
Volume 17 (1998 ), number 1 pp. 29–54 COMPUTER forumGRAPHICS

Adaptive Supersampling in Object Space Using
Pyramidal Rays

Jon Genetti†, Dan Gordon‡ and Glen Williams§

Abstract

We introduce a new approach to three important problems in ray tracing: antialiasing, distributed light

sources, and fuzzy reflections of lights and other surfaces. For antialiasing, our approach combines the quality

of supersampling with the advantages of adaptive supersampling. In adaptive supersampling, the decision to

partition a ray is taken in image-space, which means that small or thin objects may be missed entirely. This is

particularly problematic in animation, where the intensity of such objects may appear to vary. Our approach is

based on considering pyramidal rays (pyrays) formed by the viewpoint and the pixel. We test the proximity of

a pyray to the boundary of an object, and if it is close (or marginal), the pyray splits into 4 sub-pyrays; this

continues recursively with each marginal sub-pyray until the estimated change in pixel intensity is sufficiently

small.

The same idea also solves the problem of soft shadows from distributed light sources, which can be calculated

to any required precision. Our approach also enables a method of defocusing reflected pyrays, thereby pro-

ducing realistic fuzzy reflections of light sources and other objects. An interesting byproduct of our method

is a substantial speedup over regular supersampling even when all pixels are supersampled. Our algorithm

was implemented on polygonal and circular objects, and produced images comparable in quality to stochastic

sampling, but with greatly reduced run times.

Keywords: Computer graphics; picture/image generation; three-dimensional graphics and realism; anti-

aliasing; distributed light sources; fuzzy reflections; penumbra; object-space; ray tracing; stochastic

sampling; adaptive; supersampling.

1. Introduction

Ray tracing has been one of the foremost methods for

displaying complex images1. Its chief advantages are its

ability to handle many different shading models, com-

plex reflections, refractions, and many different object

types. Some disadvantages we will address are slow-

ness, aliasing problems and difficulties with distributed

light sources (which are problematic for other techniques

as well). Another problem is that ray tracing by itself

does not produce a complete solution to the rendering
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equation2, 3, but even so, it is used by some of the more

complex techniques as an essential step3, 4, 5.

Most approaches to antialiasing can be considered

image-space, since it is essentially the image-space that

determines if and where extra rays have to be cast.

We informally call an approach object-space if deci-

sions regarding extra rays are based on information

obtained during the ray-object intersections. Whitted’s

method6 calls for a sufficiently large bounding volume

to surround small objects, so that rays intersecting it

will be subdivided. This component of the algorithm is

object-space dependent, though the rest is not. Beam

tracing7 is an object-space approach because all calcula-

tions on beams are done in object-space. More recently,

there have appeared two new object-space approaches

to antialiasing8, 9.

Another difficult problem for ray tracing (and other

techniques) is distributed light sources. The standard
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way to calculate shadows is by tracing a shadow ray

to a point light source, but this does not extend easily

to distributed light sources. Beam tracing can handle

such sources, but it is restricted to polygonal environ-

ments. Cone tracing can handle spherical light sources,

but these are different from distributed sources because

they illuminate with the same intensity in all directions.

Furthermore, as shall be explained later, shadow calcu-

lations with cone tracing can be inaccurate. Stochas-

tic sampling10 handles the problem in a very time-

consuming manner by distributing many rays across the

light source. Other approaches (discussed in Section 2)

are also time-consuming.

Specular reflections from point light sources are han-

dled by standard ray tracing in an ideal manner—at least

from the algorithmic, if not the physical, point of view.

However, distributed light sources are problematic. Fur-

thermore, real-life scenes contain fuzzy reflections not

only of light sources, but of other reflected objects, and

the problem is to introduce fuzziness into such reflec-

tions. This fuzziness varies with the angle of incidence

and the surface characteristics, and current approaches

are very time-consuming.

In this paper, a new object-space approach to the

problems of antialiasing, distributed light sources and

fuzzy reflections is presented. We call this method ASOS

(adaptive supersampling in object-space). The general

flavor is that of Whitted’s adaptive supersampling, with

the difference being that decisions to subdivide are taken

in object-space. Pyramidal rays are traced through the

scene, and when such a ray is close to an object bound-

ary, it is subdivided. Ray subdivision is also used for

antialiasing shadows and texture maps. This approach

offers the quality of supersampling with the advantages

of adaptive supersampling (only areas of high frequency

information are supersampled). Furthermore, as will be

explained in Subsection 2.3, our method eliminates a

problem that is inherent with Whitted’s object-space

component of adaptive supersampling.

Our technique also solves the problem of penum-

brae from distributed light sources, producing accurate

shadows. All intensity and shadow computations can be

carried out to any user-prescribed degree of accuracy.

This is extremely useful for animation, where small or

thin objects must not only be detected, but their area

should be estimated correctly to prevent flashing or pul-

sating. The same holds for small or thin shadows, holes,

or gaps between objects. Also, our method yields a sim-

ple solution to the problem of fuzzy reflections of lights

and other objects, with the amount of fuzziness depend-

ing on the incidence angle and wavelength. As an added

byproduct, our data structures and algorithms provide

a substantial speedup over regular supersampling even

when all pixels are supersampled, so our approach can

also be viewed as a useful acceleration technique.

To place our work in proper historical perspective, a

few notes are in order. In6, Whitted writes: “...A better

method, currently being investigated, considers volumes

defined by each set of four corner rays and applies a con-

tainment test for each volume.” In11, Amanatides writes

in a footnote that Whitted abandoned the pyramidal ray

approach due to the complex calculations that are in-

volved. This paper may be viewed as an implementation

of Whitted’s idea, carried out with adaptive supersam-

pling in object space as a solution to the problem of

complex calculations, as well as to the problem of fuzzy

reflections. We also use circular cones as an aid in de-

tecting the proximity of a pyramidal ray to an object.

Solving the problems of antialiasing, distributed light

sources, etc., involves computations that require inte-

gration over finite solid angles. This is done typically by

point sampling, but the convergence is slow. Our method

may be viewed as a more effective adaptive integration

technique.

Comparisons between rendering techniques are usu-

ally done on the basis of image quality and speed. ASOS

is a new ray tracing technique that produces images

comparable in quality with stochastic sampling (without

refractions), but at times that are usually smaller by an

order of magnitude (when compared to the standard

implementation). We do not give a complete solution

to the rendering equation2, 3, 4, 5, nor do we deal with

special acceleration techniques for very complex scenes,

such as12, 13. However, other approaches that use ray

tracing as an essential step could take advantage of our

technique. A preliminary version of this research has

appeared in14, and many of the technical details can be

found in15, 16.

The rest of the paper is organized as follows: Section 2

presents an overview of some of the current methods,

together with their main advantages and disadvantages.

Section 3 describes our technique of adaptive supersam-

pling in object-space. Section 4 describes how shadows

from point light sources are antialiased and how accu-

rate penumbrae from distributed light sources may be

calculated. Section 5 explains our defocusing method for

producing fuzzy (specular) reflections of lights and other

surfaces. Section 6 discusses some implementation and

efficiency issues. Section 7 presents some results obtained

with this technique and compares them with stochastic

sampling. Section 8 concludes with a discussion and a

summary of further applications.

2. Background

There have been three main approaches to the aliasing

problem. One is to generate a fixed number of extra
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rays for each pixel. Examples of this are simple av-

eraging and supersampling. A logical extension to the

first approach is to adaptively generate more rays for

each pixel until some criterion is met. Examples are

adaptive supersampling6 and stochastic sampling17, 18, 19.

See1, 20, 21 for comprehensive discussions of these topics.

The last approach has been to extend the definition of

a ray—either to a different object or to allow more than

one ray to be traced at a time. Several examples of this

are discussed below.

2.1. Averaging

The simplest way to correct for aliasing is a simple aver-

aging, such as replacing each pixel value by a (weighted)

average of its neighbours. Another approach is to cast

rays at the corners of pixels and to take their average

as the pixel values. The disadvantage of these methods

is that small objects may be missed, and some jagged

effects may still be seen. These methods are collectively

referred to as post processing by using a low pass filter.

2.2. Supersampling

Supersampling is done by sampling the image at a higher

resolution than the screen, typically 4 to 16 rays per

pixel. This method yields good results, but at a very

high price in computation time. In most parts of an

image, just one ray per pixel (corner) is sufficient.

2.3. Adaptive Supersampling

This method, due to Whitted6, consists of casting rays

through the corners of a pixel. If the 4 values do not

differ from each other by much, their average is used for

the pixel. If they do differ, more rays are cast—through

the center of the pixel and the centers of the pixel edges.

This subdivision continues as needed until some preset

limit on the number of subdivisions is reached.

This method has a potential problem with small ob-

jects, which may escape undetected. Whitted corrects

this by surrounding each small object with a bounding

sphere sufficiently large so that if the object projection

intersects a pixel, then at least one of the 4 rays will

intersect the sphere. When this happens, the pixel is

subdivided as before. We refer to this component of

the algorithm as being done in object-space, because

the decision to subdivide is based on information in

object-space.

Some problems inherent to this approach have no

solution: one cannot detect and antialias small or thin

shadows (when the shadow is horizontal or vertical), and

small or thin holes or gaps between objects. Even if they

are detected and a single image looks good, animation

sequences are problematic. Another problem is that rays

reflected off a curved surface may still miss the bounding

sphere of a small object.

2.4. Stochastic Sampling

Yellot22 noticed that using an irregular sampling pat-

tern caused some sampling effects to be converted to

a particular form of noise which appears uniform to a

human observer. Cook, Porter and Carpenter17 intro-

duced the technique of distributed ray tracing. Their

method consists of evaluating pixel values by stochasti-

cally supersampling10 and distributing the rays across

those domains that need to be made “fuzzy”. This

method can be used not only to correct for antialias-

ing, but also to produce other effects such as penum-

brae, blurred reflections, motion blur, and simulation of

depth-of-field effects. On the pixel size that he worked

with, Cook reached the conclusion that some 16 rays

per pixel produced a reasonable noise. With stochas-

tic sampling, aliasing artifacts are replaced by noise,

to produce a pleasing picture while requiring less sam-

pling than would be necessary with a regular sampling

pattern. Lee et al.23 analysed the relationship between

the number of samples per pixel and the quality of

the estimate obtained, and presented an optimized al-

gorithm for antialiasing, penumbrae, fuzzy reflections,

wavelength sampling, and more.

2.5. Adaptive Stochastic Sampling

Dippé and Wold18 studied the use of noise-reducing

filters to improve the quality of the image at a given

sampling rate, and applied this technique to antialiasing

ray traced images. The filter width is controlled adap-

tively, but this is based on image-space data. Mitchell19

used adaptive supersampling based on results obtained

in image-space. He used Poisson-disk sampling, and in-

troduced a scanline algorithm to generate the sampling

pattern in an efficient manner. Painter and Sloan24 also

used adaptive supersampling based on results in image-

space, but their procedure started from above the pixel

level. They used both a confidence interval test (to de-

termine when supersampling should be stopped), and a

coverage condition to ensure that all objects larger than

a pixel are sampled.

2.6. Beam Tracing

In beam tracing7, an initial beam, formed by the view-

point and the view plane, is traced through the image.

When this beam intersects a surface, the exact portion

of the beam that continues past a polygon (if any) is

calculated using a clipping algorithm such as the Weiler-

Atherton algorithm25. The resulting beam continues to

the next object, while the intersection is reflected as an-

other beam. This method is completely accurate but it
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is limited to polygonal scenes. The original paper dis-

cusses extensions to directional light sources, but not

distributed ones. However, these can be handled in prin-

ciple by tracing a beam from a surface point towards

such a source.

2.7. Cone Tracing

In cone tracing11, a ray is replaced by a cone surround-

ing the viewpoint and the pixel. When a cone intersects

the boundary of an object, the fraction of the occluded

cone is calculated, and the cone is then continued past

the object with a suitably reduced intensity. Although

this method produces reasonable antialiasing, soft shad-

ows, and fuzzy reflections, it is not accurate, because

it does not account for the fact that a cone may be

blocked in various orientations. For example, suppose

a cone is 50% blocked by one surface and then 50%

blocked by a further surface. In reality, the two surfaces

may be directly behind one another (totaling only 50%

blockage), or they may be occluding the entire cone;

cone tracing does not distinguish between these cases.

Another major distinction between cone tracing and

our approach to soft shadows is that in cone tracing,

the light source is considered as a sphere with equal

intensity towards all directions (unless shadowed), while

our technique also handles distributed light sources such

as arbitrarily-shaped lighted polygons whose intensity

varies with the angle of incidence, just as in radiosity.

2.8. Covers

Covers8 is an extension of Whitted’s bounding spheres.

Objects are assumed to be surrounded by some covers

of a sufficient thickness to ensure that they are inter-

sected by a ray from at least one pixel. Thus, when a

ray intersects a cover, it is in proximity to the boundary

of an object. In this case, the pixel’s intensity is taken

as a weighted average of the two intensities. This is an

object-space technique which solves some problems, but

creates others. For example, covers must be quite large

if one is to account for reflected rays, particularly for

rays reflected off a curved surface. As in cone-tracing,

this method cannot distinguish between different ori-

entations of objects in a ray’s path. Another potential

problem with this method occurs with thin or small ob-

jects: since the weights are based only on the distance

to the closest edge, such an object will not accurately

contribute its weight to the pixel value. Shadows are

handled by considering their edges on the surface, hence

the method is inherently limited to point light sources.

2.9. Ray Bound Tracing

In ray bound tracing9, a ray bound surrounding several

similar rays is used to detect the proximity of the rays to

the boundary of an object. When this happens, the pixel

is supersampled at some predetermined value (16 sam-

ples were used in their sample images). The drawback of

a predetermined supersampling rate is that many sam-

ples must be used to capture very small or thin objects.

Compared to adaptive approaches, the number of extra

samples can be very high. The method is limited to point

light sources and it is not clear if it can be extended to

distributed sources.

2.10. Pencil Tracing

Shinya et al.26 define a pencil as a bundle of rays which

are close to a central “axial” ray. The rays in a pencil

are called “paraxial”, and each can be represented in

the pencil coordinate system as a 4-dimensional vector.

Their approach is based on the premise that at an object

surface, each paraxial ray undergoes a transformation

which can be approximated by a linear transformation,

represented by a 4 × 4 “system” matrix. This approach

does not work for pencils which intersect object bound-

aries or edges, where regular ray tracing is used. The

paper uses pencil tracing to create images containing

curved surfaces, perfect reflections, refractions and point

light sources. There doesn’t seem to be a direct use of

this method for distributed light sources. As for fuzzy re-

flections, it is far from clear that such reflections can be

properly approximated by a linear transformation. The

paper deals only with point light sources and parallel

rays (produced by a point source at infinity).

2.11. Global Illumination Methods

Several papers present solution methods for the global

illumination problem27, 28, 2, 3, 4, 5. They handle the prob-

lem of antialiasing, penumbrae from distributed light

sources and fuzzy reflections. They are very time con-

suming, and some of them involve two phases: one is

view-independent (such as radiosity and its extensions),

and the other is view-dependent. Those methods that

involve a view-dependent stage use various flavors of

ray tracing, some of which may be speeded up by our

approach.

2.12. Coverage Masks

Fiume29 presents an efficient method of antialiasing by

approximating the coverage of a pixel. The method uses

coverage masks and convolution tables to achieve fast

area sampling. However, the technique is non-adaptive:

it uses a fixed subdivision of a pixel, even in regions of

low frequency.

3. Adaptive Supersampling in Object-space

Our method can be viewed as an extension of Whitted’s

adaptive supersampling approach carried out in object-
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Figure 1: A pyramidal ray subdivided into 4.

space. The mathematical ray (semi-infinite line) is viewed

as if surrounded by a pyramidal ray formed by the

viewpoint and the original pixel. This pyramidal ray is

mathematically also a cone, but to distinguish it from a

circular cone we call it a pyray.

In standard ray tracing, a ray either meets an object

or it doesn’t. When a pyray and an object are involved

there are three possible outcomes: the pyray completely

intersects the object, or it completely misses it, or it is

marginal (i.e., part of the pyray meets the object and

part of it misses it). When a pyray is marginal with

respect to an object, we split it up into 4 sub-pyrays, and

the procedure is repeated for each sub-pyray. Figure 1

shows a pyramidal ray subdivided into 4 sub-pyrays.

This process continues to any desired accuracy, giving

the user an easily controlled trade-off between image

quality and processing time. Finally, when a pyray (or

sub-pyray) has to return a value from the surface, it

is sampled by its center, or, in some cases by a point

jittered from the center.

As an aid in detecting whether a pyray is marginal, we

surround it by a circular cone and detect intersections

using the cone. We consider the pyray to be marginal if

the enclosing cone intersects the object. This will cause

some pyrays to be split even if no object boundary

intersects it, but there is no loss of accuracy involved.

The slight increase in the number of marginal pyrays

is more than offset by the simplicity (and time-saving)

of testing the proximity of a circular cone to an object.

Note that we are not doing cone tracing because only

points that are strictly inside the pyray are used as

sample points; the cone is merely used as an aid to

deciding marginality.

We use the term ray in its classical sense to refer to

the line going from the viewpoint through the center

of the pixel. We sometimes also refer to this ray as

the axis of the pyray. When a pyray splits into four,

the central (mathematical) rays of the sub-pyrays are

called subrays of the original ray. For convenience, the

original pyray is called a 0-ray, its sub-pyrays are called

1-rays, and so on. The decision on whether a sub-pyray

should be subdivided is done by estimating an upper

bound on the intensity change that could be produced

by subdividing. If the estimated change is less than

some user-supplied value ε, no subdivisions are done.

The parameter ε controls the tradeoff between image

quality and processing time. It allows us to guarantee the

capture of arbitrarily small (or narrow) objects simply

by making ε sufficiently small.

At the lowest level of subdivision, we no longer con-

sider the sub-pyrays, but just the regular subrays, as in

ordinary ray tracing. At this level, we can also jitter

the subrays, so that any aliasing artifacts that are left

are replaced by noise which seems featureless. This can

be done because at that level we no longer need the

symmetry required for subdivision.

Our technique can be easily extended to support a

filter that is larger than a pixel: we can simply sur-

round each pixel with a larger square and cast the pyray

through that square instead of the pixel.
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Figure 2: Intersection of thin object and pyray, showing adaptive subdivision at levels 1 to 4.

3.1. Subdivision Stopping Criterion

In this section we derive a simple mathematical upper

bound on the change that would be produced in pixel

intensity if marginal sub-pyrays are subdivided. This

bound is then used in our stopping criterion.

Let us assume that a 0-ray is marginal with respect

to an object. The algorithm then does a subdivision,

resulting in 4 1-rays. In general, assume that we have

divided the marginal rays up to a level of K, so we

now have to determine which (if any) of the K-rays

have to be subdivided. Clearly, only the marginal K-

rays are candidates for subdivision. Let M be the total

number of marginal K-rays, IN the number of marginal

K-rays whose axis hits the object, and OUT=M−IN.

Now denote L=max(IN, OUT), and we assume for the

sake of discussion that L=IN.

There are two alternatives in our scheme: to subdivide

all the M marginal rays, or not to subdivide any of them.

We can calculate the maximum possible change in pixel

intensity that would be produced by subdividing. If the

L K-rays that are in are subdivided, it is possible that the

(K+1)-subrays of each of them will all be out (e.g., in the

case of a thin object). This could be balanced by some

of the M−L out K-rays spawning some (K+1)-subrays

that are in, but in the worst case, this will not happen.

The area of every K-ray is 1/22K , so the maximum

area that could be affected by the change is L/22K . If

we assume intensities in the range of 0 to 1, then we

see that the maximum change in the pixel intensity is

again just L/22K . This leads us to the following decision

criterion:

If L/22K ≤ ε then stop subdividing (the marginal

rays).

The above comparison can be expressed in the form

L ≤ 22Kε. When we go from K to K+1, 22Kε increases

by 4. Note that we should have some maximum allow-
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Figure 3: Generating accurate shadows from a point light source by casting a shadow pyray.

able depth of subdivision so that the program does not

continue subdividing in case of pathological situations.

We can construct an object so that the center of the

initial 0-ray will be in, then all the 1-subrays will be

out, then all the 2-subrays will be in again, and so on.

We denote the maximum level by MAX with MAX=4

sufficient for most practical purposes, since this allows

up to 256 4-rays or a 16× 16 supersample.

Figure 2 shows an example with ε=1/16, so 22Kε=

22K−4.

K=1 M=3, IN=0, OUT=3 so L=3. 22K−4 = 1/4 < L

so we subdivide the marginal 1-rays.

K=2 M=5, IN=0, OUT=5, so L=5. 22K−4 = 1 < L so

we subdivide the marginal 2-rays.

K=3 M=12, IN=4, OUT=8, so L=8. 22K−4 = 4 < L so

we subdivide the marginal 3-rays

K=4 M=28, IN=13, OUT=15, so L=15. Now 22K−4 =

16 > L so we stop at this stage.

It is interesting to note that in this example, the differ-

ence between the approximated area of the object (14

4-rays) and the actual area is just 0.63% of the entire

area covered by the original pixel.

Although our stopping criterion may appear simi-

lar to the well-known adaptive tree-depth control of ray

tracing1, it is in reality very different. In adaptive tree-

depth control, a decision with regard to every node of

the tree is made based only on the estimated contri-

bution of that single node. However, it is possible that

several nodes will each be determined as making a small

contribution, but collectively, their contribution could

be significant. In contrast, our stopping criterion con-

siders the total change in pixel intensity that would be

produced by all the candidates for subdivision. Hence,

our results are guaranteed to be accurate to within the

user-supplied tolerance ε.

3.2. Textured Surfaces

Textured surfaces present a different problem: we may

need to sample a patch even if it is not marginal, oth-

erwise we may get aliasing effects. Our solution to this

is simply to force a pyray (or sub-pyray) that is en-

tirely inside a textured surface to subdivide up to some

user-prescribed level. This gives us yet another user-

controlled parameter that provides a trade-off between

image quality and processing time.

We define the TR (texture resolution) as the resolution

to which a non-marginal pyray subdivides when it hits

a textured-mapped surface. For example, TR=3 means

that each such pyray samples the texture map 9 times

by subdividing into a 3 × 3 mesh. Within each small

square, we sample the texture by a point jittered from

the center, in order to correct any aliasing that is left.

4. Shadows

In this section we discuss the handling of shadows from

various sources, including penumbrae and the problem

of antialiasing. In all the following, when we consider

pyrays intersecting a surface, we assume that it inter-

sects it completely—otherwise the pyray would have

split and the pyray under consideration is actually a

sub-pyray.

4.1. Shadows from Point Light Sources

In regular ray tracing, when a ray hits a surface, a

shadow ray is traced towards the point light source, and

depending on whether the shadow ray hits an object, it

is determined whether the surface point is in shadow or

not. The problem with this approach is that shadows

can become aliased. Our approach provides a simple

solution to this problem: when a pyray intersects a

surface, it creates a surface patch with four corners. We

construct a shadow pyray by taking the light (which is a

point) as the source and having the four lines connecting

the light to the patch’s corners as the shadow pyray’s

corners. The axis of the pyray is drawn from the light to

the point of intersection of the surface and the original

pyray’s axis. Figure 3 illustrates this construction.
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Figure 4: Shadow pyray from a surface point to a distributed light source.

We now handle the shadow pyray similarly to a reg-

ular pyray: it either completely misses all objects on the

way to the patch (in which case the patch is completely

lit), or it is completely obstructed by some surface (in

which case the patch is in shadow), or it is marginal to

some object. In the last case, the shadow pyray splits

into four sub-pyrays, and the process continues with the

sub-pyrays. As in the case of a regular pyray, the deci-

sion to split or not to split the marginal sub-pyrays is

based on the same criterion as before. Subdivision can

continue down any predetermined level (such as MAX

or another user-supplied value).

The intensity of the light from the source is taken

as the maximal intensity multiplied by the fraction

of the areas of the shadow sub-pyrays that reach the

patch. This shadow calculation is accurate to the user-

prescribed ε. Strictly speaking, it should be noted that

when the surface is curved, the shadow calculation de-

scribed above cannot be completely accurate, because

the shadow pyray may not intersect the surface at ex-

actly the same patch.

A special case occurs when the original pyray splits

into sub-pyrays due to marginality. Consider only those

sub-pyrays that do not split any further (either because

they are entirely in, entirely out, or have stopped splitting

due to the stopping criterion or the level MAX). Those

sub-pyrays that are entirely in the surface are treated as

explained above, and those that are entirely outside are

ignored. Consider now a sub-pyray which is marginal.

Recall that in this case, a sample point in the patch (the

center or a point jittered from the center) is used to

sample the surface: if the sample point is in the surface,

the entire patch is considered to be in the surface. In

this case, the shadow is determined simply by casting

a shadow ray from the sample point towards the light

source. Since the patch is small and the shadow value

of the original pyray is determined by all its sub-pyrays,

we get an antialiased shadow also at the boundaries of

objects.

4.2. Distributed Light Sources

There are two separate issues here: one is the creation of

penumbrae (partial or “soft” shadows) from distributed

sources, and another is the problem of antialiasing. In

most cases the partial shadow itself does a sufficiently

good job of antialiasing the shadow, but there are cases

when it does not. We first discuss the creation of penum-

brae under the simplifying assumption that we are only

concerned with the shadow intensity at the exact point

where the pyray’s axis hits a surface.

Assume first that the source is a rectangle. Then, from

the surface point that needs to be lit, create a shadow

pyray with bounding rays aimed at the four corners of

the rectangle. This is illustrated in Figure 4. We need to

find the fraction of the shadow pyray that reaches the

light without being obstructed. Again, this is done as

described previously for a regular pyray, with a shadow

pyray splitting when it is marginal with respect to an

object. The shadow sub-pyrays (and their areas) that

reach the light source determine the fraction of light

that illuminates the surface point. If the light source

is not rectangular, we first surround it by a bounding

rectangle, and proceed as above. Next, we consider only

the shadow sub-pyrays that hit (or are marginal to) the

bounding rectangle. Each of these is either completely

inside the light source itself, completely out, or marginal

to the light. The shadow sub-pyrays that are marginal

to the light are split according to the same principles.

The intensity of the light that we assign to each

shadow sub-pyray hitting the light source is taken as

IA cos θ, where I is the intensity of the source per unit
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Figure 5: Extending the shadow pyray for improved sampling.

area (assumed constant for the source), A is the area

of the source subtended by the shadow sub-pyray, and

θ is the angle between the normal to the source and

the axis of the shadow sub-pyray. This is the effective

illumination for that particular shadow sub-pyray, since

A cos θ is the approximate area of the projection of the

subtended area on a plane perpendicular to the shadow

sub-pyray. In radiosity techniques, this is one way of

approximating the form factors20. The intensity is also

attenuated by the distance in the usual way20.

Spherical light sources may also be simulated by sim-

ply omitting the cos θ factor, which gives a disk perpen-

dicular to the line of sight. From the point to be lit, a

shadow pyray towards the center of the sphere is created

with bounding rays defined by the radius of the sphere.

The process would then proceed as above to find the

percentage of light that makes it to the point.

What we have described above is correct only for a

single point on the surface. We can use the single point

as a sample for the shadow effecting the entire pixel,

but there are cases where it could lead to aliasing errors.

Figure 14 demonstrates this problem on the gazebo in

the extreme right corner where the pyray axis makes a

very small angle with the surface. The centers of adjacent

pyrays are far apart on the surface, and the intersections

of their respective shadow pyrays with other objects may

be very different, resulting in sharp changes in shadow

intensities. The inset in the figure is a 4× 4 blow-up of

the problem. Five solutions to this problem are outlined

below.

4.3. Forced Subdivision

This method is the one we use with texture-mapped

surfaces—see Subsection 3.2. Each pyray is forced to

subdivide up to the user-supplied level TR (texture res-

olution). The effects of different values of TR can be

seen in the insets of Figures 14 and 15.

4.3.1. Supersampling

Instead of creating just one shadow pyray from the

center of the patch, we can choose more sample points

within the patch, and take the shadow as the average

of the results. We can also jitter the sample points. The

user can vary the number of sample points and there

is an obvious trade-off between accuracy and running

time.

4.3.2. Extending the Shadow Pyray

The shadow pyray described above emanates from a

surface point and its axis is a line joining the surface

point and the center of the light source (the intersection

of its diagonals). Now instead of taking this as the

shadow pyray, we move the source of the pyray behind

the surface. Now the shadow pyray intersects the surface

in a patch, which we call the shadow patch. This idea is

illustrated in Figure 5, and it is similar to the idea of

defocusing (see next section). The original patch and the

shadow patch obviously overlap, but they are usually

not identical.

One problem that remains to be resolved with this

approach is how large should we make the shadow
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Figure 6: Defocusing a reflected pyray to produce blurred reflections.

patch? We want to make the shadow patch as large

as possible so that it will sample the original patch

as best as possible, but the shadow patch should not

extend beyond the original patch, or we might get false

shadows. Geometrically, this problem is identical to the

following: consider the patch as a screen and the pyray’s

origin as the viewpoint. Our problem now is to move

the viewpoint until the projection of the light source

(towards the viewpoint) is maximal and still contained

in the screen. Note that if the projection of the light

source on the patch is small, we may have to move the

source of the shadow pyray behind the light.

Our current implementation uses this method (except

for textured surfaces, where we use forced subdivision).

4.3.3. Extension and Subdivision

This is a combination of two previous methods: we

subdivide the original patch into sub-patches, and for

every sub-patch we create an extended shadow pyray

as described above. Clearly, this method requires less

subdivisions than the simple subdivision approach, and

the results are more accurate. The subdivisions can be

done to any user-prescribed level.

4.3.4. Extension and Adaptive Subdivision

This method is the most consistent with our adaptive su-

persampling approach, but it involves some initial extra

steps which may be time-consuming. We assume that the

light is a rectangle—otherwise we surround it by a rect-

angle and handle the shadow (sub-)pyrays as described

above. The first step is to project the light rectangle onto

the same surface as the patch. This projection is done

parallel to the line from the patch’s center to the light’s

center. We then check to ensure that the entire patch lies

inside this projection (it is sufficient to check that the

patch’s corners are inside). If it is not completely inside,

we subdivide the patch into four and proceed with every

sub-patch. In most cases, the patch will be inside the

light’s projection.

Assume now that we have a surface patch (or sub-

patch) that is entirely inside the light’s projection. We

create a shadow pyray whose axis is the line joining the

centers of the patch and the light, and whose source

is so far behind the patch that the entire patch is in-

side the shadow ray (the corners of the shadow pyrays

are aimed at the light’s corners). We now trace the

shadow pyray, with the patch as the first polygon, but

we only trace the part of the shadow pyray that is

inside the patch. Clearly, the shadow pyray will sub-

divide along the boundary of the patch. Another way

of looking at it is as if the shadow pyray was a reg-

ular pyray and the patch was a hole in the surface.

The shadow sub-pyrays that are inside the patch are

traced towards the light, and the marginal ones are

subdivided up to the ε accuracy or up to the MAX

level.

To increase the efficiency of the above method, the

actual order of tracing the shadow pyray is different.

The shadow pyray at first ignores the patch in order to

create the list of objects that it hits. This list is passed on

to its shadow sub-pyrays and eliminates many objects

from consideration while tracing the shadow sub-pyrays

(see Section 6).
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Figure 7: Percentage increase of angle of defocused pyray over original angle of pyray (taken as 2◦), plotted as a function

of the incidence angle, for various values of N, with DFRMIN=0.6 and DFRMAX=0.95.

5. Reflections

Sharp reflections of a pyray off a polygonal surface are

straightfoward. In the next two subsections we deal with

fuzzy or blurred reflections and with the problem of

curved surfaces.

5.1. Blurred Reflections

Regular ray tracing handles the problem of fuzzy (or

specular) reflection of a point light source very well.

However, fuzzy reflections of other objects and dis-

tributed light sources require the more sophisticated

methods outlined in Section 2. This anomaly is clearly

seen in the early ray traced images: reflections of point

light sources are fuzzy, whereas reflections of other ob-

jects are sharp. Both Phong’s model and the Torrance-

Sparrow model20 assume that light sources are points,

and as such, it is difficult to use them for distributed light

sources. In our approach, all reflections (of lights and

other objects) are treated in a similar manner. Stochas-

tic sampling10, 23 solves the same problem by distributing

the reflected rays, but this requires a high degree of su-

persampling.

Another difficulty is the well-known phenomenon that

most surfaces reflect in a manner that is dependent on

the angle of incidence. Figure 19 shows this: a house

is seen reflected from a surface, and the viewpoint is

assumed to be close to the surface. The bottom part

of the house is almost perfectly reflected, while the top

part is very fuzzy. As explained in27, the difference in

fuzziness is due mainly to the difference in the viewing

angle. Another contributing factor is the dependence of

the fuzziness on the wavelength.

Our model of a solid reflected pyray allows a very

simple solution to all of the above problems. Reflections

of all types, and not only light sources, can be made

fuzzy. Furthermore, the degree of fuzziness can depend

on the angle of incidence and the wavelength, and the

user can specify this dependency. The drawback of our

simple method is that it is not based on a physical

model, and hence requires experimentation and tuning

to give accurate results.

Our solution is best explained by examining the ge-

ometry of a reflected pyray, as in Figure 6. The pyray, if

reflected from a perfect mirror, behaves geometrically as

if it emanated from a point which is a reflection of the

pyray’s source. To introduce fuzziness into this scheme,

we defocus the reflected pyray by shifting the reflected

source forward along the axis of the pyray. The effect

is that the reflected pyray subtends a wider angle, and

thus adjacent pyrays overlap after the reflection. This

overlap of adjacent pyrays causes points to be reflected

in more than one pyray, and this produces an overall

fuzzy appearance.

In Figure 6, we denote the angle of incidence by α,

the angle of the pyray by β, and the angle of the fore-

shortened pyray by γ. We also denote the ratio of the

distances between the two sources of the pyrays and

the surface by DFR (the defocusing ratio); in Figure 6,

DFR=a/b. Note that this ratio is always between 0

and 1. In order to model the dependence of the fuzzi-

ness on α, our general model calls for the DFR to be

some function of α, depending on the surface. One sim-

ple function that suggests itself is to select a minimum

and maximum value for the DFR—call them DFRMIN

and DFRMAX—where the minimum is for α = 0◦,
and the maximum is for α = 90◦. For other values

of α, DFR=DFRMIN+(DFRMAX-DFRMIN)sin(α)N ,

where N is a parameter controlling the rate at which the

DFR varies.

The DFR is very easy to use in modeling the defocus-

ing idea, but its value is not a very good indication of

the degree of fuzziness of the reflection. A more natural

measure for this fuzziness is simply the percentage in-
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DFRMIN | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100(γ − β)/β | 890% 399% 233% 150% 100% 67% 43% 25% 11%

Table 1: Percentage Increase of Pyray Angle for Different Values of DFRMIN (α = 0◦)

Figure 8: A pyray reflected from a curved surface.

crease of the wider pyray angle over the original pyray

angle, i.e., 100(γ − β)/β. Figure 7 shows plots of this

percentage increase as a function of the incidence angle

α, for DFRMIN=0.6, DFRMAX=0.95, β = 2◦, and sev-

eral values of N. Other values of the parameters produce

essentially similar graphs. Of course, a DFR close to 1.0

produces sharp reflections (small percentage increase of

γ over β).

Clearly, a lot of field work is called for to determine

which values of the parameters DFRMIN, DFRMAX

and N best model the different types of surfaces that oc-

cur in everyday environments. Table 1 is given as an aid

in choosing DFRMIN; it shows the percentage increase

of the pyray angle for different values of DFRMIN, for

α = 0◦.

Another issue is that the fuzziness also depends on

the wavelength27. This can be easily incorporated into

our model by selecting three different DFR’s for red,

green and blue. Although it might appear that such a

solution should take three times as long to implement,

that is not the case. By first doing the widest pyray, its

list of marginal objects (see next section) can be passed

on to the pyrays of the other two wavelengths, resulting

in very considerable time savings.

Most surfaces exhibit fuzziness that is not uniform

(even for a constant angle of incidence), due to the

uneveness of the surface. This uneveness can also be

modeled by our defocusing method by first computing a

DFR according to the above model, and then perturb-

ing this value according to some distribution function.

Similar effects were studied in17, 23, but we have not

implemented them in our present work.

5.2. Reflections Off Curved Surfaces

Our approach to antialiasing of curved surfaces is ba-

sically similar to that of polygons: when a pyray is

marginal to a curved surface, it splits into sub-pyrays,

and the process continues until either the stopping crite-

rion is satisfied, or the level MAX is reached. The values

of sub-pyrays that are still marginal (but do not split

further) are determined by a single sample point. In the

following discussion, “pyray” refers to an original pyray

or a sub-pyray that is not marginal and needs to be

reflected from a curved surface.

Reflections of a pyray off a flat surface are simple,

because the reflection of a pyray is, geometrically, also

a pyray. The problem is that of reflections off a curved

surface, such as a sphere. Firstly, the four reflected cor-
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Figure 9: Intersection of object and pyray with one marginal edge, showing adaptive subdivision at levels 0 to 3.

ners of the pyrays no longer meet at a single point.

Secondly, the reflection of the side of the pyray is no

longer planar but curved. And lastly, the reflection of

the pyray may now subtend such a wide angle that it is

no longer manageable. We propose four different solu-

tions to these problems, each having its own advantages

and disadvantages.

5.2.1. Approximating the Reflected Pyray

In this approach, we approximate the reflected pyray

provided its angle is not too wide. Figure 8 illustrates

this method. When a ray is reflected off a curved surface,

we consider the four rays, R1, R2, R3, R4, which are

the reflections of the bounding lines of the original

pyray. Each of these four rays is defined by a point on

the surface and a direction vector. Since the reflection

of the pyray is not a pyray, we construct a pyray to

approximate the reflection. Before doing that, we check

the maximal angle between opposite pairs of rays from

R1–R4, and if it is wider than some user-specified value,

we subdivide the pyray. This subdivision can continue up

to the level MAX. At the level of MAX, we just sample

the sub-pyray by its axis (or by a jittered displacement

of the axis). In the following, we assume that the pyray

we are dealing with is already narrow enough not to be

split.

For the approximation, we need to determine a source

and an axis, and this is done as follows. The source of the

approximating pyray is taken as the point in space such

that the sum of the squares of its distances to R1–R4

is minimal. The axis of the approximating pyray is now

taken as originating from this source and going through

the point at which the axis of the original pyray hit the

surface. This ray is called R in Figure 8. The four corners
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Figure 10: Stochastic sampling, 16 rays per pixel; quality: poor; time: 73.70 min.; time for similar image using ASOS:

23.65 min.

of the approximating pyray are taken as emanating from

the source and passing through the four points at which

the corners of the original pyray hit the surface. We now

continue to trace with the approximating pyray, which

can also be defocused like a regular reflected pyray.

This technique is quite straightforward, but the re-

quired calculations can be time-consuming to such an

extent that another approach might be better. Another

problem is that the approximating pyray is still just

an approximation, and it may result in certain anoma-

lies. For example, in some cases, the approximations

of adjacent reflections may overlap, and in other cases,

such approximations may miss certain volumes in space.

Another problem is the determination of the threshold

angle: if it is too large, the anomalies might show up as

artifacts, and if it is too small, then we could be wasting

time on calculations which just end up with a decision

to split the original pyray.

5.2.2. The Tangent-plane Method

This is the simplest solution. At the point where a pyray’s

axis hits the surface, we reflect the pyray about the plane

tangent to the surface at that point. This plane is easily

derived from the point of contact and the normal at

that point.

The obvious problem with this approach is that

adjacent pyrays will be reflected in such a way that

certain volumes between pyrays will be missed. How-

ever, this problem can be remedied to some extent by

defocusing the pyrays as explained in the previous sub-

section.

It should also be noted that the images obtained

by this approach cannot be worse than those obtained

when all curved surfaces are approximated by polygonal

meshes (a very common approach to rendering curved

surfaces). What we are doing here is, in effect, a local

replacement of the curved surface by a very small poly-

gon, namely, the pyray’s intersection with the tangent

plane. The advantage of this approach over an ordi-

nary polygonal approximation is that it is always done

at image resolution, so rendering a close-up view of a

curved surface will never reveal any polygonal struc-

ture.
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Figure 11: ASOS (MAX=3, ε=1/8); quality: good; time: 27.71 min.; time for similar image with stochastic sampling:

383.10 min.

5.2.3. Curved Reflections by Supersampling

This solution takes more time than the previous one but

is more accurate. Whenever a pyray hits a curved sur-

face, it splits up to some predetermined maximal level,

and we simply continue to trace each of the sub-pyrays

separately. For the sub-pyrays, their reflections off the

curved surface are done by the tangent-plane method

outlined above. This approach ensures that the scene

will be sampled much more uniformly and with much

smaller gaps than with the tangent-plane approach. Fur-

thermore, if we want to do texture mapping on the

curved surface, we have to adopt this solution since we

have no other way of antialiasing the texture map.

5.2.4. Curved Reflections by Adaptive Supersampling

This is a refinement of the previous method, and it is

keeping with our principle of adaptive supersampling.

When a pyray is reflected off a curved surface, we test

the widest angle that is formed between R1–R4 (see

Figure 8). If that angle is greater than some user supplied

threshold, we subdivide the pyray into four sub-pyrays,

and repeat the procedure with every sub-pyray. If the

angle is less than the threshold, the (sub-) pyray is

reflected by the tangent-plane method, and it can also

be defocused in the regular way. The subdivision can

continue up to some user-specified maximal level.

6. Efficiency Considerations

In this section, we discuss several matters relating to

efficiency.

6.1. Hit Lists

When a 0-ray is intersected with the scene, a list con-

taining all of the objects it hit or was marginal to is

returned. Since a sub-pyray can only be marginal to an

object if its parent was marginal, the sub-pyray only has

be intersected with the hit list of its parent instead of

the entire scene. This method considerably speeds up

the process, even when we subdivide all pyrays.

When a pyray is marginal to a polygon, it may be

marginal to more than one edge. Clearly, none of its

sub-pyrays can be marginal to any other edges, so in
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Figure 12: ASOS (MAX=4, ε=1/8); quality: very good; time: 35.98 min.

order to minimize computation time, the information

about the marginal edges can be passed from a pyray to

its sub-pyrays. We can maintain a list of all the edges of

the polygon which are close to the pyray. When the sub-

pyrays are considered, we need only compare them with

the edges on this list (and not all edges of the polygon).

Note, however, that the order in which a pyray intersects

some marginal surfaces is not necessarily identical with

the ordering for its sub-pyrays.

6.2. Proximity to One Edge

When a ray is in proximity to just one edge, we can

improve our stopping criterion by observing that for

each marginal K-ray, at most half of it can switch from

in to out (or from out to in). The reason is that if

the center of a K-ray is in, then at most 2 of its (K+1)-

subrays can be out. Therefore, in the decision criterion, L

can be replaced by L/2, giving us the modified criterion

of:

If L ≤ 22K+1ε then stop subdividing (the marginal

rays).

This would, on the average, require many fewer subdivi-

sions than the previous criterion, because in a polygonal

object, almost all marginal rays would be in proximity

to just one edge.

Figure 9 shows a ray in proximity to just one edge.

We use ε=1/16 as before. So now we must compare L

with 22K+1−4 = 22K−3.

K=1 M=3, IN=1, OUT=2 so L=2. 22K−3 = 1/2 < L

so we subdivide the marginal 1-rays.

K=2 M=6, IN=3, OUT=3, so L=3. 22K−3 = 2 < L so

we subdivide the marginal 2-rays.

K=3 M=13, IN=6, OUT=7, so L=7. 22K−3 = 8 > L so

we stop at this stage.

In the case of a single edge, we can easily compute an

upper bound on the depth of subdivision K required for

a given ε. Note that no matter how the edge intersects

the original 0-ray, the maximum value for L is just 2K

(the original square can be seen as a 2Kx2K array of

K-rays). So in order for the modified criterion to hold,

it is sufficient to have 2K ≤ 22K+1ε, i.e., K ≥ log2(1/ε)−1.

For example, if ε=1/16, we will always stop with K=3

(or less, depending on L).
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Figure 13: 4× 4 blowup of previous images, showing difference in penumbrae.

6.3. Using Hierarchical Data Structures

The use of hierarchical data structures to speed up ray-

object intersection is widely prevalent. Many schemes

have been proposed, and at their basis lies the fact that

the intersection of a ray and a bounding volume is easy

to compute. A natural question that arises is how can

these schemes be extended to pyrays.

Pyrays can use such data structures very easily. Our

technique for splitting pyrays adapts ideally as follows.

Consider a pyray (or a sub-pyray) and a bounding vol-

ume: it either misses the bounding volume completely,

or the entire pyray is within the bounding volume, or

the pyray is marginal to the bounding volume.

Clearly, the first two cases can be handled in a

straightforward manner. In the third case, the pyray

splits in the usual manner, and we consider each sub-

pyray separately. Splitting can continue recursively until

we either reach MAX (maximal level of splitting), or

our stopping criterion is satisfied. At the lowest level,

the pyray is sampled by a single ray in the usual

manner.

We have not implemented the interaction of pyrays

and hierarchical bounding volumes, but the implemen-

tation is the same as the regular interaction of a pyray

and a box or parallelpiped or sphere.

6.4. Other Speed-up Methods

The entire sampling process may be sped up by initially

sampling pixels in clusters, such as 2× 2, 3× 3, or 4× 4.

If such a “fat” pyray is marginal, we just split it up,

and pass the hit list to its sub-pyrays. Note that if the

cluster size is not a power of 2 then splitting has to be

done differently. If the fat pyray is not marginal, we can

use this value for each of its interior pixels, achieving a

big saving in processing time. The bigger the cluster, the

higher the potential savings, but the likelihood of image

banding is higher. This idea is simply a way of using a

lower resolution base.

Another efficiency consideration concerns shadow

pyrays: when the light source is a simple rectangle

and the shadow pyray is in proximity to only one

edge or only one sphere (or some other simple prim-
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Figure 14: House with texture mapping rendered with ASOS (MAX=2, ε=0) and texture sampled 4 times per pixel;

quality: good; time: 158.01 min. Some shadow aliasing (enlarged) is noticeable.

itive), we can avoid the subdivision process and cal-

culate the fraction of the pyray that remains unob-

scured. This is similar to the approach of cone tracing.

However, in other cases, the subdivision is necessary

for calculating a good approximation to the correct

shadow.

7. Results and Discussion

Our technique (ASOS) was implemented on a Silicon

Graphics Onyx with a 150 MHz R4400 processor and

all images were rendered at a resolution of 1000× 675.

We have implemented our scheme on polygonal objects,

spheres, cylinders, and cones. The exact treatment of the

pyray-object intersections is detailed in15, 16. For other

curved surfaces, one would have to provide routines for

detecting the proximity of a pyray to the boundary,

intersection detection of a ray, and calculation of the

normal at any point on the surface.

As for light sources, we have implemented point light

sources, linear lights, spherical lights, and distributed

lights from rectangles and arbitrary polygons. For shad-

ows, we have done penumbrae, and have also imple-

mented antialiasing of point and distributed sources.

The antialiasing of distributed sources was done by the

extended shadow pyray method (moving the source of

the shadow polygon back so that the shadow pyray in-

tersects the patch defined on the surface by the original

pyray).

We have also implemented sharp and fuzzy reflec-

tions, including dependence of the fuzziness on the

viewing angle. All reflections from curved surfaces

(sharp and blurred) were implemented using the sim-

ple tangent-plane method, which proved sufficient for

our images.

We have chosen to compare ASOS against stochastic

sampling because the images are comparable in quality.

We have not used the adaptive techniques mentioned in

Subsection 2.5, since the adaptiveness is image-driven,

with the same inherent problems as adaptive ray tracing

(see Subsection 2.3).

7.1. Simple Images

Figure 10 was rendered with stochastic sampling, with 16

rays per pixel. The image took 73.70 minutes to render,

and as can be seen, the penumbra from the desk is quite

splotchy. A comparable image with ASOS (MAX=2,

ε=1/8) took only 23.65 minutes.

Figure 11 was rendered with ASOS (MAX=3, ε=1/8)

(i.e. subdividing up to a maximum of 64). This image is
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Figure 15: Same as last, but texture sampled 16 times per pixel. Quality: very good; time: 353.55 min. Time for similar

image with stochastic sampling: 539.42 min. Shadow aliasing is improved.

Figure 21: Blurred reflections from curved objects.
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Figure 16: House on reflecting plane rendered with ASOS (MAX=2, ε=1/8); quality: good; time: 49.19 min. Time for

similar image using stochastic sampling: 308.26 min.

obviously a big improvement over the previous one, and

the time was only slightly more than ASOS required for

the previous image: 27.71 minutes. A comparable image

with stochastic sampling casting 64 rays per pixel and

took 383.10 minutes.

At this point it is necessary to explain why such

a big improvement required so little extra time. The

reason is due to our technique of passing the polygon

hit list from a (sub-)pyray to its sub-pyrays. Most of

the time is spent on determining the hit list for the

initial pyray, so splitting to a deeper level is relatively

cheap.

Finally, Figure 12 was rendered with ASOS (MAX=4,

ε=1/8). The penumbra from the desk looks perfect, and

the time to render the image was 35.98 minutes. No

attempt was made to render a comparable image with

stochastic sampling. Figure 13 is a 4 × 4 blowup of

a section of Figures 11 and 12 showing the improved

penumbra.

7.2. House with Texture Maps

The images here consist of a house made up of

2,770 polygons. A spherical light source provides the

light and bounding boxes were used around most of

the objects to speed up the intersection calculations.

The porch is rendered with a procedural texture map,

and the ground consists of a triangular mesh made

up of 1,139 triangles with a procedural sand bump

map.

Antialiasing was achieved as described in Subsec-

tion 3.2. Both images were rendered with MAX=2 (i.e.,

the smallest sub-pyray was 1/16th of a pyray) and

ε=0, forcing all marginal sub-pyrays to subdivide to

level 2.

Figure 14 shows the image rendered with TR=2, i.e.,

non-marginal pyrays subdivided into 2×2, so the texture

map was sampled 4 times by each pixel. The time for

this image was 158.01 minutes, and the image quality is

reasonably good for its size and resolution.
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Figure 17: Same as last, but MAX=3. Quality: very good; time: 92.25.

Figure 15 shows the same image rendered with TR=4,

meaning that the texture map was sampled 16 times per

pixel. This image took 353.55 minutes, and the image

quality is very high. A comparable image by stochastic

sampling was obtained by sampling each pixel 16 times,

requiring 539.42 min., or approximately 50% more time.

The main reason that the time savings here are not as

dramatic is that when a non-marginal ray hits a textured

surface, it not only samples the texture 16 times but also

sends 16 shadow rays to the light source.

The insets of the figures are a 4 × 4 blow-up of the

extreme right corner of the gazebo. They show in detail

that a higher TR improves the antialiasing of both the

texture map and the shadows.

7.3. House with Reflections

The same house as above is shown here set on a reflecting

plane without any texture maps or shadows. In the first

two images the plane is a perfect reflector, and in the

other images the plane creates blurred reflections with

the fuzziness depending on the viewing angle.

Figure 16 shows the house rendered with ASOS

(MAX=2, ε=1/8). The time for this image was 49.19

minutes, and the image quality is reasonably good. A

comparable image with stochastic sampling, with 16

samples per pixel took 308.26 minutes. These timings in-

dicate that even for images with many polygons, ASOS

can achieve a dramatic time savings over stochastic

sampling.

Figure 17 shows the same image rendered with ASOS

(MAX=3, ε=1/8). The improvement in this image is

noticeable on the screen, but it is slight. When portions

of both images are blown up, there is quite a noticeable

difference. The time for this image was 92.25 minutes,

and a comparable image with stochastic sampling would

have required 64 rays per pixel was not attempted.

Figures 18 and 19 show the effect of blurred re-

flections, with the amount of blur depending on the

viewing angle. For both images, DFRMIN=0.05, DFR-

MAX=1.0, ε=1/8 and MAX=3. The parameter N was

32 and 64 respectively, showing the effect of N on the

rate at which the blur changes with the viewing angle.

As N increases, the range of viewing angles at which the
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Figure 18: Blurred reflections using ASOS (MAX=3, ε=1/8, DFRMIN=0.05, DFRMAX=1.0, N=32); time:

182.83 min.

blur is noticeable also increases. Figure 18 took 182.83

minutes and Figure 19 took 225.90 minutes.

7.4. Images with Secondary Reflections

Figure 20 shows the office scene with the camera moved

closer to the desk and the desk made metallic. This

images was rendered with ASOS (MAX=3, ε=1/8) in

28.74 minutes and shows a blurred reflection of the

whiteboard on the top of the desk. Also note reflection

of the light off of the whiteboard as well. Figure 21

(see p. 47) shows a sphere, cylinder and cone sitting on

a non-reflective plane. This image was rendered with

ASOS (MAX=3, ε=1/8) in 2.48 minutes while allowing

6 reflective bounces.

7.5. Summary of Results

Table 2 summarizes our qualitative and quantitative

results, using ASOS and stochastic sampling.

Qualitatively, one can summarize these results by say-

ing that ASOS achieves a speedup by an order of magni-

tude over stochastic sampling when no texture mapping

is involved. Even with texture maps, stochastic sampling

can take some 50% more time to achieve comparable

results.

8. Conclusions

We have introduced a new ray tracing technique for the

problems of aliasing, handling distributed light sources,

and generating fuzzy reflections. Both light sources and

regular objects are blurred in the same uniform manner,

producing either specular reflections of light sources, or

fuzzy reflections of regular objects. We have also shown

how to antialias shadows from distributed sources, which

is a different problem than just creating soft shad-

ows. Our method operates in object-space, and can be

tuned to any desired accuracy. Note that our method

of producing fuzzy reflections is not based on a physi-

cal model, and so it requires some tuning for different

surfaces.

ASOS (adaptive supersampling in object space) can

handle reflections from any curved surface, and we have
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Figure 19: Same as last, but with N=64, showing the effect of N on the blurred portions. Time: 225.90 min.

implemented reflections—both sharp and fuzzy—from

spheres, cylinders and cones. For other curved surfaces,

the user would have to supply the routines for testing

proximity, calculating intersection of a (line) ray and

a surface, and deriving the normal to the surface at a

given point.

The run times of our test images were mainly com-

pared against those of stochastic ray tracing, since our

method can be viewed as producing identical results to

that method. (More efficient stochastic techniques are

adaptive in image-space, and where not used in this re-

search.) Test runs are extremely favorable to ASOS, and

we can even produce better images in a shorter time.

These time savings are mainly due to the fact that we

supersample only at object boundaries, but even when

we force ASOS to supersample large areas (as needed

for antialiasing texture maps), we still get a big savings

in time due to our method of passing the object list

from a pyray to its sub-pyrays. Thus, ASOS can also be

viewed as a useful acceleration technique.

Our method’s ability to capture very small or thin

objects makes it extremely useful for animation, because

temporal aliasing can cause small objects to flash on

and off. It is not enough just to detect such objects,

it is also important to get a good approximation to

their area, otherwise they may appear to pulsate with

different intensities. The same can be said about small

or thin shadows, and small gaps between objects. With

ASOS, we can approximate such areas to any required

precision.

The use of our technique does not preclude the ap-

plication of other antialiasing methods. For example,

stochastic sampling can be used for transparent objects.

This combination of two techniques can be used to

handle certain aliasing problems such as object intersec-

tions in CSG models. Another antialiasing method calls

for sampling each pixel beyond the pixel area; this can

be easily done by casting the original pyrays through a

square larger than a pixel, though we have not studied

this approach.

Although we do not solve the global illumination

problem, several of the techniques that do so use ray
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Figure 20: Blurred reflections from one and two bounces.

Figure Image Quality ASOS Time Stochastic Time

10 Office Poor 23.65 73.70

11 Office Good 27.71 383.10

12 Office Very Good 35.98 n/a

14 House w/texture Good 158.01 n/a

15 House w/texture Very Good 353.55 539.42

16 Reflected House Good 49.19 308.26

17 Reflected House Very Good 92.25 n/a

18 Blurry (N=32) Very Good 182.83 n/a

19 Blurry (N=64) Very Good 225.90 n/a

Table 2: Qualitative and Quantitative Results: ASOS and Stochastic Sampling

tracing as an essential step. These methods could use

ASOS to speed up and enhance the ray tracing part.

ASOS can also be combined with regular stochastic

sampling to handle the problem of refraction, for which

at present we do not have a solution.

Future research in ASOS can be expected to deal

with a variety of problems, some of which are outlined

below:

• Refractions: The problem of transparent objects is

a difficult one, particularly when distributed light

sources are involved. The difficulty here is that we

cannot aim a simple pyray towards the light source

because of the refraction of light at the boundaries of

the medium.

• Acceleration: The literature of ray tracing abounds

with various acceleration techniques. Not all of them
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are suitable for use with pyramidal rays, and studying

the techniques that can be applied to ASOS should

be an interesting research topic. Another topic that

comes under acceleration is the handling of extremely

complex scenes involving billions of polygons12, 13.

• Rough environments: Many naturally occurring ma-

terials exhibit the property that light is blurred in a

manner that depends not only on the viewing angle

and wavelength, but also in a random manner. This

effect can be modeled by two parameters. One is the

surface normal, which can can be varied according

to some distribution function, and another is the de-

focusing ratio, which can also be varied in a similar

manner.

• Other blurring effects: It is quite easy to extend our

defocusing method to handle other blurring effects.

For example, depth-of-field effects can easily be mod-

eled by simply defocusing the original pyray in a

manner dependent on the depth of the object. Mo-

tion blur can also be done, but slightly differently:

the pyray’s source stays at the viewpoint, but now the

pixel is distorted by elongating it in the direction of

the object’s motion; the amount of distortion should

be a function of the depth of the object and its speed.
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