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Abstract

We develop a compact fourth order scheme for
the elastic wave equation in the frequency do-
main using a first order formulation of the equa-
tion. We use a 3D staggered grid and apply our
minimalistic “Gradient Method" concept to the
BGT absorbing boundary condition. The equa-
tions are solved in a partitioned domain using
the block-parallel CARP-CG algorithm. The re-
sults are compared with the analytic solution.
Keywords: Elastic wave equation, frequency
domain, first order formulation, compact scheme,
fourth order accuracy, gradient method absorb-
ing boundary conditions.

1 The compact fourth order scheme
The elastic wave equation in the frequency do-
main can be expressed as a first order system of
velocities and stresses. The stresses are denoted
by σij and form a symmetric matrix, so there
are only six different values of σij . For conve-
nience, we denote D= ∂u

∂x + ∂v
∂y + ∂w

∂z . Then the
system (including a forcing term) is given by the
following nine equations:
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u(x, y, z), v(x, y, z), w(x, y, z) are the displace-
ments in the x, y, z directions, respectively, and
F (x, y, z) = (F x, F y, F z) is the vector of dis-
placements in the x, y, z directions at a point
of the domain. Additional parameters: ω=2πf ,
where f is the frequency, λ and µ are the Lamé
parameters and ρ is the density (which are all
assumed to be constant),. The elastic equations
give rise to two wave speeds, the compression or
P-wave vp, and the shear or S-wave vs, given by
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The wave numbers associated with the two wave
speeds are kp = ω/vp and ks = ω/vs.

2 Discretization
We use the standard discretization notations on
a staggered grid, but we forgo the development
steps of the discretization. This yields
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with corresponding expressions for vyyy and
wzzz. We also obtain appropriate 4th order ex-
pressions for σij , which depend on these third
order derivatives. The derivatives in the O(h2)
terms are replaced by second order central dif-
ferences. These can all be computed on a com-
pact 3×3×3 stencil.

3 Absorbing boundary conditions

The absorbing boundary conditions (ABC) of
[1] (BGT) was originally developed for a sphere
and used radial derivatives (which are also nor-
mal to the boundary direction). We made the
following adaptation of BGT for the elastic case,
which we call BGTE:(
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where r is the distance from the source and the
derivatives are in the radial direction.

In [3] we developed the “Gradient Method"
concept for ABCs, which is based on the princi-
ple that the directional derivatives in any ABC



should be in the direction of the gradient of the
wavefront, without regard to the orientation of
the boundary. According to this concept, BGT
and BGTE can be used in any convex domain
with an interior source. The advantage of this
approach is that the ABCs take up just one ex-
tra grid point on each side, and this is big ad-
vantage over PMLs.

4 Preliminary results

We use a well-known example from the litera-
ture, see, for example, [5]. The domain is of size
20003 meters, with a source at the center, dis-
cretized by 1423 grid points (including the extra
points for the ABC). Since the Green’s function
of the solution is known, the source of impact
was simulated by placing a small cube at the
center with values of the Green’s function. We
made tests with the BGTE ABC and also with
Dirichlet BC (with boundary values from the
Green’s function). The density was ρ = 1000
Kg/m3, and the frequency was f = 10. The
acoustic case and the elastic case were tested,
with parameters vp = 2500 m/s, vs = 0 m/s for
the acoustic case, and vp=5000 m/s, vs=2500
m/s for the elastic case.

The acoustic case was solved with GMRES,
with a restart of 20. For the elastic case, we
used the CARP-CG algorithm [2], which has
been shown to be especially useful on strongly
convection-dominated PDEs and the Helmholtz
equation at high frequencies. CARP-CG was
used in various wave problems e.g. [3–5].

Fig. 1 shows sample plots for the acoustic
and elastic cases. Each plot compares the Green’s
function with the solutions with the ABC and
with Dirichlet boundary conditions. The acous-
tic case is the Helmholtz equation for the 3 stresses
σii. The good correspondence between the plots
is in line with our previous Helmholtz results.
The results in the elastic case are not as good,
and work on improving the ABC for this case is
still in progress.
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Figure 1: Comparison of the Green’s function with
the solutions obtained with Dirichlet boundary con-
dition and the ABC. Top: the acoustic case. Bot-
tom: the elastic case.


