
On the Clique–Width of Perfect Graph Classes

Extended Abstract

Martin Charles Golumbic and Udi Rotics�

Department of Mathematics and Computer Science
Bar-Ilan University
Ramat-Gan, Israel

{golumbic,rotics}@macs.biu.ac.il

Abstract. Graphs of clique–width at most k were introduced by Cour-
celle, Engelfriet and Rozenberg (1993) as graphs which can be defined
by k-expressions based on graph operations which use k vertex labels.

In this paper we study the clique–width of perfect graph classes.

On one hand, we show that every distance–hereditary graph, has clique–
width at most 3, and a 3–expression defining it can be obtained in linear
time. On the other hand, we show that the classes of unit interval and
permutation graphs are not of bounded clique–width. More precisely,
we show that for every n ∈ N there is a unit interval graph In and a
permutation graph Hn having n2 vertices, each of whose clique–width is
exactly n+1. These results allow us to see the border within the hierarchy
of perfect graphs between classes whose clique–width is bounded and
classes whose clique–width is unbounded.

Finally we show that every n× n square grid, n ∈ N , n ≥ 3, has clique–
width exactly n+ 1.

1 Introduction

The notion of clique–width of graphs was first introduced by Courcelle, Engelfriet
and Rozenberg in [CER93], as graphs which can be defined by k-expressions
based on graph operations which use k vertex labels. The clique–width of a
graph G, denoted by cwd(G), is defined as the minimum number of labels needed
to construct G, using the 3 graph operation: disjoint union (⊕), connecting
vertices with specified labels (η) and renaming labels (ρ). More details, are given
in section 2.

A detailed study of clique–width is [CO98]. Clique–width has analogous prop-
erties to tree–width: If the clique–width of a class of graphs C is bounded by k
(and the k–expression can be computed from its corresponding graph in time
T (|V |+ |E|), then every decision, optimization, enumeration or evaluation prob-
lem on C which can be defined by a Monadic Second Order formula ψ can be
solved in time ck · O(|V | + |E|) + T (|V | + |E|) where ck is a constant which
� Supported in part by postdoctoral fellowships at Bar-Ilan University and the Uni-
versity of Toronto.

Widmayer et al. (Eds.): WG’99, LNCS 1665, pp. 135–147, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

136 Martin Charles Golumbic and Udi Rotics

depends only on ψ and k, where |V | and |E| denote the number of vertices and
edges of the input graph, respectively. For details, cf. [CMRa,CMRb].

In this paper we study the clique–width of perfect graph classes. We first
show that:

Theorem 1. For every distance–hereditary graph G, cwd(G) ≤ 3, and a
3–expression defining it can be constructed in time O(|V | + |E|).
Let dG(x, y) denote the length of the shortest path connecting vertices x and y
in the graph G. A graph G is called distance hereditary if for every connected
induced subgraph H of G, dG(x, y) = dH(x, y) holds for every pair of vertices
from H . These graphs were introduced by E. Howorka [How77] and have been
studied intensively in recent years, cf. [DM88,HM90,Dra94,DNB97,BD98]. Lin-
ear time O(|E| + |V |) algorithms were presented for all the following problems
on distance hereditary graphs: dominating set [BD98], Steiner tree [BD98], max-
imum weighted clique [HM90], maximum weighted stable set [HM90], diameter
[Dra94], and diametral pair [DNB97].

Since all these problems are in the class of Monadic Second Order Logic
optimization problems presented in [CMRa], it follows from Theorem 1 above
and from Theorem 4 of [CMRa] that all these problems, and many others, have
linear time solutions on the class of distance–hereditary graphs. For example:

Corollary 1. All the following problems have linear time O(|V |+ |E|) solution
on the class of distance–hereditary graphs: minimum dominating set, minimum
connected dominating set, minimum Steiner tree, maximum weighted clique,
maximum weighted stable set, diameter, domatic number for fixed k, vertex cover,
and k–colorability for fixed k.

Other problems which are known to have linear time solutions on the class of
distance hereditary graphs are: central vertex [Dra94], radius [Dra94], minimum
r–dominating clique [Dra94],and the connected r–domination problem [BD98].
These problems cannot be added to the list of problems mentioned in Corollary 1
above, since they are not included in the class of Monadic Second Order Logic
optimization problems presented in [CMRa].

Clearly Theorem 1 above also holds for any subclass of the class of distance
hereditary graphs. For example:

Corollary 2. Let C be any of the following graph classes, (defined in [PW99]):
block graphs, block duplicate graphs, restricted block duplicate graphs, restricted
unimodular chordal graphs, (6,2)–chordal bipartite graphs and Ptolematic graphs.
For every graph G ∈ C, cwd(G) ≤ 3, and a 3–expression defining it can be
constructed in time O(|V | + |E|).

We say that a class of graphs C is not of bounded clique–width if there is no
fixed integer k, such that for every graph G ∈ C, cwd(G) ≤ k. We continue by
showing that:

Theorem 2. The class of unit interval graphs is not of bounded clique–width.

On the Clique–Width of Perfect Graph Classes 137

Theorem 3. The class of permutation graphs is not of bounded clique–width.

Since many graph classes contain the classes of unit interval or permutation
graphs, it follows that many perfect graph classes are not of bounded clique–
width. For example:

Corollary 3. All the following graph classes (defined in [Gol80]) and their com-
plements are not of bounded clique–width: interval graphs, circle graphs, circu-
lar arc graphs, unit circular arc graphs, proper circular arc graphs, directed path
graphs, undirected path graphs, comparability graphs, chordal graphs, and strongly
chordal graphs.

The reason the complements of all graph classes mentioned in Corollary 3 are
not of bounded clique–width, is that for every graph G, cwd(G) ≤ 2 ∗ cwd(G),
(cf. [CO98]).

Finally, we show that:

Theorem 4. For every n × n square grid G, n ∈ N , n ≥ 3, cwd(G) = n + 1.

Corollary 4. For every n × m rectangular grid G, n, m ∈ N , n, m ≥ 3,
min{n, m}+ 1 ≤ cwd(G) ≤ min{n, m}+ 2.

Theorem 4 above improves the result of Makowsky and Rotics (cf. [MR99]), who
showed that for every n × n square grid G, cwd(G) ≥ n/3. The clique–width of
the 2 × 2 grid is easily seen to equal 2.

In this extended abstract we just sketch the proofs of the theorems mentioned
above. The detailed proofs will be presented in the full paper.

2 Background

In this section we define the notions of graph operations and clique–width, as
presented in [CO98].

Definition 1 ((k–graph)). A k-graph is a labeled graph with (vertex) labels
in {1, 2, . . . , k}. A k-graph G, is represented as a structure 〈V, E, V1, . . . , Vk〉,
where V and E are the sets of vertices and edges respectively, and V1, . . . , Vk

form a partition of V , such that Vi is the set of vertices labeled i in G. Note that
some Vi’s may be empty. A non-labeled graph G = 〈V, E〉, will be considered as
a 1-graph with all vertices labeled by 1.

Definition 2 ((G ⊕ H)). For k-graphs G, H such that G = 〈V, E, V1, . . . , Vk〉
and H = 〈V ′, E′, V ′

1 , . . . , V ′
k〉 and V ∩ V ′ = ∅ (if this is not the case then replace

H with a disjoint copy of H), we denote by G ⊕H, the disjoint union of G and
H such that:

G ⊕ H = 〈V ∪ V ′, E ∪ E′, V1 ∪ V ′
1 , . . . , Vk ∪ V ′

k〉

Note that G ⊕ G �= G.

138 Martin Charles Golumbic and Udi Rotics

Definition 3 ((ηi,j(G))). For a k-graph G as above we denote by ηi,j(G), where
i �= j, the k-graph obtained by connecting all the vertices labeled i to all the
vertices labeled j in G. Formally:

ηi,j(G) = 〈V, E′, V1, . . . , Vk〉 , where

E′ = E ∪ {(u, v) : u ∈ Vi, v ∈ Vj}

Definition 4 ((ρi→j(G))). For a k-graph G as above we denote by ρi→j(G) the
k–graph obtained by the renaming of i into j in G such that:

ρi→j(G) = 〈V, E, V ′
1 , . . . , V ′

k〉, where

V ′
i = ∅, V ′

j = Vj ∪ Vi, and V ′
p = Vp for p �= i, j.

These graph operations have been introduced in [CER93] for characterizing
graph grammars. For every vertex v of a graph G and i ∈ {1, . . . , k}, we de-
note by i(v) the k-graph consisting of one vertex v labeled by i.

Example 1. A clique with four vertices u, v, w, x can be expressed as:

ρ2→1(η1,2(2(u) ⊕ ρ2→1(η1,2(2(v) ⊕ ρ2→1(η1,2(1(w) ⊕ 2(x)))))))

Definition 5 ((k–expression)). With every graph G one can associate an al-
gebraic expression which defines G built using the 3 types of operations men-
tioned above. We call such an expression a k–expression defining G, if all the
labels in the expression are in {1, . . . , k}. Trivially, for every graph G, there is
an n–expression which defines G, where n is the number of vertices of G.

Definition 6 ((The clique–width of a graph G, cwd(G))). Let C(k) be the
class of graphs which can be defined by k–expressions. The clique–width of a
graph G, denoted cwd(G), is defined by: cwd(G) = Min{k : G ∈ C(k)}.

C(1) is the class of edge-less graphs, cographs are exactly the graphs of clique–
width at most 2, and trees have clique–width at most 3 (cf. [CO98]).

In the following sections when considering a k–expression t which defines
a graph G, it will often be useful to consider the tree structure, denoted as
tree(t), corresponding to the k–expression t. For that we shall need the following
definitions.

Definition 7 ((tree(t))). Let t be any k–expression, and let G be the graph de-
fined by t. We denote by tree(t) the parse tree constructed from t in the usual
way. The leaves of this tree are the vertices of G, and the internal nodes cor-
respond to the operations of t, and can be either binary corresponding to ⊕ or
unary corresponding to η or ρ.

Definition 8 ((tree(a, t))). Let t be any k–expression, a be any node in t, we
denote by tree(a, t) the subtree of tree(t) rooted at a.

On the Clique–Width of Perfect Graph Classes 139

Definition 9 ((t1 is a sub–expression of t2)). Let t1 be a k–expression and
let t2 be an l–expression, k ≤ l. We say that t1 is a sub–expression of t2 if there
exists a node a such that tree(t1) is the sub–tree of tree(t2) rooted at a. In other
words tree(t1) is equal to tree(a, t2).

Definition 10 ((The label of a vertex v at an internal node a)). Let t
be any k–expression, and let G be the graph defined by t. Let a be any internal
node of tree(t) and let v be any vertex of G occurring in tree(a, t), i.e. v is a
leaf of tree(a, t). The labels of v may change by the ρ operations in t. However,
whenever an operation is applied on a sub–expression t1 of t which contains v,
the label of v (like the labels of all the other vertices occurring in t1) is well
defined. The label of v at a is defined as the label that v has immediately before
the operation a is applied on the subtree of tree(t) rooted at a.

3 Distance Hereditary Graphs

Let dG(x, y) denote the length of the shortest path connecting vertices x and y
in the graph G. Recall that a graph G is called distance hereditary if for every
connected induced subgraph H of G, dG(x, y) = dH(x, y) holds for every pair of
vertices from H . For every vertex x, we denote by N(x) the set of all neighbors
of x (not including x). A leaf is a vertex having exactly one neighbor. We say
that x and y are twins if they have the same neighborhood outside x and y, i.e.
N(x)−{y} = N(y)−{x}. The vertices x and y are called true twins (resp. false
twins) if x and y are twins and x is adjacent (resp. not adjacent) to y.

Definition 11 ((Pruning sequence, cf. [HM90])). Let G be a graph with n
vertices denoted by v1, . . . , vn, and let S = {s2, . . . , sn} be a sequence of pairs of
the form 〈(vi, vj), type〉, where j < i and type is either leaf , true or false. We
say that S is a pruning sequence for G, if for 2 ≤ i ≤ n, if si = 〈(vi, vj), leaf〉
(resp. if si = 〈(vi, vj), false〉, or si = 〈(vi, vj), true〉) then the subgraph of G
induced by {v1, . . . , vi} is obtained from the subgraph induced by {v1, . . . , vi−1}
by adding the vertex vi and making it a leaf (resp. a false twin, or a true twin)
of the vertex vj.

Theorem 5 (Hammer and Maffray [HM90]). For every connected
graph G, G is distance hereditary if and only if there exists a pruning sequence
for G. Moreover, there is a linear time algorithm which constructs a pruning
sequence for a given graph G, if it exists, or claims that there is no pruning
sequence for G.

Definition 12 ((Pruning–tree)). Let G be a graph having n vertices denoted
by v1, . . . , vn, and let S = {s2, . . . , sn} be a pruning sequence for G. The pruning–
tree corresponding to the pruning sequence S of G, is the labeled ordered tree T
constructed as follows:

140 Martin Charles Golumbic and Udi Rotics

5

2 3

1 4

79

6 8

10

1

2 8

6

43

5 7

9 10

t t

fl

tt

l

f l

G

Pruning tree for G

Fig. 1. A connected distance hereditary graph G and a pruning tree for G.

(i) Set T1 as the tree consisting of a single root vertex v1, and set i := 1.
(ii) Set i := i + 1. If i > n then set T := Tn and stop.
(iii) Let si = 〈(vi, vj), leaf〉 (resp. si = 〈(vi, vj), false〉, or si =

〈(vi, vj), true〉), then set Ti as the tree obtained from Ti−1 by adding
the new vertex vi and making it a rightmost son of the vertex vj , and
labeling the edge connecting vi to vj by leaf (resp. by false or true).

(iv) Go back to step (ii) above.

Example 2. Figure 1 illustrates a connected distance hereditary graph G. The
vertices of G are denoted by {1, 2, . . . , 10}. Figure 1 also illustrates the pruning–
tree corresponding to the pruning sequence S of G defined by

S = { 〈(2, 1), true〉, 〈(3, 2), leaf〉, 〈(4, 2), false〉, 〈(5, 3), true〉, 〈(6, 1), leaf〉,
〈(7, 4), true〉, 〈(8, 1), true〉, 〈(9, 8), false〉, 〈(10, 8), leaf〉}.

In the figure we denoted true (resp. false or leaf) shortly by t (resp. f or l).

Definition 13 ((Ta)). Let T be any rooted tree, and let a be any node occurring
in T . We denote by Ta the sub–tree of T rooted at a.

On the Clique–Width of Perfect Graph Classes 141

Definition 14 ((True/false twin son, leaf son, twin descendant)). Let
G be a graph having a pruning sequence S, T be the pruning–tree corresponding
to S and let v and u be any two vertices of G. We say that v is a true twin
son (resp. false twin son, leaf son) of u, if v is a son of u in T and the edge
connecting v to u in T is labeled with true (resp. false, leaf). We say that v is
a twin descendant of u, if v is either the same vertex as u, or v is a descendant
of u in T such that all the edges of the path connecting v to u in T are labeled
with true or false.

Lemma 1. Let G be a graph having a pruning sequence S with corresponding
pruning–tree T , and let a be any internal node in T whose sons in T are denoted
by a1, . . . , al ordered from left to right. For all 1 ≤ i < j ≤ l, and for every two
vertices v and u occurring in Tai and Taj respectively, v is adjacent to u in G if
and only if ai is either a leaf son or a true twin son of a, aj is either a true or
false twin son of a, and v and u are twin descendants of ai and aj respectively.

Let A ⊆ V be a subset of the vertices of G = 〈V, E〉. We denote by G[A] the
subgraph of G induced by A. Furthermore, if Ta1 , . . . , Tak

are disjoint sub–trees
of a pruning–tree, then G[Ta1 ∪ . . . ∪ Tak

] is the subgraph of G induced by the
vertices of Ta1 ∪ . . . ∪ Tak

.
The following lemma follows immediately from Lemma 1 above.

Lemma 2. Let G be a graph having a pruning sequence S, with corresponding
pruning–tree T , and let a be any internal node in T whose sons ordered from left
to right are a1, . . . , al. For 1 ≤ i ≤ l, we have the following:

(i) If ai is a false twin son of a, then G[{a}∪Tai ∪Tai+1 ∪ . . .∪Tal
] is equal

to the disjoint union of G[{a} ∪ Tai+1 ∪ . . . ∪ Tal
] and G[Tai].

(ii) If ai is either a leaf or a true twin son of a, then G[{a} ∪ Tai ∪ Tai+1 ∪
. . . ∪ Tal

] can be constructed by taking the disjoint union of G[{a} ∪
Tai+1 ∪ . . .∪Tal

] and G[Tai], and connecting all the twin descendants of
ai to a and to all the twin descendants of ai+1, . . . , al.

Theorem 1 For every distance hereditary graph G, cwd(G) ≤ 3, and a
3–expression defining it can be constructed in time O(|V | + |E|).
Proof:
Let G be a distance hereditary graph. We assume that G is connected, since
if G is not connected we can construct a 3–expression for G by applying the
disjoint union operation (i.e. the ⊕ operation) on the 3–expressions obtained
for the connected components of G. By Theorem 5 above there is a pruning se-
quence S for G, which can be obtained in linear time. Let T be the pruning–tree
corresponding to the pruning sequence S.

Claim. For each internal node a of the pruning tree T , there is a 3–expression ta
which defines the labeled graph G′, such that G′ = G[Ta], all the twin descen-
dants of a are labeled with 2 in G′, and all the other vertices of G′ are labeled
with 1.

142 Martin Charles Golumbic and Udi Rotics

proof of claim:We shall prove the claim by induction on the height of sub–trees
of T . The claim trivially holds for all the sub–trees of T of height 1. Suppose the
claim holds for all the sub–trees of T of height n−1. Let a be any internal node of
T such that Ta is of height n and let a1, . . . , al be the sons of a ordered from left
to right. By the induction hypothesis there are 3-expressions ta1 , . . . , tal

which
defines the disjoint labeled graphs G[Ta1], . . . , G[Tal

], respectively, such that all
the vertices which are twin descendants of a1, . . . , al are labeled with 2 and all
other vertices in these graphs are labeled with 1. We construct the expression ta
as follows:

Procedure A

(i) Set el+1 := 2(a) and set i := l + 1.
(ii) Set i := i − 1. If i = 0 then set ta := e1 and stop.
(iii) If ai is either a leaf son or a true twin son of a then set

ei := ρ3→2(η2,3(tai ⊕ ρ2→3(ei+1))

(iv) If ai is a false twin son of a then set ei := tai ⊕ ei+1.
(v) Go back to step (ii) above

From Lemma 2 above it follows that for 1 ≤ i ≤ l, the 3–expression ei

constructed by the above procedure, defines the graph G[{a} ∪ Tai ∪ . . . ∪ Tal
].

Hence, the 3–expression ta constructed by the above procedure (which is equal
to e1), defines the graph G[Ta]. Since in the graph defined by ta, all the twin
descendants of a are labeled with 2 and all the other vertices are labeled with 1,
this completes the proof of Claim 3.

Let x be the root of the pruning–tree T . By the above claim there is a
3–expression tx which defines the graph G. Moreover, using Procedure A above,
it is easy to see that the 3–expression tx which defines G can be constructed in
linear time, and by that the proof of Theorem 1 is completed. ✷

4 Unit Interval Graphs and Permutation Graphs Are
Not of Bounded Clique–Width

In this section we show that the classes of unit interval graphs and permutation
graphs are not of bounded clique–width. Below (cf. definition 15) we define the
graph In which is a unit interval graph with n2 vertices (cf. Fact 1). Informally,
the vertices of the graph In can be thought as being arranged in an n × n
square array, such that all the vertices occurring in the same column form a
clique, vertices in non-consecutive columns are not connected, and a vertex vi,j

occurring in row i and column j is adjacent to all the vertices occurring in column
j + 1 and in rows 1, . . . , i − 1. Figure 2 illustrates the graph I4, and Figure 3
shows its representation as intersecting intervals.

On the Clique–Width of Perfect Graph Classes 143

Definition 15 ((The graph In)). We denote by In the graph 〈V, E〉, where
the set of vertices V is defined by:

V = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ n}
and the set of edges E is defined by: E = E′ ∪ E′′, where

E′ = { (vi1,j , vi2,j) : 1 ≤ i1 ≤ n,
1 ≤ i2 ≤ n, 1 ≤ j ≤ n, i1 �= i2}

E′′ = { (vi1,j , vi2,j+1) : 1 ≤ j ≤ n − 1,
2 ≤ i1 ≤ n, 1 ≤ i2 ≤ i1 − 1}

Fact 1 For every n ∈ N , the graph In is a unit interval graph.
Fact 1 above can be verified by constructing for every n ∈ N , a unit interval

graph presentation for the graph In , similar to the one illustrated in Figure
3 for the graph I4. For example, let ε = 1/2n and define the (closed) interval
corresponding to vi,j to be Ji,j = [j + iε, j + 1 + (i − 1)ε], (1 ≤ i, j ≤ n).

Lemma 3. For every n ∈ N , n ≥ 2, cwd(In) = n + 1.

Theorem 2 follows immediately from Lemma 3.
A graph G = 〈V, E〉 is a permutation graph if and only if there are two linear

ordering of its vertices R1 and R2, such that for every two vertices v and u in
G, v is adjacent to u if and only if v occurs before u in the linear order R1 and
v occurs after u in the linear order R2, cf. [Gol80]. Below (cf. definition 16) we
define the graph Hn which is a permutation graph (cf. Fact 2). Informally, the
vertices of the graph Hn can be put in an n × n square array, such that all the
vertices occurring in the same column form a clique, vertices in non-consecutive
columns are not connected, a vertex v occurring in row i and an odd column j is
adjacent to all the vertices occurring in column j+1 and in rows 1, . . . , i−1, and
a vertex v occurring in row i and even column j is adjacent to all the vertices
occurring in column j + 1 in rows i + 1, i + 2, . . . , n.

Definition 16 ((The graph Hn)). We denote by Hn the graph 〈V, E〉, where
the set of vertices V is defined by:

V = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ n}
and the set of edges E is defined by: E = E′ ∪ E′′ ∪ E′′′, where

E′ = { (vi1,j , vi2,j) : 1 ≤ i1 ≤ n,
1 ≤ i2 ≤ n, 1 ≤ j ≤ n, i1 �= i2}

E′′ = { (vi1,j, vi2,j+1) : 1 ≤ j ≤ n − 1, j odd,
2 ≤ i1 ≤ n, 1 ≤ i2 ≤ i1 − 1}

E′′′ = { (vi1,j , vi2,j+1) : 2 ≤ j ≤ n − 1, j even,
1 ≤ i1 ≤ n − 1, i1 + 1 ≤ i2 ≤ n}

Fact 2 For every n ∈ N , the graph Hn is a permutation graph.
Lemma 4. For every n ∈ N , n ≥ 2, cwd(Hn) = n + 1.

Theorem 3 follows immediately from Lemma 4.

144 Martin Charles Golumbic and Udi Rotics

v1,1

v
2,1

v
2,2

v
2,3

v
2,4

v
1,2 v

1,3
v

1,4

v3,1 v3,2 v
3,3

v
3,4

v
4,1

v4,2 v
4,3

v
4,4

Fig. 2. The graph I4

v1,1 v1,2 v1,3 v1,4

v
2,1

v
2,2

v
2,3

v
2,4

v
3,1

v
3,2

v3,3 v3,4

v4,1 v4,2 v
4,3

v
4,4

Fig. 3. The unit interval representation of the graph I4

On the Clique–Width of Perfect Graph Classes 145

5 Square Grids

In this section we show that every n × n square grid, n ≥ 3, has clique–width
exactly n + 1. Throughout this section we denote by vi,j the vertex of the grid
occurring in row i and column j.

Lemma 5. For every n × n square grid G, cwd(G) ≤ n + 1.

Proof:
[Sketch] Let G be an n × n square grid. We shall prove the lemma by con-
structing an n + 1–expression f which defines G. For that we first construct an
n + 1–expression c which defines the subgraph GL of the grid G induced by the
vertices occurring in the lower triangle of G, such that all the vertices of the
diagonal of GL are labeled with labels from 1 to n, and all the other vertices of
GL are labeled with n + 1. Similarly we construct an n + 1–expression d which
defines the subgraph of the grid G induced by the vertices occurring in the sub-
graph GR of G induced by the upper triangle of G. Finally, we construct the
n+1–expression f , by adding all the vertices of the main diagonal of the grid G,
and connecting them to the vertices in the diagonals of the graphs GL and GR. ✷

We now show that n + 1 is also the lower bound for cwd(G). Recall (cf.
definition 8 above) that for a k–expression t and for every internal node a of
tree(t), we denote by tree(a, t) the sub–tree of tree(t) rooted at a.

Lemma 6. Let G be an n×n square grid, n ∈ N , n ≥ 3, let t be a k–expression
which defines G, let a be the highest ⊕ node in tree(t), let b and c be the highest
⊕ nodes in the sub–trees rooted at the left and right sons of a, respectively. If
neither graph defined by tree(b, t) and tree(c, t) contains a full row of the grid
G, then k ≥ n + 1. Similarly, if neither graph defined by tree(b, t) and tree(c, t)
contains a full column of the grid G, then k ≥ n + 1.

Lemma 7. Let G be an n×n square grid, let t be a k–expression which defines G,
let d be an internal ⊕ node in tree(t). If the graph defined by tree(d, t) contains a
full row of the grid and does not contain a full column of the grid, then k ≥ n+1.
Similarly, if the graph defined by tree(d, t) contains a full column of the grid and
does not contain a full row of the grid, then k ≥ n + 1.

Lemma 8. Let G be an n×n square grid, let t be a k–expression which defines G,
let d be an internal ⊕ node in tree(t) and let e and f be the highest ⊕ nodes
in the sub–trees rooted at the left and right sons of d, respectively. If the graph
defined by tree(d, t) contains a full row of the grid and a full column of the grid,
and neither graph defined by tree(e, t) or tree(f, t) contains a full row or a full
column of the grid, then k ≥ n + 1.

Theorem 4 For every n × n square grid G, n ∈ N , n ≥ 3, cwd(G) = n + 1.
Proof:
Let G be an n×n square grid n ∈ N , n ≥ 3. By Lemma 5 above cwd(G) ≤ n+1.

146 Martin Charles Golumbic and Udi Rotics

We shall show that cwd(G) > n, which implies that cwd(G) = n + 1. Suppose
that there is a k–expression t which defines G, and k ≤ n. Let a be the highest
⊕ node in tree(t), let b and c be the highest ⊕ nodes in the sub–trees rooted
at the left and right sons of a, respectively. If neither graph defined by tree(b, t)
and tree(c, t) contains a full column of the grid, or neither contains a full row of
the grid, then by Lemma 6 above k ≥ n + 1, a contradiction. Hence, we assume
without loss of generality, that the graph defined by tree(c, t) contains a full row
of the grid. Suppose there exist a node d in tree(c, t), such that either tree(d, t)
contains a full row of the grid and does not contain a full column of the grid, or
tree(d, t) contains a full column of the grid and does not contain a full row of
the grid. In either case, by Lemma 7 above k ≥ n + 1, a contradiction. Hence,
there exist a node d in tree(c, t) such that tree(d, t) contains a full row and a
full column of the grid, and both tree(e, t) and tree(f, t) do not contain a full
column or row of the grid, where e and f are the highest ⊕ nodes in the sub–
trees rooted at the left and right sons of d, respectively. In this case, by Lemma 8
above k ≥ n + 1, a contradiction.

Since we have considered all possible cases, we conclude that the assumption
that k ≤ n, was not correct, which implies that k ≥ n + 1. ✷

Corollary 4 For every n × m rectangular grid G, n, m ∈ N , n, m ≥ 3,
min{n, m}+ 1 ≤ cwd(G) ≤ min{n, m}+ 2.

Acknowledgments

We are indebted to Bruno Courcelle, Johann Makowsky, Derek Corneil and
Michel Habib for their helpful comments.

References

BD98. A. Brandstädt and F.F. Dragan. A linear-time algorithm for connected
r-domination and steiner tree on distance-hereditary graphs. Networks,
31:177–182, 1998. 136

CER93. B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph
grammars. J. Comput. System Sci., 46:218–270, 1993. 135, 138

CMRa. B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on certain structured graph families, extended abstract. Graph The-
oretic Concepts in Computer Science, 24th International Workshop, WG’98,
volume 1517 of Lecture Notes in Computer Science, pages 1-16. Springer Ver-
lang, 1998. 136

CMRb. B. Courcelle, J.A. Makowsky, and U. Rotics. On the fixed parameter complex-
ity of graph enumeration problems definable in monadic second order logic.
To appear in Disc. Appl. Math. 136

CO98. B. Courcelle and S. Olariu. Upper bounds to the clique-width of graphs. to
appear in Disc. Appl. Math.
(http://dept-info.labri.u-bordeaux.fr/∼courcell/ActSci.html), 1998. 135,
137, 138

On the Clique–Width of Perfect Graph Classes 147

DM88. A. D’Atri and M. Moscarini. Distance–hereditary graphs Steiner trees and
connected domination. SIAM J. Comput., 17:521–538, 1988. 136

DNB97. F.F. Dragan, F. Nicolai, and A. Brandstädt. LexBFS-orderings and powers of
graphs. Graph Theoretic Concepts in Computer Science, 22th International
Workshop, WG’96, volume 1197 of Lecture Notes in Computer Science, pages
166-180, 1997. 136

Dra94. F.F. Dragan. Dominating cliques in distance-hereditary graphs. Algorithm
theory—SWAT’94, volume 824 of Lecture Notes in Computer Science, pages
370-381, 1994. 136

Gol80. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980. 137, 143

HM90. P. L. Hammer and F. Maffray. Completely separable graphs. Disc. Appl.
Math., 27:85–99, 1990. 136, 139

How77. E. Howorka. A characterization of distance-hereditary graphs. Q. J. Math.
Oxford Ser. (2), 28:417–420, 1977. 136

MR99. J.A. Makowsky and U. Rotics. On the classes of graphs with few P4’s.
To appear in the International Journal of Foundations of Computer Science
(IJFCS), 1999. 137

PW99. U. N. Peled and J. Wu. Restricted unimodular chordal graphs. To appear in
Journal of Graph Theory, 1999. 136

	On the Clique--Width of Perfect Graph Classes
	Introduction
	Background
	Distance Hereditary Graphs
	Unit Interval Graphs and Permutation Graphs Are Not of Bounded Clique--Width
	Square Grids

