
block Bqj,� . For 1 ≤ j ≤ r, replace xj by yj in all the equations.

Let B′
1, . . . , B

′
t denote the blocks of equations obtained from B1, . . . , Bt, respec-

tively, by the above replacements. Clearly, in the new blocks, there are no variables
belonging to two or more blocks, even if there were shared equations in the original
blocks. Denote B′ =

⋃ t
q=1 B

′
q; this set of equations is defined in the space R

s. We
now present an alternative formulation of CARP in which the basic operations are
performed in R

s.
Algorithm 3 (alternate CARP).

Initialization:
1. x0 = (x0

1, . . . , x
0
n) ∈ R

n is arbitrary.
2. y0 = E(x0) (the initial vector in R

s).
3. Compute the set of equations B′ as above.

Iterative step: Given yk, do:
1. For every 1 ≤ q ≤ t, execute some finite number of KACZ sweeps on the

equations of B′
q, and get new values for the variables of B′

q. Formally, for

some pk ≥ 1, compute ȳ q = KSWP pk(B′
q, y

k).
2. (a) For 1 ≤ j ≤ r, set

y k+1
j,1 = · · · = y k+1

j,sj
=

1

sj

(
sj∑
�=1

ȳ
qj,�
j,�

)
.

(b) For r < j ≤ n, Ij = {qj,1}, so set yk+1
j = ȳ

qj,1
j .

(c) Denote yk+1 =
(
yk+1
1,1 , . . . , yk+1

1,s1
, . . . , yk+1

r,1 , . . . , yk+1
r,sr , yk+1

r+1 , . . . , y
k+1
n

)
.

Final step (after K iterative steps): Output x∗ = (x∗
1, . . . , x

∗
n), where

x∗
j =

{
yKj,1 for 1 ≤ j ≤ r,

yKj for r < j ≤ n.

We can see that other than the initial and final steps, the entire algorithm can
be executed iteratively or in parallel in R

s, since the blocks B′
q do not contain any

common variables. It follows that iterative step 1 is one (or more) KACZ sweeps on
the equations of B′. Furthermore, it is clear that the result (after some K iterative
steps) of this alternative form of CARP is the same as that of the regular CARP,
assuming that the same relaxation parameters and repetition factors (λk and pk) are
used.

The following lemma will be used to show that the averaging operations in itera-
tive step 2 are row projections in R

s.
Lemma 1 (the averaging lemma). Let 1 ≤ m ≤ n, y0 = (y0

1 , . . . , y
0
n) ∈ R

n, and
let y1 = (y1

1 , . . . , y
1
n) ∈ R

n be defined as follows: y1
i = (y0

1+· · ·+y0
m)/m for 1 ≤ i ≤ m,

and y1
i = y0

i for m < i ≤ n. Then y1 can be obtained from y0 by performing a sequence
of m− 1 orthogonal projections on hyperplanes of R

n, as in KACZ.
Proof. The proof proceeds by induction on m. For m = 1, there is nothing to

prove. For m = 2, project y0 onto the plane defined by the equation −y1 + y2 = 0.
The vector of coefficients is a = (−1, 1, 0, . . . , 0), the square of its norm is ‖a‖2 = 2,
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and the projection y′ = (y′1, y
′
2, . . . ) is

y′ = y0 − 1

2
〈y0, a〉a

= (y0
1 , y

0
2 , . . . ) − 1

2
(−y0

1 + y0
2)(−1, 1, 0, . . . , 0)

=

(
1

2
(y0

1 + y0
2),

1

2
(y0

1 + y0
2), y0

3 , y
0
4 , . . .

)
.

In other words, for m = 2, we obtained y′1 = y′2 = (y0
1 + y0

2)/2 (and left the other
components unchanged) by performing one orthogonal projection on a suitable hy-
perplane.

We assume that the statement is true for m, and prove it for m + 1: Let y0 =
(y0

1 , . . . , y
0
n). Project y0 onto the hyperplane defined by the equation −y1 − y2 −

· · · − ym +mym+1 = 0. The vector of coefficients is a = (−1, . . . ,−1,m, 0, . . . , 0) and
the square of its norm is ‖a‖2 = m + m2 = m(m + 1). The projection is the point
y′ = (y′1, . . . , y

′
n) defined by

y′ = y0 − 〈y0, a〉
m(m + 1)

a

= (y0
1 , . . . , y

0
n) −

−y0
1 − · · · − y0

m + my0
m+1

m(m + 1)
(−1, . . . ,−1,m, 0, . . . , 0) .

For each 1 ≤ i ≤ m, we have

y′i = y0
i − 1

m(m + 1)

⎛⎝ m∑
j=1

y0
j − my0

m+1

⎞⎠ ,

and the (m + 1)st coefficient is

y′m+1 = y0
m+1 +

y0
1 + · · · + y0

m −my0
m+1

m(m + 1)
m

=
1

m + 1

(
y0
1 + · · · + y0

m

)
+

(
1 − m

m + 1

)
y0
m+1

=
1

m + 1

(
y0
1 + · · · + y0

m

)
+

m + 1 −m

m + 1
y0
m+1

=
1

m + 1

(
y0
1 + · · · + y0

m + y0
m+1

)
.

In other words, y′m+1 already has the required value. For m + 1 < i ≤ n, y0
i is

unchanged, i.e., y′i = y0
i . To set the other variables to the same value, we rely on the

induction hypothesis, according to which we can set

y′′1 = · · · = y′′m =
1

m
(y′1 + · · · + y′m)

by using m − 1 orthogonal projections on hyperplanes of R
n. Note also that by the

induction hypothesis, all the other variables will remain unchanged, i.e., y′′i = y′i for
m + 1 ≤ i ≤ n.
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For each 1 ≤ k ≤ m, we have

y′′k =
1

m

m∑
i=1

y′i

=
1

m

m∑
i=1

⎡⎣y0
i − 1

m(m + 1)

⎛⎝ m∑
j=1

y0
j − my0

m+1

⎞⎠⎤⎦

=
1

m

m∑
i=1

y0
i − 1

m2(m + 1)

m∑
i=1

⎡⎣ m∑
j=1

y0
j − my0

m+1

⎤⎦

=
1

m

m∑
i=1

y0
i − m

m2(m + 1)

⎛⎝ m∑
j=1

y0
j − my0

m+1

⎞⎠
=

1

m

m∑
i=1

y0
i − 1

m(m + 1)

m∑
j=1

y0
j +

1

m + 1
y0
m+1

=

(
1

m
− 1

m(m + 1)

) m∑
i=1

y0
i +

1

m + 1
y0
m+1

=
1

m + 1

m∑
i=1

y0
i +

1

m + 1
y0
m+1

=
1

m + 1

m+1∑
i=1

y0
i .

This proves the induction hypothesis and the lemma.
We shall refer to the equations required by CARP for part 2 of its iterative step as

the “averaging” equations. We also denote by B′′ the system of equations consisting
of B′ together with all the averaging equations. As a consequence of the averaging
lemma, we have the following.

Theorem 1. If the system of equations (1) is consistent, then B′′ is consistent
and CARP converges to a solution of (1) for any choice of the relaxation parameters
λk (provided ε < λk < 2−ε for some fixed positive ε) and for any positive choice of the
internal KACZ sweeps (pk). If the system (1) is inconsistent, then CARP converges
cyclically under the following two conditions: 1. The sweeps through the equations are
cyclic, and 2. the relaxation parameters are cyclic; i.e., a fixed relaxation parameter
is associated with every equation of B′′.

Proof. Assume that the system (1) is consistent. It follows immediately that the
set of equations of B′ is also consistent. In B′, each of the original variables xj belong-
ing to two or more blocks is replaced by a set of variables of the form yj,1, . . . , yj,sj ,
so the equations of B′, together with the set of equations {yj,1 = yj,2, . . . , yj,sj−1

=
yj,sj | 1 ≤ j ≤ r}, form a consistent set of equations. Note now that the averaging
equations are mathematically equivalent to the above set of equations. Hence, the
system B′′ (consisting of B′ together with the averaging equations) forms a consistent
system of linear equations in R

s.
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Furthermore, note that the number of averaging equations is exactly equal to s−n,
which is the number of additional coordinates we get in going from R

n to R
s. This

means that the number of additional equations (in going from B′ to B′′) is exactly
equal to the number of additional variables. In particular, if the system matrix of (1)
is square, then the system matrix of B′′ is also square. We refer now to the results of
Aharoni and Censor [1], according to which KACZ converges on a consistent system
even if the projections are not performed cyclically; all that is required is that each
equation should be used infinitely often. This allows us to perform, in iterative step 1
of CARP, any positive number of internal sweeps in each block. See subsection 3.4
for details of the results of [1].

Assume now that the system (1) is inconsistent. Tanabe [32] shows that KACZ
converges cyclically when there are no relaxation parameters (i.e., λ = 1). The exten-
sion of this result to cyclic relaxation parameters follows from Eggermont, Herman,
and Lent [16, Thm. 3.1], from which our result for inconsistent systems follows.

Note that when the averaging operations are considered as row projections, they
require a relaxation parameter λ = 1. Theorem 1 allows us to use λ 	= 1 for the other
equations, in an inconsistent system, provided the projections follow a cyclic pattern
and the relaxation parameter associated with every equation is fixed.

The generality of [1, Thm. 1], in the consistent case, allows us to modify the
blocks, the number of inner iterations, and the relaxation parameters during the
course of CARP, provided the conditions for [1, Thm. 1] are observed. This could be
useful in a setting in which the number of processors can vary during the course of a
computation.

3.3. CARP1: Blocks of one equation. A special case of CARP, which we
call CARP1, occurs when every equation is taken as a separate block. In this case,
sj is simply the number of equations in which xj has a nonzero coefficient, and the
iterative step of CARP1 is given by the equation

xk+1
j = xk

j +
λk

sj

m∑
i=1

bi − 〈ai, xk〉
‖ai‖2

2

aij .(4)

CARP1 can be implemented on a multiprocessor system in block-parallel mode,
though the implementation blocks are not necessarily single equations—they are sim-
ply (disjoint) blocks of equations assigned to different processors for the sake of run-
time efficiency. Furthermore, the implementation blocks of CARP1 are not intrinsic
to the algorithm as in the general CARP. This implementation is detailed in Appen-
dix B.

Equation (4) is similar to the well-known Cimmino algorithm [14], whose iterative
step is

xk+1
j = xk

j +
λk

m

m∑
i=1

bi − 〈ai, xk〉
‖ai‖2

2

aij .(5)

Cimmino’s algorithm was the initial motivational step leading to the CAV algo-
rithm [11]: It was observed that when system (1) is sparse, then in the sum of (5)
only a “small” number of elements are nonzero, but the sum is divided by the “large”
m. This led to an attempt to replace m by sj , resulting in the iterative step of [11,
eq. 1.9], which is identical to (4). Note that even though CARP1 already appeared
in [11] (without any specific name), no proof of convergence was given there; naturally,
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the convergence properties of CARP1 follow from Theorem 1.1

In [11], CARP1 was examined on test cases of image reconstruction from projec-
tions. Its initial rate of convergence was identical to that of CAV, but the images
obtained were somewhat inferior to those obtained with CAV. Similar comparative
results were obtained in [10] with BICAV (a block-sequential version of CAV) and a
block-sequential version of CARP1.

CAV made use of sparsity-oriented weights, but differently from CARP: With
sj defined as for CARP1, we define a sparsity weight wi = 1/(

∑n
j=1 sj(a

i
j)

2) for
1 ≤ i ≤ m. The iterative step of CAV is given by

xk+1 = xk + λk

m∑
i=1

wi

(
bi − 〈ai, xk〉

)
ai .(6)

Hence, the projections in CAV are orthogonal to the hyperplanes and weighted by wi

(in addition to λk). CAV and CARP1 are identical only when all the sj ’s are equal.
Note that in CARP1, as given by (4), xk+1 can be viewed as the average of

certain projections of xk, but these projections are not, in general, orthogonal to
the hyperplanes: Assume for simplicity that the equations are normalized and that
λk = 1; then from (4) we get

xk+1
j =

1

m

m∑
i=1

[
xk
j +

m

sj

(
bi − 〈ai, xk〉

)
aij

]
.(7)

It follows that xk+1 is the average of a set of vectors pi, 1 ≤ i ≤ m, where the jth
component of pi is the summand of (7). If we consider pi to be a projection of xk in
some direction “toward” the hyperplane defined by the ith equation, then the direction
of this projection is pi−xk. However, from (7), we see that the jth component of this
direction vector is m(bi−〈ai, xk〉)aij/sj , so the direction vector is not colinear with ai

(unless all the sj ’s are equal). Hence, pi is not, in general, an orthogonal projection
of xk in the direction of the ith hyperplane.

3.4. Applicability of CARP to the convex feasibility problem. Aharoni
and Censor [1] proved a general theorem regarding orthogonal projections onto convex
sets. This result, together with the averaging lemma, led to the proof of Theorem 1.
We shall show that Theorem 1 also applies to the consistent case of the convex fea-
sibility problem (CFP), from which it follows that CARP is also applicable to the
CFP.

Some preliminary definitions are needed: Let I = {1, 2, . . . ,m} be a set of integers.
A function w : I → R is called a weight function if w(i) ≥ 0 for all i ∈ I and∑

i∈I w(i) = 1. An infinite sequence of weight functions {wk}k≥0 is called fair if for
every i ∈ I, wk(i) > 0 infinitely often; i.e., the inequality holds for infinitely many
values of k.

Let {Qi | i ∈ I} be a finite family of closed convex sets in R
n such that Q =⋂

i∈I Qi 	= ∅, and let Pi : R
n → Qi be defined as the orthogonal projection onto Qi;

i.e., for x ∈ R
n, Pi(x) = arg min{‖x− y‖ | y ∈ Qi}. Now, given a weight function w,

we define Pw : R
n → R

n by Pw(x) =
∑

i∈I w(i)Pi(x).

1While revising this paper, the authors learned that Censor, Elfving, and Herman independently
proved that CARP1, with weights, converges for both consistent and inconsistent systems.
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Consider now the block-iterative projections (BIP) algorithm [1, Alg. 1], which
starts from an arbitrary point x0 ∈ R

n and whose iterative step is given by

xk+1 = xk + λk

(
Pwk

(xk) − xk
)
,(8)

where {wk}k≥0 is a fair sequence of weight functions and {λk}k≥0 is a sequence of
user-determined relaxation parameters. We can see from (6) and (8) that when the
convex sets Qi are hyperplanes, then CAV and BIP have the same form, though the
sparsity weights of CAV do not necessarily satisfy the conditions for the weights of
BIP.

In [1, Thm. 1], it is shown that if for some ε > 0, ε < λk < 2 − ε for all k, then
the sequence of points {xk}k≥0 generated by the BIP algorithm converges to a point

x∗ ∈ Q̂, where Q̂ =
⋂

i∈Î Qi and Î = {i ∈ I |
∑�

k=0 wk(i) −→�→∞ ∞}. (If Î = ∅, then Q̂

is defined as R
n.) The choices of blocks and weight functions determine the behavior

of BIP—from sequential to block-sequential and to simultaneous; see [1] for details.
To apply CARP to the CFP, we divide the set of projections (onto the convex sets)

into blocks, which need not be disjoint. Starting from an arbitrary initial point, we
perform, for each block of projections, a sequence of orthogonal projections onto the
convex sets of the block. This is done in parallel on all the blocks. The results from the
separate blocks are then merged by component-averaging, as in the CARP algorithm
for linear equations, to form the next iterate. The variables that are averaged are
only those which are affected by projections belonging to two or more blocks.

The convergence proof for the consistent case is the same as in Theorem 1. This
follows from the simple observation that, in the superspace, the hyperplanes defined
by the averaging equations are also convex sets. It is easily seen that if the original
convex sets have a nonempty intersection, then in the superspace, the convex sets and
the hyperplanes defined by the averaging equations also have a nonempty intersection.

4. Numerical results and discussion. Tests were run on two different types
of parallel machines: A shared memory SGI origin 2000, and a distributed machine—
a PC cluster running under Linux. The PC cluster consists of 16 single Pentium IV,
2.8GHz processors with 1GB memory each, connected with a dedicated 1Gb/sec. eth-
ernet switch. Results were obtained on both machines on six test problems from the
literature. The problems were run on the SGI and the PC cluster with 1, 2, 4, 8,
and 16 processors, and also with 32 and 64 processors on the SGI machine. This
section describes the test problems, the nonsymmetric solvers to which CARP was
compared, numerical considerations and implementation, the stopping tests, and the
numerical results and discussion.

4.1. The test problems. We examined six PDE problems proposed by Bramley
and Sameh [7]. These problems were collected from a variety of sources [18, 24, 25, 26]
and were later used as test problems in several other works [2, 3]. The problems are
typical of many fields, such as computational fluid dynamics (CFD), heat transfer,
and structural mechanics, and are commonly used in a wide variety of industrial and
engineering applications.

Each problem has an assigned analytic solution which is used to determine the
boundary conditions. Furthermore, the analytic solution enables the calculation of the
norm of the error. In the following, we use the common notation Δu = uxx+uyy+uzz.
Our test problems and their predetermined solutions are the following.

1. Δu + 1000ux = F .
2. Δu + 1000 exp(xyz)(ux + uy − uz) = F .
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3. Δu + 100xux − yuy + zuz + 100(x + y + z)u/xyz = F .
4. Δu− 105x2(ux + uy + uz) = F .
5. Δu− 1000(1 + x2)ux + 100(uy + uz) = F .
6. Δu− 1000 [(1 − 2x)ux + (1 − 2y)uy + (1 − 2z)uz] = F .

The analytical (preassigned) solutions for the above problems are the following:
Problem 1: u(x, y, z) = xyz(1 − x)(1 − y)(1 − z).
Problem 2: u(x, y, z) = x + y + z.
Problems 3–6: u(x, y, z) = exp(xyz) sin(πx) sin(πy) sin(πz).

The expression for the right-hand-side function F in all six problems is computed
analytically for each case, using the preassigned solution.

The test problems were solved on the unit cube domain ([0, 1]×[0, 1]×[0, 1]) using
a seven-point centered difference scheme. The equations were discretized using the
same number of grid points in each direction. Results are shown for problems of size
40×40×40 = 64,000 equations and of size 80×80×80 = 512,000 equations.

4.2. Parallel methods used for comparison. The common wisdom today is
that there is no “best” solver for all problems. Each class or type of problem has
its own most effective solver. Since we propose CARP as a general-purpose solver,
we chose to compare it with other general-purpose, state-of-the-art methods, even
though better solvers exist for each particular problem. Our methods of choice were
three parallel Krylov-based iterative nonsymmetric solvers: RGMRES [30], CGS [31],
and Bi-CGSTAB [35]. Each of these methods was used by itself and with the fol-
lowing preconditioners: ILUT, Jacobi, Neumann, and least-squares. We also tried
the symmetric Gauss–Seidel preconditioner, but it failed completely in all cases. The
comparisons used the AZTEC software library [34], which is designed for the parallel
solution of large sparse linear systems of equations.

RGMRES(k) was run with Krylov subspace size k = 10; larger values of k do
not improve the robustness of RGMRES(k) until k becomes a significant fraction of
the problem size (with a large increase of the required storage). The Jacobi, Neu-
mann, and least-squares polynomial preconditioners were run with AZTEC’s default
polynomial order parameter of 3.

The ILUT preconditioner [29] depends on two parameters which strongly affect
its behavior: the drop tolerance (the value below which elements are taken as zero),
and the fill-in, which controls the maximum number of nonzeros allowed in each
column/row of the incomplete LU factors. Similarly to the other preconditioners,
we used the default AZTEC values for ILUT’s parameters: drop tolerance = 0 and
fill-in = 1.0 (i.e., no additional elements). These default values produced excellent
results, so we found no need to experiment with them. Moreover, a thorough study
of ILUT should also consider recent improvements, such as reorderings, scalings, and
multilevel extensions, all of which go beyond the scope of the present study. Note that
ILUT is essentially sequential, and its parallel implementation in AZTEC is based on
using it separately on the submatrices of the subdomains.

4.3. Implementation details. In order to implement CARP efficiently on the
given problems, we used the domain-decomposition approach and mapped different
domains to different processors. Although other approaches are feasible in theory,
this approach limits interprocessor communications because only variables bordering
a neighboring domain need to be averaged (and hence exchanged between processors).

Both AZTEC and our implementation of CARP used the message passing in-
terface (MPI) library for exchanging messages between the processors. We used
SGI’s proprietary implementation of MPI on the SGI machine and the public domain
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MPICH routines on the PC cluster. CARP was implemented with the MPI Cartesian
topology routines for interprocessor communications; these routines are designed for
six-way nearest neighbor communications for domain-based data.

Numerical PDE approximations on three-dimensional grids (structured and un-
structured) exhibit spatial locality, since each equation centered about a grid point
involves only its neighboring grid points. This feature enables domain-decomposition
approaches to parallel solvers, in which the coefficient matrix is distributed among the
processors with local indexing of submatrices. Besides the memory savings, this al-
lows efficient basic matrix-vector operations. For structured three-dimensional grids,
the resulting coefficient matrix is a seven-point stencil matrix.

Our implementation of the data structures used by CARP is similar to that of
AZTEC. It is aimed at facilitating the implementation of the communication tasks
and gaining efficiency during the iterative procedure. In a preprocessing stage, the
following information is saved in each processor:

1. a list of neighboring processors with which it communicates,
2. a list of local nodes that are coupled with external nodes,
3. local representation of the submatrix used by each processor.

The local submatrix in each processor was stored in the sparse matrix format
called the “distributed modified sparse row” (DMSR) format; see [34]. This format,
which is a generalization of the MSR format [29], stores only the nonzero elements of
the coefficient matrix.

In CARP, one can perform any finite number of inner KACZ iterations inside a
block before averaging the boundary values that are common to neighboring blocks.
Such inner iterations are fast relative to the outer iterations since they do not use in-
terprocessor communications. This allows us to choose the number of inner iterations
so as to minimize the overall computation time. Naturally, this choice depends on the
specific problem and the machine architecture. Note that when implementing CARP,
the residual can be computed efficiently as part of the iterative procedure; see (3).

4.4. Stopping tests. There are several stopping criteria which one may apply
to iterative systems. Our stopping criterion was to use the L2 norm of the residual:
||b − Ax||2 < τ , where τ is a preassigned tolerance. Since this stopping criterion
depends on the scaling of the equations, we first normalized the equations by dividing
each equation by the norm of its coefficient vector. For problems 1, 2, 4, 5, and 6,
τ was defined by setting τ2 = 10−11 (τ ≈ 3.16×10−5). For problem 3, τ was taken as
τ = 2.3×10−3. The reason for this difference is that in problem 3, CARP converged
well until this residual value was reached, and then continued to converge too slowly
to be practically significant. All the other methods failed to converge on problem 3.

In order to limit the time taken by the methods implemented in AZTEC, the
maximum number of iterations was set to 5000. The AZTEC library has several
other built-in stopping criteria: numerical breakdown, numerical loss of precision,
and numerical ill-conditioning.

4.5. Results and discussion.

4.5.1. Main results. In all our runs the initial estimate x0 was taken as the zero
vector. Table 1 presents a summary of the convergence status of all the methods and
preconditioners that were examined, for the six test problems, for 512,000 equations
on 16 processors. In the case of convergence failure, it also indicates the reason for the
failure. The results shown in the table are also valid for four processors with 64,000
and 512,000 equations, unless noted otherwise.
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Table 1

Convergence status of the six problems on 16 processors with 512,000 equations.

Problem number

Method 1 2 3 4 5 6

CARP conv conv conv conv conv conv

RGMRES conv conv stgn conv conv conv

RGMRES + ILUT conv stgn4 stgn nbdn5,6 conv stgn

RGMRES + Jacobi mxit mxit divg3 mxit mxit mxit

RGMRES + Neum. conv conv stgn conv conv conv

RGMRES + LSQ conv conv stgn conv conv mxit1

CGS divg1 divg1 divg divg divg divg1

CGS + ILUT conv divg divg divg conv conv2

CGS + Jacobi divg divg divg divg divg divg

CGS + Neum. conv divg1 divg nbdn1 divg3 conv4

CGS + LSQ divg1 divg1 divg nbdn2 divg divg1

Bi-CGSTAB nbdn nbdn nbdn nbdn nbdn nbdn

Bi-CGSTAB + ILUT conv divg divg divg4 conv conv3

Bi-CGSTAB + Jacobi nbdn nbdn divg3 nbdn nbdn nbdn

Bi-CGSTAB + Neum. conv3 nbdn nbdn nbdn nbdn nbdn

Bi-CGSTAB + LSQ nbdn nbdn nbdn nbdn nbdn nbdn

Notation: conv – convergence, divg – divergence, mxit – max. iter.
reached, nbdn – num. breakdown, stgn – stagnation.

Notes: Status also valid for 4 proc. with 64,000 and 512,000 eqns., unless
noted: 1 conv with 64,000 eqns.

3 nbdn with 64,000 eqns.
5 stgn with 64,000 eqns.

2 divg with 64,000 eqns.
4 nbdn with 512,000 eqns.
6 stgn with 512,000 eqns.

Table 1 demonstrates the robustness of CARP—it converged in all cases, including
problem 3, in which all the other methods failed. However, it should be noted that
in problem 3, the residual decreased very slowly after it was reduced to 3×10−3. Of
the other methods tested, RGMRES is generally the most successful; it converged by
itself (and with some of the preconditioners) in all the problems except problem 3.

Figures 1–6 present a comparison of the (L2 norm of the) residual versus the
execution time for the six test problems, for 64,000 equations, as obtained on the
SGI machine with four processors. For each problem, results are presented for all
the methods that converged (except for problems 1 and 2 with CGS and CGS+LSQ,
which converged extremely slowly). The CARP results are for the optimal relaxation
parameters. These figures indicate that there is no “best” solver for all cases; however,
RGMRES, either by itself or with ILUT, is among the fastest methods, while ILUT
is the most successful preconditioner.

We also tried out the following parallel methods:
• CARP1 performed poorly in all cases except number 3.
• CAV [11], although successful in problems of image reconstruction from pro-

jections, performed poorly in all cases except number 3, where it was identical
to CARP1.

• String averaging [9, 12] also performs block-parallel row projections, but, as
mentioned in the introduction, the results are merged by taking the weighted
average of the separate results. This method performed poorly in all six
problems, indicating the effectiveness of componentwise averaging in CARP.
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Fig. 1. Execution times for problem 1.
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Fig. 2. Execution times for problem 2.

The convergence graphs for problem 3 compare CARP, CARP1, KACZ, and CAV.
It can be seen that CARP’s initial rate of convergence is very fast compared to the
others, until a residual of approximately 10−2 is reached. From then on, CARP1,
KACZ, and CAV exhibit a better rate of convergence. From this we can surmise
that a hybrid algorithm, consisting initially of CARP and then CARP1 or KACZ or
CAV, will function in this problem better than any single method. Problem 3 is hard
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Fig. 4. Execution times for problem 4.

for solvers such as GMRES because it is indefinite, with eigenvalues surrounding the
origin. It is well known that the eigenvalue distribution and the conditioning of the
matrix of eigenvectors are more important for the convergence of GMRES than the
conditioning of the system matrix. See also [2, 6, 7].

Tables 2 and 3 present various convergence measures obtained with CARP for
64,000 and 512,000 equations. Denoting by u and x the true solution and current
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estimate, respectively, we computed the following convergence measures:
• The L2 norm of the residual: res2 = ‖b−Ax‖2.
• The relative (or scaled) L2 norm of the residual: rel-res2 = ‖b−Ax‖2/‖b‖2

(the initial estimate is taken as zero).
• The L∞ norm of the residual: res∞ = ‖b−Ax‖∞.
• The relative L2 norm of the error: rel-err2 = ‖u− x‖2/‖u‖2.
• The L∞ norm of the error: err∞ = ‖u− x‖∞.
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Table 2

Various convergence measures for four processors with 64,000 equations.

Problem: 1 2 3 4 5 6

res2 2.28e-5 2.72e-5 2.70e-3 3.13e-5 1.85e-5 1.66e-5

rel-res2 1.37e-4 3.78e-7 8.71e-5 2.87e-6 1.63e-6 9.29e-7

res∞ 2.28e-6 1.81e-6 1.68e-4 1.21e-6 1.96e-6 1.98e-6

rel-err2 8.19e-5 7.82e-7 8.30e-3 1.72e-3 1.16e-3 9.39e-4

err∞ 9.60e-6 2.24e-5 5.60e-2 7.80e-3 1.38e-3 2.19e-3

Table 3

Various convergence measures for four processors with 512,000 equations.

Problem: 1 2 3 4 5 6

res2 2.64e-5 2.93e-5 2.70e-3 3.16e-5 3.08e-5 2.80e-5

rel-res2 1.34e-4 2.10e-7 1.47e-4 2.06e-6 2.16e-6 1.37e-6

res∞ 1.23e-6 1.98e-6 6.51e-5 1.09e-6 1.15e-6 1.36e-6

rel-err2 9.56e-5 6.83e-7 8.93e-3 3.96e-4 2.96e-4 2.40e-4

err∞ 9.93e-6 2.74e-5 6.98e-2 2.05e-3 3.33e-4 3.05e-4

As can be seen from these tables, there is a wide variance between the measures
achieved for the different problems, even though the convergence criterion for all of
them (except problem 3) was taken as a fixed value for res2. For example, the
achieved values of rel-res2 and rel-err2 for problem 2 are much better than for
the other problems. Also, rel-res2 for problem 3 is similar to that of problem 1,
even though they differ greatly in res2. The consequence of the above is that there
can be no absolute convergence criterion suitable for all cases.

Figures 7 and 8 present the speedup graphs of CARP for problems 1–6 with
512,000 equations, on the PC cluster and the SGI machine, respectively. The figures
also include the plot corresponding to an efficiency of 1. It can be seen that all plots
exhibit an almost linear behavior, and in some cases, the efficiency is greater than 1.
This “super speedup” phenomenon is well known; it is due to the fact that in some
cases, the total number of iterations required by CARP decreases as the number of
blocks increases. A secondary contributing factor could be due to better utilization
of memory cache when a problem of a certain size is divided among more processors.

4.5.2. Parametric studies.
Relaxation parameter λ. Although the general theory allows us to vary λ

during the iterative process, we chose a fixed value in our tests. Varying the value of λ
during the iterations is a topic for further study. CARP’s rate of convergence depends
strongly on the choice of λ, and there is an optimal value for λ for each case, which
we determined by numerical experimentation. This optimal value depends mainly on
the problem being solved, and to a small extent, on the number of equations and
the number of processors. Table 4 presents the optimal (fixed) relaxation parameters
used for CARP, for the six test problems, with four processors.

Partitioning scheme. The initial strategy for choosing the partitioning scheme
is to minimize the number of shared variables, but depending on the problem at hand,
other partitioning schemes may yield better runtime results. The runtime and number
of iterations required for convergence of CARP depend, for some problems, on the
domain decomposition. Problems 1 and 5 are symmetric with respect to y and z but
asymmetric with respect to x. Thus, a decomposition of the computational domain
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Table 4

Optimal relaxation parameter λ for CARP, for problems 1–6, with four processors.

Problem: 1 2 3 4 5 6

64,000 eqs. 1.90 1.90 1.60 1.50 1.85 1.35

512,000 eqs. 1.94 1.75 1.60 1.40 1.90 1.50
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into four subdomains using a 4×1×1 division in the x, y, z directions, respectively,
requires considerably more iterations than a decomposition into 1×4×1 or 1×1×4
subdomains.

Inner iterations. Table 5 shows comparisons of the time and number of it-
erations required for convergence with one and four inner iterations, with different
subdivisions, for problems 1 and 5 with 64,000 equations. In Tables 5 and 6, the
number of iterations is the number of outer iterations, i.e., not counting the inner
ones. The advantage of the 1×4×1 and 1×1×4 schemes over the 4×1×1 scheme can
be attributed to the fact that in the first two schemes, a relatively large number of
“almost” parallel row vectors are placed in the same subdomain. Table 5 also shows
that in some cases, one inner iteration is better than four, and in other cases, the
opposite is true. For symmetric problems, there is no direction preference. The do-
main should be divided into (approximately) the same number of subdivisions in all
directions to minimize the number of boundary nodes and reduce the communication
time.

Table 5

Time and number of iterations required for different subdivision schemes for problems 1 and 5
with 64,000 equations.

Problem 1 Problem 5

Subdivision 1 inner it. 4 inner it. 1 inner it. 4 inner it.

scheme time # it. time # it. time # it. time # it.

4×1×1 3.26 400 12.35 640 8.95 1050 17.11 880

1×4×1 0.99 140 1.28 70 3.42 480 1.96 110

1×1×4 0.99 140 1.28 70 3.56 500 2.07 110

Figures 9 and 10 present a more detailed view of the dependence of the number of
iterations (required for convergence) on the relaxation parameter λ and the partition-
ing scheme for problems 1 and 6, respectively, for 512,000 equations. In both figures,
the number of inner iterations was one, unless noted otherwise. Note in particular the
shape of the graph for problem 1: It decreases linearly until the minimum and then
“shoots” upward superlinearly. Figure 10 is typical for problems 2–6.

Table 6 summarizes the optimal values of the following parameters for the six
problems, with 512,000 equations: the number of (outer) iterations, the relaxation
parameter λ, the number of inner iterations, and the partitioning scheme.

Communication time. Table 7 provides the communication time required by
CARP on problem 1 with 512,000 equations for the SGI machine and Linux clus-
ter. This table emphasizes how the partitioning scheme affects the time required for
communications: The 1×1×16 scheme requires some 96,000 transfer edges (between
adjacent grid points divided by a boundary), while the 1×4×4 scheme requires only
about 38,000 transfer edges. Also, the net computation time (total time minus com-
munication time) for each machine is almost independent of the partitioning scheme.
It follows that most of the time difference for this case is due to the communications
overhead.

5. Conclusions and further research. CARP is a new block-parallel method
for solving large sparse nonsymmetric, general linear systems of equations on par-
allel machines. It uses single-row projections within each block, as in Kaczmarz’s
algorithm [23], followed by merging of the block results using certain component-
averaging operations. CARP is also applicable in principle to nonsquare systems,
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Fig. 9. Number of iterations as a function of λ for problem 1, 512,000 equations.
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Fig. 10. Number of iterations as a function of λ for problem 6, 512,000 equations.
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Table 6

Convergence details for CARP on the six problems with 512,000 equations.

No. of Problem no.

proc. 1 2 3 4 5 6

No. of iter. 330 6770 4200 59,600 1000 740

1 λ 1.93 1.60 1.60 1.25 1.90 1.45

Inner iter. n/a n/a n/a n/a n/a n/a

Partition 1×1×1 1×1×1 1×1×1 1×1×1 1×1×1 1×1×1

No. of iter. 350 1,590 980 11,460 360 210

2 λ 1.94 1.65 1.60 1.40 1.90 1.50

Inner iter. 1 4 5 5 3 4

Partition 1×1×2 1×2×1 2×1×1 2×1×1 1×2×1 1×2×1

No. of iter. 360 1,440 2,700 10,230 360 210

4 λ 1.94 1.75 1.60 1.40 1.90 1.55

Inner iter. 1 4 5 5 3 4

Partition 1×1×4 1×2×2 2×2×1 4×1×1 1×1×4 1×1×4

No. of iter. 390 1,840 4,790 10,020 550 260

8 λ 1.94 1.85 1.60 1.50 1.90 1.75

Inner iter. 1 3 5 5 2 3

Partition 1×1×8 1×4×2 2×2×2 2×4×1 1×1×8 8×1×1

No. of iter. 440 3,030 7,530 13,560 630 430

16 λ 1.94 1.80 1.60 1.50 1.90 1.55

Inner iter. 1 2 5 4 2 2

Partition 1×4×4 2×4×2 2×4×2 1×4×4 1×2×8 1×4×4

Table 7

Communication time for problem 1 with 512,000 equations.

SGI Linux cluster

Configuration Total Comm. Comm. Total Comm. Comm.
time time perc. time time perc.

4 proc., 1×1×4 38.67 4.52 11.7% 19.50 3.31 17%

16 proc., 1×1×16 14.35 6.53 45.4% 8.49 3.50 41.2%

16 proc., 1×4×4 9.69 2.17 22.4% 6.24 1.52 24.4%

converges cyclically on inconsistent systems, and is applicable to the consistent case
of the convex feasibility problem. A formal proof of convergence shows that CARP
is equivalent to Kaczmarz’s algorithm in a certain superspace. The new method
is robust, memory efficient, and simple to program. It is also suitable for quasi-
linearization approaches for nonlinear systems since there is no need to compute and
store data related to submatrix inverses after every update of the system matrix.

CARP was compared with other state-of-the-art nonsymmetric solvers, with and
without preconditioners, on six well-known test problems and on two different types
of parallel machines. Test runs indicate that it is extremely robust compared to these
methods, but since CARP is a linear method, its runtime, compared to nonlinear
methods, is somewhat limited on some of the problems. On the other hand, CARP
exhibits a linear speedup ratio, with efficiency sometimes greater than unity. These
results indicate that CARP deserves a place in any robust iterative solution package
for parallel machines.
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One should note that the optimal performance of CARP depends on the choice
of the relaxation parameter and the number of inner iterations in each block, and
these are not known a priori. However, the rate of convergence behaves as a simple
function of the relaxation parameters (just one local extremum). Hence, an adaptive
search scheme can handle this problem: The processors are set to work for a small
number of iterations on different values of these parameters, and the initial rates
of convergence are compared; the search space is then narrowed by using the most
promising parameter values.

Currently, work is in progress to speed up CARP’s runtime efficiency by incorpo-
rating CG acceleration schemes, with very good results [19]. This is done by applying
the techniques of [5] to the Kaczmarz scheme in the superspace. Another potential
avenue of research would be to replace Kaczmarz in each block by other solution
methods, such as CGNR or CGNE, on the block’s submatrix. The solutions from
the blocks can then be merged as in CARP. Such a scheme would require a differ-
ent convergence proof. Another potential for speedup could be the implementation
of communication hiding, i.e., information transmission between processors done in
parallel with computations. Future research on CARP will also study its applicability
to other areas of scientific computing.

Appendix A. Implementation details for CARP.
1. The equations of (1) are divided into blocks B1, . . . , Bt, which are not neces-

sarily disjoint. A processor Pq is assigned to Bq for 1 ≤ q ≤ t.
2. The (normalized) system (1) and the sj ’s are sent to the processors, but each

processor retains only the equations belonging to its block. For 1 ≤ q ≤ t,
denote Jq = {j | in some equation of Bq, the coefficient of xj 	= 0}. Processor
Pq retains only those sj ’s for which j ∈ Jq.

3. Every processor Pq, for every j ∈ Jq, determines if it is the “main owner” of
xj . For every j, there should be exactly one main owner of xj , even if xj has
nonzero coefficients in several blocks. The main owner of xj will need access
to and from any other processor Pr for which j ∈ Jr.

4. The initial estimate x0 = (x0
1, . . . , x

0
n) is sent to the processors, but each

processor Pq holds only the variables x0
j for j ∈ Jq.

5. Every processor Pq, for 1 ≤ q ≤ t, sets the iteration index k = 1 and repeats
the following steps until convergence:
(a) Perform some finite number of KACZ sweeps on the equations of Bq and

denote the result by x̄q; i.e., for some pk ≥ 1, x̄q = KSWP pk(Bq, x
k).

(b) For every j ∈ Jq: If Pq is not the main owner of xj , send x̄q
j to the main

owner of xj ; if Pq is the main owner of xj , receive the values x̄r
j from all

other processors Pr for which j ∈ Jr.
(c) For every j ∈ Jq, if Pq is the main owner of xj , compute the jth com-

ponent of the next iterate:

xk+1
j =

⎧⎪⎪⎨⎪⎪⎩
x̄q
j if sj = 1,

1

sj

∑
j∈Jr

x̄r
j if sj > 1.

Note that the sum includes the case j ∈ Jq.
(d) For every j ∈ Jq, if Pq is the main owner of xj , send xk+1

j to all other
processors Pr for which j ∈ Jr.

(e) Advance the iteration index k by 1.
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6. The last iterate is sent by the processors to the master processor.

Appendix B. Block-parallel implementation of CARP1.
1. The equations of (1) are partitioned into disjoint blocks by partitioning the

index set {1, 2, . . . ,m} into disjoint sets I1, . . . , It. A processor Pq is assigned
to the equations of Iq for 1 ≤ q ≤ t.

2. The (normalized) system (1) and the sj ’s are sent to the processors, but each
processor retains only the equations belonging to its block. For 1 ≤ q ≤ t,
denote Jq = {j | in some equation of Iq, the coefficient of xj 	= 0}. Processor
Pq retains only those sj ’s for which j ∈ Jq.

3. Every processor Pq, for every j ∈ Jq, determines if it is the “main owner” of
xj . For every j, there should be exactly one main owner of xj , even if xj has
nonzero coefficients in several blocks. The main owner of xj will need access
to and from any other processor Pr for which j ∈ Jr.

4. The initial estimate x0 = (x0
1, . . . , x

0
n) is sent to the processors, but each

processor Pq holds only the variables x0
j for j ∈ Jq.

5. Every processor sets the iteration index k = 0.
6. Every processor Pq, for 1 ≤ q ≤ t, repeats the following steps until conver-

gence:
(a) For every j ∈ Jq, compute the value

dq,j =
∑
i∈Iq

(
bi − 〈ai, xk〉

)
aij .

(b) For every j ∈ Jq: If Pq is not the main owner of xj , send dq,j to the
main owner of xj ; if Pq is the main owner of xj , receive the values dr,j
from all other processors Pr for which j ∈ Jr.

(c) For every j ∈ Jq, if Pq is the main owner of xj , compute the jth com-
ponent of the next iterate:

xk+1
j = xk

j +
λk

sj

∑
j∈Jr

dr,j .

Note that the sum includes the case j ∈ Jq.
(d) For every j ∈ Jq, if Pq is the main owner of xj , send xk+1

j to all other
processors Pr for which j ∈ Jr.

(e) Advance the iteration index k by 1.
7. The last iterate is sent by the processors to the master processor.
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