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CADD: a seamless solution to the Domain Decomposition
problem of subdomain boundaries and cross-points
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Abstract

The solution of wave problems using Domain Decomposition (DD) requires that the subdo-
main boundaries should be virtually non-existent, so that waves are not affected by the bound-
aries. This is a primary problem in DD, and it intensifies in the case of cross-points at which
three or more subdomains meet. This topic has received a lot of attention in recent years, with
special treatment of cross-points. This paper explains and demonstrates that this problem does
not exist in Component-Averaged Domain Decomposition (CADD). CADD is implemented
here with the authors’ CARP-CG algorithm, but it is shown that other implementations are
also possible. The reason for the non-existence of this problem in CARP-CG is that in some
superspace of the problem space, CARP-CG is mathematically equivalent to the CG acceler-
ation of the Kaczmarz algorithm with cyclic relaxation parameters, applied to a single linear
system. Due to its advantages, CARP-CG was adopted by some geophysics researchers as the
solver of the Helmholtz and the elastic wave equations for full waveform inversion (FWI).

Keywords. CADD; CARP; CARP-CG; CGMN; component-averaged domain decomposition; elas-
tic wave equation; Kaczmarz; Helmholtz equation; linear equations; parallel processing; partial
differential equations; sparse systems; wave problems.

1 Introduction

A major problem in solving wave problems using domain decomposition (DD) is that of merging
the solutions of subdomains across subdomain boundaries. The problem is to create the effect that
the boundaries are virtually nonexistent so that waves traveling across the boundaries are unaf-
fected. A recent approach to this problem is the use of perfectly matched layers (PMLs). PMLs,
introduced as absorbing boundary conditions in [4, 5], are widely prevalent in wave problems,
where they simulate an infinite domain. In DD, PMLs have been adapted and used at subdomain
boundaries to create the effect that waves coming from either direction are unaffected by the sub-
domain boundaries. This requirement creates an even harder problem at so-called cross-points,
where three or more subdomain boundaries meet; see [7, 14, 16, 29, 31, 32]. PMLs as subdo-
main boundaries have three problems: they widen the subdomain boundaries significantly, they
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require problem-specific equations at the PMLs, and they need special treatment at cross-points –
see [16]. In the following, the method of “component-averaged domain decomposition” (CADD)
is explained, and it is shown that in contrast to the use of PMLs, CADD adds only two virtual grid
points at subdomain boundaries, the operations at the boundaries are unrelated to the equations,
and there is no special treatment at cross-points.

CADD is implemented with the authors’ CARP and CARP-CG algorithms [18,20] to DD. CARP is
a block-parallel version of the Kaczmarz algorithm (KACZ) [26], which is a sequential algorithm,
and CARP-CG is the CG acceleration of CARP. Both CARP and CARP-CG are ideally suitable
DD as follows: the domain is divided into subdomains by boundaries passing between grid points.
Then, each subdomain is handled by a different processor, with all processors working in parallel.
After one such operation, neighboring subdomains exchange data about shared variables, and the
parallel processing is resumed until convergence. Details are given in the next section.

CARP-CG is particularly efficient on two types of problematic linear systems:

• Discontinuous coefficients. KACZ inherently “normalizes” the equations by dividing each equa-
tion by the L2-norm of its coefficients, and this preprocessing has an equalization effect on the
coefficients of different equations (see [21] for the general effect of this preprocessing).

• Large off-diagonal elements. Assume the original system is Ax = b, with the equations al-
ready normalized for KACZ. Then, according to [6], KACZ is actually successive overrelaxation
(SOR) on the system AAT y = b, x = AT y, and when A is normalized, all the diagonal elements
of AAT are 1, and the off-diagonal elements are < 1 (assuming no two rows of A are colinear);
see [19]. Typical examples of such systems arise in convection-dominated partial differential
equations (PDEs) [20, figs. 8,9] and the Helmholtz equation at high frequencies [22].

The rest of the paper is organized as follows. The next section explains KACZ, CARP and CARP-
CG in detail and presents some previous work with CARP-CG. Section 3 demonstrates the effec-
tiveness of CARP-CG on some cases that may require special treatment at the boundaries and cross
points with other DD methods. Section 4 shows that KACZ can be replaced in CADD by several
other solvers and Section 5 concludes with an overview of the paper.

2 Background

2.1 KACZ, CARP, and CARP-CG

KACZ is best described by its simple geometric explanation: starting from some initial point in
the solution space Rn or Cn, the current iterate is repeatedly projected orthogonally towards the
hyperplane defined by one of the system’s equations. Usually, the projections follow cyclically the
given order of the linear system.

We consider an m×n linear system
Ax = b, (1)
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where b= (b1, . . . ,bm)
T , and the jth row of A is denoted by a j. Denote by x0,x1, . . . the sequence of

KACZ iterates, and suppose that xk+1 is obtained from xk by projecting xk onto the j th hyperplane,
i.e.,

xk+1 = xk +λ
b j −⟨a j,xk⟩

∥a j∥2
2

a j, (2)

where 0< λ < 2 is a relaxation parameter. The limitation on λ is essential for convergence. We can
save some computation time by initially dividing each equation ⟨a j,x⟩= b j by ∥a j∥2, thus avoiding
the division by ∥a j∥2

2 at every step; this is sometimes called normalizing the equations. Each
cycle of projections is called a KACZ sweep. The relaxation parameter λ need not be constant,
and if equation j has a fixed relaxation parameter λ j, then the projections are said to be done
with cyclic relaxation. An important property of KACZ with cyclic convergence is that it always
converges to some point, provided all cycles are complete, even if the linear system is inconsistent;
see [12, Thm. 1.1]. In the field of biomedical image reconstruction, KACZ is also known as ART
(algebraic reconstruction technique); see [24, 25].

Thus, by its mathematical definition, KACZ is inherently sequential. However, for very large
problems, it is essential to parallelize it. The standard way of parallelizing KACZ, called multi-
coloring (MC), consists of identifying blocks of equations such that in each block, the coefficient
vectors are pairwise orthogonal; and then, in each block, the projections can be done in parallel.
However, the blocks have to be handled sequentially.

In [18], the authors introduced a block-parallel implementation of KACZ called CARP (component-
averaged row projections), described as follows. Given a linear system Ax = b, where A is n×n
and regular, CARP operates as follows: the system is divided into m blocks of equations, Aℓx =

bℓ, 1 ≤ ℓ ≤ m, and the blocks may even overlap. For every variable xi belonging to two or more
blocks, one of these blocks is assigned to be the “owner” of xi. The method of this assignment
depends on the particular application, and it is most easily explained within the concept of domain
decomposition: assume the domain is partitioned by boundaries passing between grid points. In
theory, overlapping partitionings are also possible, but this only complicates matters and there is
no advantage to it. This partitioning forms a division of the grid points into subdomains, and all
the equations whose stencil centers appear in the same subdomain form a single block.

The owner block of a variable xi is determined as follows: consider the grid point g associated with
xi, then the owner block of xi is the block associated with the subdomain containing g. Note that
this definition applies only in the case of disjoint blocks. We will define a variable xi as a boundary
variable if it appears in equations belonging to two or more blocks.

CARP now operates in parallel on the blocks as follows. We assume that every block of equations
has an assigned processor operating on the equations of that block. Starting from some initial value
x0, every block owning a boundary variable x0

i sends the value of x0
i to all blocks which have some

equation containing x0
i . The copies of x0

i are called the clones of x0
i . Blocks which receive such

copies operate on the clones and not on the original variables. If x0
i appears in k blocks, then it

remains as x0
i in its owner block and, in k−1 blocks, x0

i is replaced by variables called x0
i,2, ...,x

0
i,k.

For convenience, we also refer to x0
i as x0

i,1. As a result, the blocks of the modified equations have
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no common variables, so they can be processed in parallel.

The following four steps are now repeated until some stopping criterion is satisfied:

1. All block processors, in parallel, perform some fixed number of KACZ iterations on the modified
equations of their assigned block.

2. The new value of every clone is transferred to the owner of the clone’s original variable.

3. Every block, for every owned boundary variable, computes the average of the boundary variable
and all its clones, and sets this average as the new value of the boundary variable. In terms of the
above notations, if x0

i,1, ...,x
0
i,k were changed by the KACZ operations to y0

i,1, ...,y
0
i,k, respectively,

then the new value of x0
i is x1

i = (∑k
j=1 y0

i, j)/k.

4. Every block processor, for every owned boundary variable, transmits the variable’s new value
to its neighboring blocks as the new clone(s).

Note that inter-processor communications are needed only between pairs of blocks associated with
adjoining subdomains. Furthermore, the parallel processing of all the blocks differs from most DD
methods, which do not process adjacent blocks in the same time step.

Consider now the superspace of the problem space consisting of all the variables and all the clones.
An Averaging Lemma [18, 20] shows that the averaging operations are mathematically equivalent
to KACZ projections in the superspace (with relaxation parameter = 1). If, as before, some variable
has k−1 clones, then it takes k−1 KACZ projections in the superspace to set all k values equal to
their average. Hence, it takes k equations in the superspace to average the variable and its clones.
It follows that the total number of equations in the superspace is m = n+ ℓ, where ℓ is the total
number of clones. Clearly, the number of variables in the superspace is also m.

In a landmark paper, Björck and Elfving [6] showed that if a forward sweep of KACZ (with a fixed
relaxation parameter) is followed by a backward sweep (i.e., the projections are done in reverse
order), then the resulting iteration matrix is symmetric and positive semi-definite. Therefore, the
double KACZ sweep can be accelerated using the conjugate gradients (CG) algorithm. The itera-
tion matrix is not calculated; instead, whenever it has to be multiplied by a vector, the calculation
is done by performing a suitable KACZ double sweep. This algorithm is called CGMN in [6].

The CG acceleration of CARP is obtained in [20] as follows. Firstly, the construction of CGMN
is extended to KACZ with cyclic relaxation parameters (and called CGMNC). It is then shown
that the superspace formulation of CARP can be accelerated by CG. This means that in the regular
space, CARP can also be accelerated by CG by running CARP in a double sweep. On one pro-
cessor, CARP-CG and CGMN are identical. Now, based on the cyclic convergence of CARP and
(theoretical) convergence of CG, it follows that CARP-CG always converges, even on inconsistent
systems.

The above exposition of CARP-CG provides a mathematical explanation as to why the subdomain
boundaries are virtually non-existent and do not affect the solution: in the superspace of the vari-
ables and the clones, CARP-CG is a CG acceleration of KACZ with cyclic relaxation parameters.
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The following question arises: what, then, is the difference between KACZ and CARP? The an-
swer is that KACZ is a sequential algorithm, whereas CARP is a parallel “divide and conquer”
algorithm. The same applies to CARP-CG and CGMNC.

One should note that in implementing CARP-CG, the optimal behavior of the algorithm depends
on several factors: the number of processors available, their efficiency, the efficiency of the inter-
processor communications, the amount of memory available to each processor, and the time re-
quired by each processor to complete one iteration. Clearly, if too many processors are used, then
the inter-processor communications would take more time, and if too few processors are used, then
the overall computation time would be slow.

Another factor affecting the rate of convergence is the partitioning method of the domain, and to
complicate matters further, the optimal partitioning is problem-dependent, so there is no universally-
optimal partitioning. Due to all these different parameters and their interaction, it is impossible to
provide general guidelines for determining how the system of equations should be partitioned. The
value of λ also affects the rate of convergence, but its optimal value is easily determined after a
few iterations. A study of these parameters can be found in [18, §4.5.2] and [20, §6.2].

2.2 Some previous work with CARP-CG

In [20], the speedup of CARP with CG was developed and an extended comparison was made with
classical methods on a variety of elliptic PDEs. It was found that when the convection term was
small, then CARP-CG did not perform as well as other methods, such as (restarted) GMRES and
Bi-CGSTAB, with and without various preconditioners. However, just by increasing the convec-
tion term on the same equation caused CARP-CG to converge faster than all the other methods,
and even faster than all the other methods on the low-convection PDE; see Figures 8 and 9 in [20],
which differ only in the size of the convection factor.

After CARP-CG was used for the Helmholtz equation with high frequencies in [22], it was used
for the problem of “full waveform inversion” (FWI) in exploration geophysics [35,36]. High order
schemes for the Helmholtz equation are essential for the Helmholtz equation due to the so-called
pollution effect [1, 2]. Several such schemes were studied in [22], and a new sixth order compact
scheme for variable wave numbers was developed in [34]. A compact scheme is one in which
the stencil is of size 3×3 in 2D and 3×3×3 in 3D. Such a scheme is particularly useful when
CARP-CG is used, because it does not require more data transfer across subdomain boundaries
than regular second order schemes. CARP-CG was also used in [23], where a new approach to
absorbing boundary conditions for wave problems was developed.

Li et al. [28] successfully applied CARP-CG to the elastic wave equation in the frequency domain,
using a fourth-order accurate staggered grid. In a subsequent paper, [27], an optimal fourth-order
staggered grid for the viscoelastic wave equation was developed and tested, using CARP-CG.

In a totally different direction, CARP-CG was used in [15], in combination with multicoloring, as
the parallel linear solver for difficult interior eigenvalue problems arising in graphene modeling.
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CARP-CG was also incorporated as one of the algorithms implemented in the exascale sparse
solver repository [33].

3 Sample results with subdomain boundaries and cross-points

In this section we present test problems which demonstrate visually that there are no problems
with subdomain boundaries or cross-points when using CARP-CG. The examples, which include
convection-dominated and Helmholtz problems, also demonstrate the advantages of high order
schemes and the gradient absorbing boundary conditions [23] for the Helmholtz problem. The
examples include two convection dominated PDEs with a known solution, one Helmholtz example
with a known solution, and one Helmholtz equation with three different wave numbers without a
known solution.

Evaluation methodology: We describe here the methodology only for Problems 1 and 2. The
other cases will be explained within the text of the problems. In the first two problems, we have a
known solution which serves as the Dirichlet boundary conditions. We first made a few test runs
to determine the optimal (or near optimal) value of the relaxation parameter λ . From examples
in previous works, it was shown that small changes in λ have very little effect on the rate of
convergence. We then ran the solver with a large bound on the number of iterations, and every 10
iterations we calculated the relative residual (rel-res) and the relative error (rel-err). This way we
determined the best rel-err that can be obtained and the required number of iterations to achieve it
(maxit). We then ran the solver without calculating rel-err and rel-res for maxit iterations to obtain
the time of the computation. In problems 1 and 2 we displayed cross-sections of the solution and
the pointwise absolute value of the relative error, i.e., ∥ut −uc∥/∥ut∥, where ut and uc are the true
and calculated values, respectively, at a grid point of the cross-section.

We wish to stress the difference between rel-res and rel-err. When rel-res reaches very low values,
it means is that you have a good solver for the system of equations. But if the linear system does
not represent the problem with sufficient accuracy, then the computed solution will be far from the
true solution. This can be seen clearly in [22, Problems 1 & 2], which shows rel-res and rel-err
results on two problems, with 2nd, 4th and 6th order accurate finite difference schemes.

3.1 Convection-dominated problems

The two problems in this subsection are Problems 2 and 6 from [20, §4]. These problems were
previously studied extensively by other authors (see the references in [20]). In both problems, we
used the standard second order finite difference scheme, i.e., a 7-point stencil in 3D.

Fig. 1 shows a 2×2×4 partitioning of a domain, with two partitions in the x- and y-directions,
and four partitions in the z-direction. This domain has three cross-points, each bordering eight
subdomains.
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Figure 1: A 2×2×4 partitioning of the unit cube.

Problem 1. The PDE is
∆u+1000exyz((ux +uy −uz)) = F, (3)

where ∆u = uxx +uyy +uzz, the 3D domain is [0,1]3, the preassigned solution is u = x+ y+ z, and
the RHS F is calculated from Eq. (3): F = 2(x+y+z)+1000exyz(2z+1). The Dirichlet boundary
conditions are calculated by using the values of the preassigned solution at the boundaries. The
domain is divided into a grid of 1423 grid points, and partitioned into subdomains as in Fig. 1.

Computation details:

• Relaxation parameter: λ = 1.60.
• rel-err = 3.77E-14.
• rel-res = 1.98E-14.
• No. of iterations: 500.
• Time: 24.76 sec.

In the two figures below we display only the image at the inner points of the grid, i.e., without the
Dirichlet boundary. Hence, both images are slightly smaller than 1×1.

Figure 2 shows the calculated solution (top) and the relative error between the analytic and cal-
culated solution (bottom), both at the cross-section i = 70, which is adjacent to the subdomain
boundary at x = 1/2 and to three cross-points. The analytic solution is not shown because it is vi-
sually indistinguishable from the calculated solution. The bottom image also shows the subdomain
boundaries and cross-points. Note that there is no visible effect of the boundaries and cross-points
on the calculated solution or the error.
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Figure 2: Solution (top) and relative error (bottom) for Problem 1 at cross-section i = 70, adjacent
to the subdomain boundary at x = 1/2 and to 3 cross-points. The black lines in the bottom image
show the intersection of the cross-section with the subdomain boundaries. Neither image shows
any effect of the subdomain boundaries and cross-points.
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Problem 2. The PDE is

∆u−1000((1−2x)ux +(1−2y)uy +(1−2z)uz) = F. (4)

The preassigned solution is u = exyz sin(πx)sin(πy)sin(πz), and the 3D domain is [0,1]3. The
RHS F is calculated from Eq. (4), and the Dirichlet boundary conditions are calculated by using
the values of the preassigned solution at the boundaries (i.e., zero on all boundaries). The domain
was divided into a grid of 1403 grid points and partitioned into subdomains as shown in Fig. 1.

Computation details:

• Relaxation parameter: λ = 1.60.
• rel-err = 7.93E-5.
• rel-res = 2.48E-14.
• No. of iterations: 220.
• Time: 10.93 sec.

The relative error in this problem is much larger than in Problem 2, but it is reasonable for practical
applications. In both cases, the stopping criteria are the same (as explained previously), but Prob-
lem 2 is more difficult for CARP-CG than Problem 1. To reach a more accurate solution requires a
finer grid and/or a higher-order finite difference scheme, but we decided to display both problems
under identical conditions.

Fig. 3 shows a cross-section of the calculated solution (top) and the relative error w.r.t. the analytic
solution (bottom) of Eq. 4, taken at the grid point i = 70, which is in immediate proximity to
the subdomain boundary at x = 1/2 and to three cross-points. The analytic solution is not shown
because it is visually indistinguishable from the calculated solution. The bottom image also shows
the subdomain boundaries and cross-points, which show no effect on either image. As can be seen,
there is a distinct region of non-symmetry, probably due to the exyz factor in the solution.
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Figure 3: Calculated solution (top) and relative error (bottom) for Problem 2 at cross-section i= 70,
adjacent to the subdomain boundary at x = 1/2 and to 3 cross-points. The black lines show the
intersection of the cross-section with the subdomain boundaries. Neither image shows any effect
of the subdomain boundaries and cross-points.

3.2 The Helmholtz equation

Problem 3. This problem is similar to the first problem described in [23, §6.1]. We consider the
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3D Helmholtz equation on the unit cube: ∆u+ k2u = F , where

F(x,y,z) =
1
h2 cos5

(
π(x− x0)

2hnc

)
cos5

(
π(y− y0)

2hnc

)
cos5

(
π(z− z0)

2hnc

)
.

F is a simulated impact function of compact support, h is the mesh spacing, and nc is a parameter
controlling the size of the compact support. F is taken as zero outside a small cube of (2nc +1)3

grid points, centered at the impact point. In this problem, nc = 8. Note that F and all its derivatives
up to the 4th order vanish at the boundary of the small cube. The division by h2 is a scaling
operation. The frequency was f = 10, so the wave number was k = 20π .

The equation was discretized by using the compact 6th order finite difference scheme for variable
wave numbers of [34]. This scheme uses a 3×3×3 stencil. Compact stencils are ideal for CADD
methods since they do not require the transfer of more information across subdomain boundaries
than the standard 7-point stencil.

It is well known – see [30, §28] – that for a constant wave number k and a given RHS F (of compact
support with source at the origin) in an infinite domain in Rn, the solution at a point x ∈Rn is given
by

u(x) = (G∗F)(x) =
∫
Rn

G(x− y)F(y)dy, (5)

where ’∗’ denotes the convolution and G is the Green’s function for dimension n. For n = 3,

G(x) =
eik∥x∥

4π∥x∥
.

Since F vanishes outside the small cube, we can easily calculate the integral in Eq. (5) to obtain an
estimate of the solution. In order to obtain a good approximation of the convolution, we used, on
the inner cube, a grid with twice the resolution of the large grid (a finer mesh did not improve the
results).

The unit cube was divided by a grid of 169×169×169 points, and the point of impact was taken at
(0.5,0.5,0.25). For the CARP-CG computation, the domain was divided into 24 subdomains by 23
boundaries perpendicular to the z-axis. This partitioning was chosen because it is more convenient
for use with the 3×3×3 stencil. For the boundary conditions, we used the “gradient method”
(GM) absorbing boundary conditions (ABCs) of [23]. This ABC is minimalistic in comparison to
PML ABCs, as it requires just one extra outer layer of grid points on all sides. This brings the total
number of grid points to 1713.

The concept behind GM is that directional derivatives at a boundary point should be taken in the
direction of the gradient of the wave field, regardless of the orientation of the boundary at that
point. In this problem, the gradient direction points away from the impact point. This concept can
be applied to any boundary condition by replacing derivatives normal to the boundary by deriva-
tives in the gradient direction. In this case, GM was applied to the second order BGT boundary
condition – see [3].
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In this problem, we calculated only the relative residual (rel-res) every 10 iterations, but not the
relative error (rel-err). The calculation was stopped at 10,000 iterations since rel-res reached a
reasonably low value. Additional details:

• Relaxation parameter: λ = 0.7.
• rel-err = 1.33E-4.
• rel-res = 2.07E-12.
• No. of iterations: 10,000.
• Time: 2,304 sec.

Fig. 4 shows the computed solution (top) and the relative error (bottom) at the cross-section taken
at the 75th grid point in the x-direction. Neither of these images shows any irregularities due to
the 23 subdomain boundaries. The bottom image shows faint traces caused by the internal small
cube used for the impact function. Also, the bottom figure appears to contain just two colors, while
the error scale shows the whole spectrum of colors. The reason for this is that the image actually
contains a few pixels whose colors deviate from the two main colors. These pixels are on the upper
half of the left and right boundaries. The bottom image also shows some faint traces of reflections
from the boundary, but these are at least two orders of magnitude smaller than the wave field. Note
that the images are based on the larger grid of 1713 points, so they deviate very slightly from the
unit cube.
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Figure 4: Computed solution (top) and relative error (bottom) for Problem 3 at cross-section i= 75.
Neither figure shows any effect of the 23 subdomain boundaries orthogonal to the z-axis.
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Problem 4. This problem is similar to problem 3, with two exceptions: the impact point is
at the center of the region, which is divided by a “wedge” into three sub-regions, each with a
different wave number. This is shown in Fig. 5, where it can be seen that the wave numbers are
k = 50, k = 200, and k = 100. There is no Green’s function in this case, so only the computed
wavefield is shown.

k=200

k=100k=50

impact

Figure 5: Problem 4: dividing the region into three sub-regions with different wave numbers.

The program was ran with the relative residual displayed every 10 iteration. The computation
was stopped at 10,000 iterations because the relative residual was sufficiently small. Other de-
tails:

• Relaxation parameter: λ = 1.5.
• rel-res = 2.86E-11.
• No. of iterations: 10,000.
• Time: 2,650 sec.

Fig. 6 shows the computed wavefield. The image was modified slightly from the original by a 5%
reduction of the green color in order improve the visibility of details in the corners. It can be seen
that the wavelength of each sub-region corresponds to the wavenumber of that sub-region. Also,
the top and bottom parts of the wedge show interference patterns caused by reflections from the
boundaries between the sub-regions.

Note that for the computation by CARP-CG, the domain was not partitioned at the boundaries
between the three sub-regions, but by 23 boundaries orthogonal to the z-axis. This partitioning
shows no visible effect on the wavefield. Also, there are no visible reflections from the boundaries.
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Figure 6: Computed solution to problem 4. The image shows no traces of any effect by the 23
subdomain boundaries orthogonal to the z-axis.

4 Alternatives to KACZ in CADD

A natural question that arises is whether KACZ is the only possible algorithm for CADD. It turns
out that several other algorithms can replace KACZ. It was shown in [17] that several algorithms
are mathematically identical to KACZ in some (large) superspace of the problem space. These
algorithms are the following:

• The Cimmino algorithm [11] (CIMM), which operates as follows: the current iterate is projected
towards all the hyperplanes, and then all the projections are averaged to form the next iterate.
Similarly to KACZ, these projections can be done with a relaxation parameter.

• Subset Cimmino: the equations are divided into blocks (not necessarily disjoint), and then CIMM
is iteratively applied in sequence to all the blocks.

• The CAV algorithm [10]. This algorithm is similar in structure to CIMM, but every projection
onto the hyperplane ⟨ai,x⟩ = bi has its own weight determined by the sparsity of the columns
which contain the nonzero elements of ai.

• The BICAV algorithm [9] is a “subset Cimmino” version of CAV in which the blocks are pro-
cessed sequentially.

• The String Averaging algorithm [8], can be described as follows: the equations are divided into
k blocks, and then, for every block of equations B, independently from the other blocks, KACZ
is applied in sequence to the equations of B, starting from the current iterate. This operation
produces k results. Then, some operator is applied to the k results, producing the next iterate.
If the operator is a weighted average of the results from the blocks, then this algorithm is also
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KACZ in some superspace.

It should be noted that since these algorithms are, in essence, KACZ, then their replacement in
CADD enables their acceleration by CG, just as in CARP-CG.

In previous work with Y. Censor, we made various comparisons between KACZ, CIMM, CAV
and BICAV in the context of image reconstruction from projections. Note that KACZ is often
called ART (algebraic reconstruction technique) in this topic. For comparisons between KACZ,
CIMM and CAV see [10], Figures 2–13. For various comparisons between KACZ, CIMM, CAV
and BICAV see [9], Figures 3, 4, and 6. The gist of these experiments is that CIMM is extremely
slower than KACZ, while CAV and BICAV are approximately on par with KACZ.

Regardless of the above relations between KACZ and CIMM, CIMM may be a promising alter-
native to KACZ for the following reason: Elble et al. [13] showed that by using GPU computing,
CIMM is much more efficient than KACZ. This is due to the fact that KACZ is inherently se-
quential by its definition, but CIMM can utilize GPUs efficiently due to its inherent parallelism.
By using CIMM with GPUs we get 2 levels of parallelism: inside each block of equations, and
global parallelism between the blocks. In addition, the process can also be accelerated by CG as
in CARP-CG.

5 Conclusions

The purpose of this paper is to demonstrate that there is a simple solution to the problem of sub-
domain boundaries and cross-points in domain decomposition. This solution is problem indepen-
dent, and has been shown in previous works to be viable for several well known difficult problems,
namely convection-diffusion-reaction problems with very large convection terms, the Helmholtz
equation at high frequencies, the elastic wave equation, including viscoelasticity, and eigenvalue
computations in difficult cases.

The block-parallel algorithm that was used for these problems by the authors and other researchers
was CARP-CG [20], which is a parallel CG-acceleration of the Kaczmarz algorithm [26]. The abil-
ity of CARP-CG to solve Domain Decomposition problems seamlessly, i.e., without any error at
the boundaries or cross-points, was explained theoretically and demonstrated by several examples.

Although CARP-CG is based on the Kaczmarz algorithm, this paper explains that various other
algorithms can replace Kaczmarz in CARP-CG because, in some superspace of the problem space,
these algorithms are just Kaczmarz, as shown in [17]. This is a very promising topic for future
research; in particular, the most interesting algorithm to replace Kaczmarz in CARP-CG is the
Cimmino algorithm [11], because it is amenable to GPU computation inside each subdomain.
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[26] S. Kaczmarz. Angenäherte Auflösung von Systemen linearer Gleichungen. Bulletin de
l’Académie Polonaise des Sciences et Lettres, A35:355–357, 1937.

18



[27] Y. Li, B. Han, L. Métivier, and R. Brossier. Optimal fourth-order staggered-grid finite-
difference scheme for 3D frequency-domain viscoelastic wave modeling. J. of Computational
Physics, 321:1055–1078, 2016.

[28] Y. Li, L. Métivier, R. Brossier, B. Han, and J. Virieux. 2D and 3D frequency-domain elastic
wave modeling in complex media with a parallel iterative solver. Geophysics, 80(3):T101–
T118, 2015.

[29] S. Loisel. Condition number estimates for the nonoverlapping optimized Schwarz method
and the 2-Lagrange multiplier method for general domains and cross points. SIAM J. on
Numerical Analysis, 51(6):3062–3083, 2013.

[30] A. Sommerfeld. Partial Differential Equations in Physics. Academic Press, New York, 1964.

[31] C. C. Stolk. A rapidly converging domain decomposition method for the Helmholtz equation.
J. of Computational Physics, 241:240–252, 2013.

[32] C. C. Stolk. An improved sweeping domain decomposition preconditioner for the Helmholtz
equation. Advances in Computational Mathematics, 43:45–76, 2017.

[33] J. Thies, M. Galgon, F. Shahzad, A. Alvermann, M. Kreutzer, A. Pieper, M. Röhrig-Zöllner,
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