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Abstract

The Steiner tree problem asks for the shortest tree connecting a given set of termmal points in a metric space.
We design new approximation algorithms for the Sterner tree problems using a novel technique of choosing

Steiner points in dependence on the possible dewation from the optimal solutions, We achieve the best up to now
approximation ratios of 1.644 m arbitrary metric and 1.267 in rectilinear plane, respectively.

1. Introduction

Consider a metric space with a distance function d. For any set of terminal points S one
can efficiently find MST(S), a minimum spanning tree of S. Let mst($ d) be the cost of
this tree in metric d. A Steiner tree is a spanning tree of a superset of the terminal points
(the extra points are called Steiner points). It was already observed by Pierre Fermat that
the cost of a Steiner tree of S may be smaller than mst(S, d). The Steiner tree problem asks

for the Steiner minimum tree, that is, for the least cost Steiner tree. However, finding such
a tree is NP-hard for almost all interesting metrics, like Euclidean, rectilinear, Hamming
distance, shortest-path distance in a graph etc [9]. Because these problems have many

applications, they were subject of extensive research c~ [13].
In the last two decades many approximation algorithms for finding Steiner minimum

trees have been designed. The quality of an approximation algorithm is measured by its

performance ratio (PR): an upper bound of the ratio between the achieved length and the
optimal length.
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The Network Steiner tree problem (NSP) asks for the Steiner minimum tree for a vertex
subset S C V of a graph G(V, E, d) with cost function d on edges E. Let IJ1 = v, I -E =
e and ISI = n.

In the rectilinear metric, the distance between two points is the sum of the differences
of their .x- and y-coordinates. The rectilinear Steiner tree problem (RSP) got recently new
importance in the development of techniques for VLSI routing [16, 15].

The most obvious heuristic for the Steiner tree problem approximates a Steiner mini-
mum tree of S with the minimum spanning tree of S. While in all metric spaces the

performance ratio of this heuristic is at most 2 (Takahashi and Matsuyama [19]) (it can be
implemented for NSP in time O(e + v log v) (Mehlhorn [17])), Hwang [11, 12] proved
that this heuristic in the rectilinear plane has the performance ratio exactly 1.5 and can be
implemented in time O(n log n).

Consideration of k-restricted Steiner trees gave several better heuristics c~[4]. The main
their idea is to decrease the cost of MST($ adding Steiner points to the initial terminal
set. For NS~ the performance ratio of the greedy algorithm (GA) (Zelikovsky [20, 22]) is

11
at most — = 1.84 and PR of Berman-Ramaiyer’s heuristic (BR) [2] is at most ~ =

6
1.78. Their run-times are 0(v3) and O(a + v2n3), respectively (here cx means time

complexity of finding of all pairs shortest paths). The relative greedy heuristic (RGH)
(Zelikovsky [23]) with PR converging to 1 + in 2 = 1.693 asymptotically beats BR which

PR converges to about 1.734 (Brothers and Du [6]).
In the recent paper Berman et al. [3] gave a more precise (than in the first papers [21,

2, 8]) analysis of the performance ratio and runtime of BR for RSP. They proved that its

performance ratio is at most ~ = 1.271. BR can run in O(n 15, time and its parameterized

version (PBR) approximates BR in time O(n log2 n) [3, 8].
Here we introduce a novel approach based on the notion of relative gain (see Section 2).

Now the choice of Steiner points also depends on the possible deviation from the optimal
solution. We add new preprocessing phases to the algorithms mentioned above. Combined
algorithms achieve better performance ratios in the same order of the runtime [14].

The table below contains approximation algorithms known before to be the best in
respect to performance ratios and orders of runtime and new performance ratios after

preprocessing. By + ● we mean existence of an algorithm for any ● >0.
In the next section we provide a synopsis of k-restricted Steiner trees and our approach.

In Sections 3 and 4 we describe our preprocessing of RGH and BR.

2. Gain and loss of k-restricted Steiner trees

2.1. Background

A Steiner tree T of a set of terminals S is full if every internal node of T is a Steiner point,

i.e., not a terminal. If T is not full, it can be decomposed into full Steiner trees for subsets

I
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Problem Heuristic Performance Ratio New PR Run-time Reference

NSP MST 2 O(V2) [19, 17]

GA 11= ~,84 O(v’) [20, 22]

6

BR 16
—== 1.78

253/144 = 1.757 O(V5) [2]

9

RSP

RGH l+ln2+~ =1.644 + e polynomial [23]

=1.693 + ●

MST 1.5 0(17 log n) [11, 12]

BR g ~ ~,271 19/15 == 1.267 0(/’?’~) [3]

48

PBR =1.267 + ●
g+e= 1.271 + ●

U(H log2 n) [3]

of terminals that overlap only at leaves. Such subtrees are called full Steiner conqmnents
of T [10]. k-trees are full Steiner trees with at most k terminals.

Without loss of generality, we may assume that the metric d on the set of terminals S
is the shortest-path distance for the weighted edges D connecting S. This way, MST(S) is
the minimum spanning tree of the graph <S, D>, we denote this tree by MST(D), and its
cost with rest(D) or rnst(s). If we increase the set of edges D by some extra edges, say
forming a set E, the shortest-path distance may decrease; MST(D U E) is the minimum
spanning tree for the modified metric. For any graph H, d(lf) denotes the sum of costs of
all edges of H.

Let X(T) be a Steiner tree obtained from a k-tree T by addition of the minimum forest

spanning T with the rest of the terminal set S. The cost of this forest equals to nzst(ll U

E(T)), where E(T) is the set of zero-cost edges between terminals of T. Define a gain of

T to beg(T) = rnst(ll) – d(X(T )) = nzst(ll) – mst(D U E(T)) – d(T). Inductively, the
gain of a set of k-trees T,, i = 1, . . . . p, equals to rnst(D) – d(X({T,, i = 1, . . . . p})). Let
R(T) denote the set of MST-edges substituted with Tin the tree X(T). R(7) consists of the
edges of the largest cost on the paths in MST(D) connecting pairs of terminals of T [2].
Denote by nz(T ) = rnst(D) – mst(D U E(T)) the cost of R(T ). Thus, g(T) = m(T) –

d(T). Note, that addition of any edges to D may only decrease nz(T ) and the gain of T [2],
therefore,

g({T,, i= 1, . . .2P}) s 5 g(r). (1)
~=1

By contraction of T we mean addition of E(T) to D. A greedy algorithm (GA) [20] finds
a 3-tree with the biggest gain and contracts it while there are 3-trees with a positive gain.
All contracted 3-trees and the rest of MST-edges form the output Steiner tree. The
k-restricted relative greedy heuristic (k-RGH) [23] runs simalar to GA but maximizing

(among all k-trees T) M(T )/d(T ) instead of rn(T ) – d(T). Berman-Ramaiyer [2] sug-
gested a sofisticated generalization of GA for an arbitrary k (k-BR). k-BR processes all
i-trees, i = 1, . . .. k, with a positive gain modifying the set D and forming a stack of i-trees
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chosen. Then it repeatedly pops i-trees from the stack remodifying D and selecting i-trees
with the current positive gain. The output tree is X(TI, . . . . T,P)for the selected i-trees T1,

. . ., TP.

To bound PR of GA, k-RGH and /c-BR we need the following constants. Let E~ be an

arbitrary set of edges such that in <S, D U E~> the gain of any k-tree becomes non-

positive. We denote by tk= tk(S) a supremum of mst(D U EJ over all E~’s.
The output cost of GA [20] (k = 3) and k-BR [2] is at most

k tl_l— t, t2 k– I t, tk
t2–~ — –+x

,=3i–1 ‘2 ,=3(i-1)i+ k-1
(2)

To bound the values tk,Berman-Ramayer [2] introduced the following useful definition.
A Steiner tree is k-restricted, if every its full component is a k-tree. Let STk(S ) denote a
minimal k-restricted Steiner tree and Stk(s) denote its cost. This way, ST2(S ) is the
minimum spanning tree MST(S). By (1), the gain of any k-restricted Steiner tree is
IIOIIpOSitlVt3h <S, ~ U Ek >, therefore, Stk(s) 2 tk(s) [2].These VdUW may IIOt
coincide: In the rectilinear plane, for the set S = {(t 1, O), (O, t l)}, st3(S ) = 5 and t3(S )
= 4.5.

A k-Steiner IZitiOrk k the Supremum of stk(s )/s over all instances of the Steiner tree
problem, where s denotes the cost
equals 2 and 1.5 for NSP and RSP,
in [20, 1, 7] an~ finally, Brothers

St, (r+ 1)2”+ 1
~k=sup:=

?-2”+1 “

of the Steiner minimal tree. r2 (a usual Steiner ratio)
respectively [19, 11]. For NSP, some ?’kwere evaluated
and Du [6] proved that for k = 2’”+ 1,

(3)

For the IECtlhIIW ITIdriC, ?’k~ 2k2~ ~ for r 23 [2], moreover, for any instance of RSP,

t2+ t4~ 2.5s and 3t2+ 4t3 s 9s [3]. The bounds for tkand rk combined with the bound
(2) give the preformance guarantee of GA and k-BR mentioned in the previous section. It
was proved in [23] that the output cost of k-RGH is at most ( 1 + ln(rz/rk))rk. Since limk+z
rk = 1, the limit performance ratio of k-RGH for NSP is at most 1 + in 2. Note that the
limit performance ratio of k-BR for NSP derived from (2) and (3) is 1.73 . . .

2.2. A new approach

The algorithms described above try to maximize the total gain. But every time they accept
a k-tree, they also accept all its Steiner points. This may increase the cost of the cheapest
solution achievable at the current step. The main idea of our approach is to minimize this
possible increase.
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Let K be a k-tree and F’(K) be its Steiner point set. A forest K’ C K is called spanning
if for any v E Y(K), there is a path in K’ connecting v with S. The cost of the minimum

spanning forest in K is called a loss of K and denoted by 1(K). The main property of the
loss of a k-tree is in the following

Lemma 1. Let P be the set of the Steiner points of an r-tree T. Then tJS U F’) s fk(S )

+ 1(7).

proof Let < S U P, DP> be a complete graph on the set of terminals S U P and edges

from DP have costs equal to the shortest-path distances. Let E;. be an arbitrary set of edges

such that G = < S U P, DP U E;. > does not contain k-trees with a positive gain. To prove

Lemma it is sufficient to show that nzst(G) s t~(S ) + 1(T).

For every pair of vertices u, v E S, we add an edge f = (u, v) such that d(f) is equal
to the largest cost of an edge on the path in MST(G) between u and v. In the graph G’

obtaine~ we can choose a minimum spanning tree M in which any pair u, v E S is
connected by paths containing only terminals of S. It is proved in [2] that the G!(AJ)=
msf(G’) = rnst(G) and for any k-tree K, the cost of R(K ) is the same in G and G’.

Consider a subgraph H of G’ induced by the vertax set S. Since MST(H) is a subgraph
of M, for any k-tree K, R(K ) is the same in G’ and H. This implies that g(K) is nonposi-
tive in H and nst(ll) s tk(S ). From the other side, since S U P can be spanned with
MST(H) and a spanning forest for T, rnsf(G) = msf(G’) s nzst(H) + 1(T) = t~(S ) +

l(T) ❑

For any a a O, the value g’(cx, K ) = g(K) – CYJ(K) will be called a a-relative gain of
K. Further we omit Q if u = 1. Similarly to the definition of tk.(S), we define #(a) = #(u,

S ) to be a supremum of n@D U Ek ) over all edge sets E~’s such that addition of-1? to
D makes the cr_-relative gain of any k-tree nonpositive.

Lemma 2 #(u, S ) s (1 + CY/ 2)stk(S )

Proof Let T, be a full component of an optimal k-restricted Steiner tree T. We transform

T, to the form of a binary tree by replicating certain internal vertices, so that copies of the

same vertex are connected with zero-cost edges.

The loss of T, can be bounded in the following way. For any inner vertex of T{, choose
the cheapest edge among two edges going to its two children. It is easy to see, that the
forest F obtained spans all inner vertices of T,. d(F) is at most half of d(T,), since F
contains exactly half of all edges of T, and T, – F contains longer edges. This means, that
/( T,) s 0.5d(T,).

Let g(K) 5 cd(K) for any k-tree K in < S, D U If >. By (l), rnsf(D U Ek) – d

(T) = g(T) ~ ~.l g(T[) ~ ~.l CXl(~)~ ~., 0.5ad(T,) = 0.5ad(T). Therefore, mst(D

U E-) s (1 + 0.5a)d(T). Since this is true for any E~, ?(cY,S) s (1 + ~) d(T) =

(1 + ;) St,i. ❑

I
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Theorem 2 shows that lim~+z t‘(u)= (1+ ~)s. The relative gain of any triple is

nonpositive, therefore, t3= t2.In Sections 5 and 6, we find the tight bounds for t4in the

case of NSP and RSP, respectively.

Lemma 3. For any instance of NSP, < s ~.
s

4
Lemma 4. For any instance of RSP, c ~ ~.

s

The main idea of preprocessing k-BR and k-RGH is to find some k-trees which are good
in respect to the relative gain and to add its Steiner points to initial terminal set before

running usual k-BR and k-RGH. Using Lemmas 2, 3 and 4, in Sections 3 and 4, we derive
the record performance ratios claimed in Introduction.

Theorem 1. For NS~ there is a polynomial-time approximation algorithm with the per-
formance ratio at most 1.644 . . . +~forany~>O.

Theorem 2. For NSP, there is an 1.757.. .-approximation algorithm with a runtime O(a +
v2n3).

Theorem 3. For RS~ for any E >0, there are ~ and ~ + ~-approximation algorithms

with runtimes O(n 15, and O(n log2 n), respectively.

3. Preprocessing the relative greedy heuristic

We suggest the following generalization of k-RGH (k-RGH(u)): While rest(D) # O, find

and contract a k-tree T minimizing p(T ) = (d(T) + CY1(T))/m(T ). The union of k-trees T

obtained forms the output tree.

?’rzSt(s)
Theorem 4. k-RGH(u) finds a tree T such that d(T) + crJ(T) s (1 + in ~ )

t (a, s)
tk(cl, s).

Proof Let T1,..., T. be the k-trees chosen by k-RGH(a) including 2-terminal trees (edges).

Let MJ denote nzst(D U E(T1) U .. . U E(~)), j = O,..., a. Let p(T1)D be the set of edges

D with the cost p(Tl) times the cost of edges of D. Sincep(e) = 1 for any MST-edge, p(Ti)

= 1 and MST(D U p(T1)D) = MST(p(T1)D). By the choice of T1, < S, p(T1)D > does not

contain k-trees with the positive u-relative gain. Therefore, p ~rnst(D) = rnst(D U p ID) ~

t ~(u) and
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6!(7-1)+ cxl(T~) t ‘((q

m(Tl) 5 M.

Similarly, after contracting of T1 and choosing T2, we obtain

d(T2) + Cd(T2) f ~(cY)

m(TJ 5 Ml

Note, that M, = M,- ~ – m(T,). Inductively we obtain for each i ~ 1, (d(Ti) + ~l(T,))/

(Ml_, – M,) ~ ~(~)/Mi_,, or equivalently Ml ~ Ml-,(1 – (d(T,) + ~l(T,))/t ~(a)).
Unraveling these inequalities,

(
L?(TJ+ cd(TJ

~rs~ofi l–
,=] )t ‘(a) “

Taking natural logarithm on both sides and using the fact that ln( 1 + x) s x, we obtain

~:=, (d(T,) + ~~(TJ) ~,
= in —.

?(CY) M,,

Since J@ = O, we can choose r such that Jf,. > t ~(~, S ) ~ ~,.+ 1. We sPlit d(T,.+ 1) +
CY1(T,.+~) proportionally by the position of $-(a) in the interval [~,+ 1,Jf,l. we COrnbine the

first portion with M,.+ ~ to bring this cost up to exactly t‘(a),and combine the second
portion with d(T,.) + CY1(T,.).We then split M, – Ml.+ ~ into the same proportions, and
subtract the second portion from M,, so that the last inequality above still holds when we
“pretend” that t‘(cY)= M,.+~.We now finishtheproof with the sequence Of inequalities

~~=1(~(Ti)+ ~~(T1)) Jfr+l + ~::} (~(~,)+ CIZ(T,)) MO
<— <l+ln —. 1

t‘(a) t‘-(CI) t‘(cl) M r+1

rest(S)
+ In

t ‘(a, s)
❑

Now we preprocess k-RGH (k-RGH(0)) with 1-RGH(u) in the following way. We run
l-RGH(a) obtaining a Steiner tree T and add all Steiner points of T to the initial terminal

set S. Then we apply k-RGH to the modified terminal set.

Prooj” of Theorem 1. Our goal is to obtain the limit performance ratio of k-RGH

preprocessing with l-RGH(a-) while 1, k e ~. Denote by Sl the modified terminal set

after

after

I I
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preprocessing and by s, the cost of the optimal Steiner tree for S~. Note that rnsf(Sl) =

d(T).

By Lemma 2 and Theorem 4, while 1e CO,the bound for (d(T) + al(T ))/s converges
to

( )[

1

B= l+; l+ln~. (4)

1+;

By Theorem 4 and Lemma 1, the cost of the output of k-RGH applied to S, is at most

( mst(Sl)

1(

d(T)
l+ln t~(Sl) s 1 + in

)
(t&s) + 1(T )),

t~(s,) t~(S) + 1(T)

Since lim~+z tJS ) = s, (4) and (5) imply that the limit output cost is at most

(
d(T)

l+ln
](

S + : (h – d(T’))).

s+:(Bs– d(T))

(5)

(6)

As a fi.mction of d(T ), (6) has one maximum for d(T) such that

(a- + ~)S - d(T) = ,n ad( ~

d(l”) (o! + ~)S - d(~”

Denote by f(a) the solution of the equation x = ln(dx). Then we obtain the following
upper bound for the limit output cost

f(a)(l + B/cl)

The last function has a minimum for u = 0.5 which is about 1.644 . . . Thus, k-RGH
preprocessed with 1-RGH(O.5) has a limit performance ratio at most 1.644 . . . while 1, k -

4. Preprocessing

❑

Berman-Ramaiyer’s algorithm

An r-restricted Berman-Ramaiyer’s preprocessing (r-BRP) differs from the usual r-BR
only in the gain function substituted with the relative gain function.

l–l
Lemma 5. Let T(r) be an output tree of r-BRI? Then g’(T(r)) ~ ~~.~ t i _–l t‘.
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Fk@ Let ~ be a full tree. We introduce a new function d’(~ ) = d(~) + 1(K) called the

relative cost of K. The relative cost of a Steiner tree T with full components & i G A, is

defined as follows

(i’(T,) = ~ d’(K,)
/GA

(7)

Let T be a Steiner tree with the smallest relative cost. Since the relative cost function
coincides with the usual cost function for 2-restricted Steiner trees,

d’(T) = wzst(S) (8)

Berman and Ramaiyer [2] proved that if the cost fi-mction satisfies properties (7–8) then

the output tree of the usual r-BR has a gain at least ~~~q “~ ~-1” (compare with (2)).

r-BRP coincides with r-BR applied to the relative cost function d’ instead of d. Since
the relative cost satisfies (7–8), we may conclude that the same fact is true for r-BR
applied to the cost function d’.

Since the gain function in respect to d’ equals to the relative gain function in respect to
t:_l– t,

d, the relative gain of the output tree of r-BRP is at least ~J=q i _ ~ , where t; denotes

the value oft, in respect to the relative cost fimction. Lemma follows from the fact that the

value t,coincides with the value t’in respect to the usual cost function d for any i = 1,...,
r. ❑

Let S,. be the union of the terminal set S with the set of all Steiner points of T(r). Denote
by G, L and G’ = G – L the total gain, loss and relative gain of T(r), respectively. Then
t2(S,.) = t2(S ) – G and t,(S,.) s tl(S ) + L by Lemma 1.

Let bound the cost of the output of k-BR applied to S,,. By (2), it is at most

A-- I t2(S’/,)+ t,($)+ f2(s,.)+ tk(s,-)
x
,=3 (i - l)i k–1

s Y *2(S) ~ :;; *’(S)+ *2(S) ;!’; “-(s)
,=3

[2 – G’
—

2 - ,~ “;:-l*’ (9)

Lemma 5 and (9) imply

Theorem 5. The cost of the output Steiner tree of k-BR preprocessed with r-BRP is at
most

(10)

I
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Proof of Tlzeorenzs 2 and .3. Note that r-BRP has the same order of runtime as r-BR since

r-trees with a positive relative gain should have a positive gain and a loss of an r-tree can

be found very fast using a greedy algorithm. By Lemma 3 and Theorem 5, 4-BR prepro-

cessed with 4-BRP satisfies Theorem 2.

In the rectilinear metric, the output length of 4-BR preprocessed with 4-BRP can be
bounded using Lemma 4 and inequalities (10), 3tz + 4tq < 9,s and 2tz + 2ta < 5s. Indee&
this length is at most

t2– t3 t~– t4 ~t2–t4 t2 t3 t4 4
t2–

2 3
––+–+i+~<

~ 3 ‘3 6

3t~ i- 4t3 t2+t4 4
+

7 19

24
+~s&+:s+-

3 120 ‘=fis
❑

5. The value of # for NSP

Proof of Lemma 3. Further assume that some terminals are connected with short edges

such that g(~) < 1(K) for any 4-tree ~. We may prove Lemma for each fill Steiner

component separately. We transform such a component to the form of the complete binary

tree by replicating certain vertices, so that copies of the same vertex are connected with

zero-cost edges. Note that all terminals are leaves of this tree.

Let k be the depth of this tree. We label its vertices with words from B* = {a G B*:

Iul ~ k}, where B = {0, 1}. Let p be the root and a have children CXO,o-1. The set of
terminals with the common anchestor u is denoted by a also.

Some more denotations: Let s = s(p) denote the cost of the Steiner minimal tree, t=

t(p)be the cost of MST for the whole terminal set, S,(CX)= ~lpl=lb=~d(up, a~b), H =

H(p) = sO(p) + SI(p), P(cY_)denote the cost of the cheapest path from cxto S.
An average path cost is defined to be

This cost has the following two obvious properties:

P(a)= P(a)

215(a) = so(a) + P(ao) + P(d).

Since ~ z ~, the following inequality is slightly stronger ~han Lemma.

(11)

(12)

I I
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We will prove (13) by induction on k. Indee& for k s 2, (13) is trivially true
be true for all trees of depth at most k. We will prove it for a tree of depth k + 1

Further assume that sl(0) s s,(1).
Now we partition s(p) into five subtrees:

57

(13)

Let (13)
(Fig. 1).

s(p) = ~ s(a) + D,
o.EA

where a ~ xl = {000,001,01,1} and D = sO(p) + SO(0) + SO(OO)(thick lines on Fig. 1).

These five parts correspond to some spanning tree:

~(p) = x f(a) + t’, (14)
aEA

where t’ is the cost of three cheapest edges connecting four MST for the sets ct G A.
By induction, inequality (13) holds for every a G A:

s(a) – H(u)
t(u) s 2S(CX)– 2P(Q) – g (15)

Substituting (15) into (14) we obtain

s(a) – H(cx)
f(p) =2(s– D)–2D%)-~ g +t’

aGA crEA

an~ therefore,

Fgwe 1 A full component.

I I
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s(a) –H(cY)
‘~ 8 ~

cxEA

To prove (13) it is sufficient to show that the RHS of the last
which is equivalent to the following inequality

inequality is nonpositive,

( )~s– H–x(s(cx– H(cx) S2D+2~P(a)–(tI+ 2P) (16)
uEA a EA

Claim 1. The RHS of (16) is at least P(O) – d(0,00).

Proof Consider an arbitrary 4-tree q with Steiner points O and 00 and four terminals

achievable from 000, 001, 01 and 1, respectively. Note, that t’ s t(q), where t(q) =

d(q) + g(q) is the cost of three corresponding longest edges on paths connecting treminals

of q. Let terminals of q be the nearest to the corresponding vertices of A. Since g(q) s l(q)

s d(0,00) + P(OO), we obtain

t’ s D + ~ P(cY) + d(O, 00) + P(OO)
~EA

Now Claim can be proved straitforwardly using the properties (11) and (12) of the
average path cost:

2D+2~~(u)–(/’+2~)=
ciEA

so(o) + $)(oo) + P(ooo) + F(ool) + F(ol) –

– d(O, 00)

The LHS of (16) equals to ~ (D + ~.~A H(a) –

SO(OO)+ S1(OO)+ SZ(OO)).By Claim and our assumption of SO(OO)+ SO(O1) = sl(0) ~
s ~( 1), (16) follows from the following inequality

P(OO) – i(0) – d(O, 00) a F(O)

❑

m =;(SJ1) + $Jol) + s~(ol) +

~ (2s.(01) + S1(O1) + 2s.(00) + S1(OO)+ s,(OO)) s F(O) - d(O, 00) (17)
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Similarly, the corresponding partition of the Steiner minimal tree induced by the 4-tree
with Steiner points O and 01 implies that it is sufficient to prove

: (2so(00)+S,(oo)+ 2so(01)+S,(ol)+S,(ol))= F(o)- d(o,01) (18)

Thus, to prove (13) we may show that one of the inequalities (17) or (18) is true. This
follows from the fact that their sum is true. Indee& summing (17) and (18) we obtain

; (4s~(oo) + 2s,(00) + S,(oo) + 4s,(01) + 2s,(01) + S,(ol)) = 2P(O) - s,(o)

= F(oo) + F(ol),

which trivially follows from the definition of the average path cost. ❑

6. The value of t4 for RSP

Hwang [11] proved that there is a Steiner minimum tree where every full component has
one of the shapes shown in Fig. 2. It was suggested in [3] some partition of a full
component into so called Steiner segments. Below we breifly describe this usefid tech-
nique.

Let al,..., a~and b. = O, bl,. ... b~ be the lengths of horizontal and vertical lines of a

full Steiner component F’ with terminals so,..., Sk. The horizontal lines form its spine.

Moreover, in case (i) b,, z b~_z holds. In case (ii) assume that b~ = O. Consider the

sequences bo, b], b3,. ... b2,+1,... and bO, b2,. ... b2,, . . . . Let

be the sequence of local minima of these
h(p) = k – 1, we exclude the member b~(PJ

l,(j=l 7. . ., p – 1), we exclude arbitrarily

(19)

sequences, i.e. b~VJ_2 ~ bkul K bAti)+2. If

from (19). For the case of /z(j + 1) = k(j) +

either b~~l+~~or bkt,~. So, we get h(j + 1) –
h(j) z 3. The elements of the refined sequence (19) are called hooks. Further we assume
that a full Steiner tree nontrivially contains at least 4 terminals (k 2 4). xi Steiner segment

,.+..- r-;,~’ ,o.l-.--~”’ ,

s’ ‘k-1

(i) (ii)

Figure 2. Two types of a full component.
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K is a part of a full Steiner component bounded by two sequential hook terminals. So two
neighboring Steiner segments have a common hook. K contains the two fhrthest termi-
nals below and above the spine called top and bottom, respectively.

Now we are ready to start the following.

Proof of Lemma 4. Further assume that some terminals are connected with short edges

such that g(K) 5 1(K) for any 4-tree K. It is sufficient to prove Lemma for a full Steiner

component F with a terminal set Set. Let F = Uf=&l be a partition of F into Steiner

segments. Then d(~) = ~~=0 d(K1) – ~~j~ h,, where h, are hooks. Consider some

Steiner segment K = K, of F with terminal set S = S,, hooks hl = h, and hr = h,+ ~ and

the length s = d(K). Similarly to Section 5, denote the MST-length for a terminal set X

by t(X).We intend to prove that

t(S)–s=:s–~(hl+hj (20)

This inequality yields Lemma, since then

Let top of K be to the leil of its bottom. We partition S into three parts S = L U C U

R, where L is the set of terminals from the left hook till the first before top, C contains all
terminals from the first before top till the next after bottom and R contains ones from the
next after bottom till the right hook. Similarly, we partition F into three corresponding
parts

s = left + center i- right,

where center contains all edges spanning C, and left and right consists of the rest of the
Steiner segment to the left and right of center (Fig. 3). Denote by V1and vr the lengths of
two vertical lines which bound center from the left and the right. Note that K should

contain center, but left and right might be empty.
We have two cases depending on the size of center.

Case 1. Let bottom be the next to top (Fig. 4). For this case we need the following usefhl

Lemma 6. [3] There are two trees (Fig. 4(i)) Top (dashed lines) and Bot (dotteded lines)

spanning terminals of K with a total length

d(Top) + d(Bot) = 3s – 2(hl + hr) – Rest;

I
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Figure 3. The partition of the Steiner segment.

Rest sums the lengths of the thin drawn Steiner tree lines.
Rest

Lemma 6 says that ts ~s – y – (Id+ h). It is easy to see that (20) holds if Rest

3
is big enough, i.e. Rest 2 ~ – ~ (hl + hr). So further assume that

Rests ~ – ~ (M + Iv-).

We may span R and L with the alternative chains (Fig. 3), therefore,

(21)

t(L) + t(R) s left + right + Rest – x, (22)

where x is the horizontal edge length of Rest.

Let q be the quadruple with terminals from C (Fig. 4(ii)). Lemma assumes that g(q) =

t(C’)– center is at most l(q). But the loss of q is at most x plus the length of the shortest
among four dotted lines (we may shift the central edge up or down till dashed lines).
Therefore,

hr

(1)

?top

Figure 4. top besides bottom: the whole segment (i) and its center (ii)

_____ ~. .... ...
I

Q

I vr

A

vl
I

I

I
e . . . . . . . .. —- ——-,

~ bottom

(ii)



62

t(C) – cente~sl(q) =x +

Thus, we can prove (20) using

KARPINSKUZELIKOVSKY

cerzler– (2v1+ 2vr +x) <X+.s-l?es t-(hl+hr)
—

4 4
(23)

(21), (22), (23):

(S) – s = ((C) – center) + ((L) – left + t(l?) – right) s x

s – Rest – (M + hr)
+ +Rest–x S

4

hl + hr <:+& s_3hl+hr
‘+l Rest–

( )

hl+hr 2

44 4 445 5 4
‘~s–~(hl+hr)

Case 2. Let two terminals lie between top and bottom. Now center contains two qua-
druples q 1 and q2 with central edges xl and x2 (Fig. 5). We construct 5 spanning trees for
the set C. Three trees contain some connection of the quadruple q 1 and pairs of edges

spanning the last two terminals: thick dotte~ dashe~ and solid lines, respectively. Lemma
assumes that the connection of the quadruple q 1 cannot be longer the length of q 1 (Steiner
edges in the dark region) plus the loss of q 1. Denote by light the length of Steiner edges
out of the dark region. Then

T1 – center ~d(ql) + l(ql) + light+ a + h3 – center= l(ql) + a + h3 <xl

+c+a+h3

T2–center 51(ql)+h2+d5hl+ b+h2+d

T3–center Sl(ql)+2a+x2=xl +b+2a +x2

The last pair of trees is symmetric to T1 and T2

Figure j.

vr

I
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~4–centersl(q2)+b+hlsx2+ ~+h+lzl

T5–center Sl(q2)+h2+c Sh3+ a+h2+c

Summing all inequalities we obtain

5t(C)–5center S2(xl+x2+c+d+ hl+h2+h3+2a+2b)–b

= 2(center – 3(vl + vr)).

Therefore,

5t(C) – 5cente~ s 2center – 6(v1 + VV) (24)

If there are more terminals between top and bottom then center contains several qua-

druples q,. Three necessary spanning trees contain connections of odd quadruples and two
contain connections of even quadruples. Similarly, we obtain (24) using the Lemma
assumption that such connections are no longer than d(q,) + l(q,).

To prove (20), we will show that

/(t(L) + t(R))– 5(left + right) s 2(left + right) – 4(M + hr) + 6(vZ + vr),

which means for the right side of the Steiner segment

5t(R) – 5i-ight ~ 2right – 4hr + 6VY (25)

If vr is the right hook (VY= hr), then (25) is trivial, since t(R) = right = O.

If the hook is the next after VY(Fig. 6(i)), then we use the solid line five times and two
times replace the edge of T1 and 72?(the thick dashed line) with the dotted line. In the latter
case we replace vr and hr with ~, the horizontal edge length. Thus, we obtain 5t(R) –

5right ~ 5VV + 2f – 2hr s 2right – 4hr + 6vr.
For a nontrivial R we use the following 5 trees (Fig. 6(ii)) which contain:
(1) thick solid and dotted lines. It doubles vr and Steiner tree lines crossed by its dotted

lines.

I
I

vr vr

I

f f hr
I

>1 .. -””””””

f“-”(l)

Figure 6. The short (1) and the long (ii) right.

‘k (ii)

hr
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●
I

●

1 1 1

Figure 7. An instance of RSP with t4= 7 5.

(2-3) thick solid and dashed lines or the thin dashed line if the hook is above the spine
(2 times). It doubles the Steiner tree lines crossed by its edges and saves the hook hr.

(4-5) the alternative chain (Fig. 3) (2 times). It doubles all vertical lines except vr and
hr.

Thus, these trees double right – hr at most two times, vr only once, and save hr two
times. ❑

Note that the inequality in Lemma 4 cannot be improved. Fig. 7 illustrates the following

Remark 1. The bound of ~ is tight for t4in the rectilinear plane.

7. Conclusion and open problems

The main open question remaining for the Network Steiner Tree Problem is to compute
the exact value of a constant c which separates polynomial approximability from non-
approximability (l/##-hardness) of this problem. Such a constant c must exist since NSP is
MXXSNP-complete [5]. We prove that c lies somewhere below 1.644 . . . for that problem.
Note that we do not know at the moment whether RSP is also JL4X S7W-complete, and
therefore it could have a polynomial time approximation scheme. At the end a word about
achieved heuristics: Our paper shows for the first time that we are able to solve with at
most 26.7°/0 error any practical instance of RSP of size, say, up to 105 in 1 h, whereas all
other known algorithms of the same quality are able to solve RSP only for about 30 points
in 24 hours on a SUN3 workstation (see [18]).
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