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Abstract

The Steiner tree problem asks for t est .
We design new approximation algorithms for the Steiner tree problems using a novel technique of choosing
Steiner points in dependence on the possible deviation from the optimal solutions. We achieve the best up to now
approximation ratios of 1.644 in arbitrary metric and 1.267 in rectilinear plane, respectively.

1. Introduction

Consider a metric space with a distance function d. For any set of terminal points S one
can efficiently find MST(S), a minimum spanning tree of S. Let mst(S, d) be the cost of
this tree in metric d. A Steiner tree is a spanning tree of a superset of the terminal points

(the extra points are called Steiner points). It was already observed by Pierre Fermat that
the cost of a Steiner tree of § may be smaller than mst(S, d). The Steiner tree problem asks
for the Steiner minimum tree, that is, for the 1east cost Steiner tree. However, finding such

a tree is NP-hard for almost all interesting metrics, like Euclidean, rectilinear, Hamming
distance, shortest-path distance in a graph etc [9]. Because these problems have many
applications, they were subject of extensive research cf [13].

In the last two decades many approximation algorithms for finding Steiner minimum
trees have been designed. The quallty of an appr0x1mat10n algorltnm is measured by its
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The Network Steiner tree problem (NSP) asks for the Steiner minimum tree for a vertex
subset S C V of a graph G(V, E, d) with cost function d on edges E. Let |V| = v, | El =
e and |S] = n.

In the rectilinear metric, the distance between two points is the sum of the differences
of their x- and y-coordinates. The rectilinear Steiner tree problem (RSP) got recently new

importance in the development of techniques for VLSI routing [16, 15].

The most obvious heuristic for the Steiner tree problem approximates a Steiner mini-
mum tree of S with the minimum spanning tree of S. While in all metric spaces the
performance ratio of this heuristic is at most 2 (Takahashi and Matsuyama [19]) (it can be
implemented for NSP in time O(e + v log v) (Mehlhorn [17])), Hwang [11, 12] proved
that this heuristic in the rectilinear plane has the performance ratio exactly 1.5 and can be

implemented in time O(n log n).

Consideration of &-restricted Stein main
their idea is to decrease the cost i 1 terminal
set. For NSP, the performance rati orithm (GA) (Zehkovsky [20, 22]) is

, _ A ] IR 16
at most 3 ~ 1.84 and PR of Berman-Ramaiver’s heuristic (BR) [2] is at most ) A~
1.78. Their run-times are O(v’) and O(a + v*n°), respectively (here o means time
complexity of finding of all pairs shortest paths). The relative greedy heuristic (RGH)
(Zelikovsky [23]) with PR converging to 1 + In 2 ~ 1.693 asymptotically beats BR which

PR converges to about 1.734 (Brochers and Du [6])
In the recent paper Berman et al. [3] gave a more precise (than in the first papers [21,
2, 81) analysis of the performance ratio and runtime of BR for RSP. They proved that its
61

performance ratio is at most YT 1.271. BR can run in O(n'%) time and its parameterized

version (PBR) approximates BR in time O(n log” n) [3, 8].
Here we introduce a novel approach based on the notion of relative gain (see Section 2).

Now the choice of Steiner pomts also depends he possible deviation from the optimal
solution. We add new preprocessing phases to the igO“ thms mentioned above. Combined
algorithms achieve better performance ratios in the same of time [14].

The table below contains appro; cimation algorlTth known before to b the best in

respect to performance ratios and orders of runtime and new performance ratios after
preproccssmg. By +e we mean existence of an algorithm for any € > 0.

In the next section we provide a synopsis of k-restricted Steiner trees and our approach.
In Sections 3 and 4 we describe our preprocessing of RGH and BR.

2. Gain and loss of k-restricted Steiner trees

2.1. Background

Cr)

A Steiner tree T of a set of terminals S is full if every internal node o
i.e., not a terminal. if 7 is not fuli, it can be decomposed into full S eir

teiner point,



Problem Heuristic Performance Ratio New PR Run-time Reference
NSP MST 2 o(*) [19, 17]
3
GA 1 | 84 o) [20, 22]
6
- 4 AmaltAA 4 mmm 005y 1
bBK l_gk 1.78 4D3/19% 1737 v} <]
9
RGH l+In2+e ~1.644 + € polynomial [23]
=~1.693 + €
RSP MST 1.5 O(n log n) [11, 12]
BR 6l _1on 9/1 267 On') 131
48 ’
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PBR % e~ 1271 4 e ~1.267 + € O(n log” n) 31

of terminals that overlap only at leaves. Such subtrees are called full Steiner components
of T [10]. k-trees are full Steiner trees with at most k£ terminals.

Without loss of generality, we may assume that the metric d on the set of terminal
is tne snortest patn cnstance Ior me Welghte(l eage nnectmg S. This way, MST(S

T~

st wa Lh nacf(n\ or mvr(m If we 1“‘(:

st mst{D) or mst(S). I reas

formlng a set E, the shortest-path distance may decrease; MST( D U ) is the minimum
spanning tree for the modified metric. For any graph H, d(#) denotes the sum of costs of
all edges of AH.

Let X(7) be a Steiner tree obtained from a k-tree T by addition of the minimum forest
spanning 7 with the rest of the terminal set S. The cost of this forest equals to ms{(D U

Ty Falte AR AN

E(T)), where E(T) is the set of zero-cost edges between terminals of 7. Define a
T T s 7)) = mst(D)y — mst(D U E(T)) — d(T). 1

of ktrees T, i = 1, ..., p, equals to mst(D) — dX({T,i=1,...,p}). L
R(T) denote the set of MST-edges substituted with 7 in the tree X(7). R(7) consists of the
edges of the largest cost on the paths in MST(D) connecting pairs of terminals of 7 [2].
Denote by m(T) = mst(D) — mst(D U E(T")) the cost of R(T). Thus, g(T) = m(T) —
d(T). Note, that addition of any edges to D may only decrease m(7 ) and the gain of T [2],

therefore,

T i=1,..p) =3 &) (1)

i=1

By contraction of T we mean addition of E(T) to D. A greedy algorithm (GA) [20] finds

a 3-tree with the biggest gain and contracts it while there are 3-trees with a positive gain.

All contracted 3-trees and the rest of MST-edges form the output Steiner tree. The

k-restricted relative greedy heuristic (k-RGH) [23] runs simalar to GA but maximizing

(among all k- trees 7) mu )/au ) instead of m(T) — d(7). Berman-Ramaiyer {2] sug-
, a 1

1 DD nnnnnnnnn -1
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chosen. Then it repeatedly pops i-trees from the stack remodifying D and selecting i-trees

with the current positive gain. The output tree is X(7), ..., 7,) for the selected i-trees T,
T,
> 4p

To bound PR of GA, &~-RGH and 4-BR we need the following constants. Let £, be an

arbitrary set of edges such that in <§, D U E> the gain of any k-tree becomes non-
positive. We denote by 7, = 1,(S) a supremum of mst{(D U E,) over all E;’s
The cutput cost of GA [20] (¢ = 3) and 4#-BR [2] is at most
Kt~ Doy fy )
Hh— 3 — =2+ 3 + )
2 % i— 1 2 SG-1i k=1

To bound the values 7,, Berman-Ramayer [2] introduced the following useful definition.
A Steiner tree is k-restricted, if every its full component is a k-tree. Let ST;(S') denote a
minimal k-restricted Steiner tree and st,(S) denote its cost. This way, ST,(S) is the

minimum spanning tree MST(S). By (1), the gain of any k-restricted Steiner tree is
nonpositive in <S, D U E, >, therefore, st(S) = ¢(S) [2]. These values may not
coincide: In the rectilinear plane, for the set S = {(£1, 0), (0, =1}, s£:(S) = 5 and £,(S)

r b ~E il ~ LN i B N ] 73 AN 7/ oAN rd

= 4.5.

A k-Steiner ratio r, is the supremum of s7,(S )/s over all instances of the Steiner tree
problem, where s denotes the cost of the Steiner minimal tree. r, (a usual Steiner ratio)
equals 2 and 1.5 for NSP and RSP, respectively [19, 11]. For NSP, some r;, were evaluated
in [20, 1, 7] and, finally, Brochers and Du [6] proved that for & = 2" + |,

rp=sup— = . (3)

For the rectilinear metric, r, < 37 ~—— for r = 3 [2], moreover, for any instance of RSP,

-
t, + t, = 2.5s and 3¢, + 4¢3 < 9s [3]. The bounds for ¢, and #, combined with the bound
(2) give the preformance guarantee of GA and 4-BR mentioned in the previous section. It
was proved in [23] that the output cost of <-RGH is at most (1 + In(r,/#;))r;. Since lim,__ ..
¥, = 1, the limit performance ratio of ~-RGH for NSP is at most | + In 2. Note that the

AN

limit performance ratio of 4&-BR for NSP derived from (2) and (3) is 1.73...

The algorithms described above try to maximize the total gain. But every time they accept
a k-tree, they also accept all its Steiner points. This may increase the cost of the cheapest
solution achievable at the current step. The main idea of our approach is to minimize this
possible increase.
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Let K be a k-tree and V(K) be its Steiner point set. A forest K' C K is called spanning
if for any v € V(K), there is a path in K’ connecting v with S. The cost of the minimum
spanning forest in K is called a loss of K and denoted by /(K). The main property of the
ioss of a k-tree is in the foliowing

Lemma 1. Let P be the set of the Steiner points of an r-tree 7. Then 1(S U P) = 1(S)
+ KT).

Proof. Let < S U P, Dp> be a complete graph on the set of terminals § U P and edges
from D, have costs equal to the shortest-path distances. Let EA be an arbitrary set of edges
suchthat G = <SUP, D, U E,\ > does not contain k-trees with a positive gain. To prove
Lemma it is sufficient to show that mst(G) = t(S) + [T ).

For every pair of vertices u, v € S, we add an edge f = (u, v) such that d(f) is equal
to the largest cost of an edge on the path in MST(G) between u and v. In the graph G’
obtained, we can choose a minimum spanning tree M in which any pair u, v € S is
connected by paths containing only terminals of S. It is proved in [2] that the d(M) =
mst(G') = mst(G) and for any k-tree K, the cost of R(K ) is the same in G and G.

Consider a subgraph H of G’ induced by the vertax set S. Since MST(H) is a subgraph
of M, for any k-tree K, R(K ) is the same in G’ and H. This implies that g(K ) is nonposi-
tive in H and mst(H) = t,(S). From the other side, since S U P can be spanned with
MST(H) and a spanning forest for 7, mst(G) = mst{(G') =< mst(H) + I(T) = 1(S) +
KT) 0

For any a = 0, the value g'(a, K ) = g(K) — «(K ) will be called a a-relative gain of
K. Further we omit « if « = 1. Similarly to the definition of 7,(S ), we define () = #(«,
S) to be a supremum of ms«(D U E¥) over all edge sets E%’s such that addition of E* to
D makes the a-relative gain of any k-tree nonpositive.

Lemma 2 (o, S) = (1 + a/ 2)st(S)

Do LT o T b oo L0 s o at T Tt can ] Qanlin i baan T VI bann o s
[rogf. LEL £; DC d 1Ull COLIIPONICIIL O1 dll OPUIIldl K-TCSUIICICU SICHICT UCC £. VWO Udllsiuiin

=

T, to the form of a binary tree by replicating certain internal vertices, so that copies of the
same vertex are connected with zero-cost edges.

The loss of 7; can be bounded in the following way. For any inner vertex of T;, choose
the cheapest edge among two edges going to its two children. It is easy to see, that the
forest /' obtained spans all inner vertices of 7, d(F) is at most half of d(T;), since F
contains exactly half of all edges of 7, and T, — F contains longer edges. This means, that
IT)) = 0.5d(T,).

Let g(K) = al(K) for any k-tree K in < S, D U E¥ >. By (1), mst(D U EY—d
(N =g()= D7, g(T)=< 7 al(T) = D7, 0.50d(T;) = 0.5ad(T). Therefore, mst(D

U Ef = (1 + 0.50)d(T). Since this is true for any Ef, (e, $) = (1 + %) a(T) =

o
(1 +;)ka. U
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- -~ . 1 .. 'va N it n a\ — 1 i 3 ~ i 1 .

Theorem 2 shows that lim,_,, tHa) = (1 + 5) s. The relative gain of any triple 1s

nonpositive, therefore, £ = t,. In Sections 5 and 6, we find the tight bounds for * in the
case of NSP and RSP, respectively.

N

4 1&
. L 10
Lemma 3. For any instance of NSP, — = ry
N S
£t 7
Lemma 4. For any instance of RSP, — = 3
s

The main idea of preprocessing k-BR and A-RGH is to find some k-trees which are good
in respect to the relative gain and to add its Steiner points to initial terminal set before
running usual &-BR and &-RGH. Using Lemmas 2, 3 and 4, in Sections 3 and 4, we derive
the record performance ratios claimed in Introduction.

s o) NPRPISPR e 1 T NIQD tlnn 2o 5 maliimaminl $immn givmeavimsatian algarithim grith tha o
1 NEUrceIn 1. ror INor, UiCic 15 d p ly 101111a 1= UIHIC dpPpPIOAHIIAUUIL algULILIIIL will uic pol=
formance ratio at most 1.644... + € forany € > 0

v2n3)

19 19 o .
Theorem 3. For RSP, for any € > 0, there are G and 5 + e-approximation algorithms
il gt AW LY S 1 W 1062 Y sacmantivel
witnl Tuntimes Uis ) ana Uin 10g" 7)), reSpeciively

3. Preprocessing the relative greedy heuristic

We suggest the following generalization of ~-RGH (k&-RGH(a)): While mst(D) # 0, find
and contract a k-tree 7 minimizing p(T) = (d(T) + «(T))/m(T ). The union of k-trees T
obtained forms the output tree.

mst( S
..... W)

Theorem 4. k-RGH(a) finds a tree 7T such that d(T) + ol(T) = (1 + In m)
A bAMy &)
(o, S).

Proof Let T},..., T, be the k-trees chosen by &-RGH(«) including 2-terminal trees (edges).
Let M; denote mst(D U E(T,) U ... U E(T)),j = 0,..., a. Let p(T,)D be the set of edges
D with the cost p(T) times the cost of edges of D. Since p(e¢) = 1 for any MST-edge, p(T;)
= 1 and MST(D U p(T,)D) = MST(p(T,)D). By the choice of 7|, < S, p(77)D > does not
contain k-trees with the positive a-relative gain. Therefore, p,ms{(D) = mst(D U p,D) =
t*{(@) and
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d(T)) + ol(T))  t¥a)

<<

m(T,) M,

Similarly, after contracting of 7, and choosing 75, we obtain

d(Ty) + ad(Ty) _ t¥(«)

<<

m(TZ) - 1M]

Note, that M, = M,_, — m(T;). Inductively we obtain for each i = 1, (d(T,) + «l(T}))/
(M,_, — M) = Ha)/M,_,, or equivalently M, = M, (1 — (d(T}) + al(T))t ().
Unraveling these inequalities,

r d(T, T,
MrSMOH (1 _L):—a(g)_
(@)

i=1

Taking natural logarithm on both sides and using the fact that In(1 + x) = x, we obtain

S (d(T) + al(T) Mo
=In—.
Ha) M,

Since M5, = 0, we can choose 7 such that M, > tHo, S)y=M, . We split d(T.,,) +
al(T,. ) proportionally by the position of /() in the interval [M, . |, M,]. We combine the
first portion with M, to bring this cost up to exactly t*(a), and combine the second
portion with d(7,) + «l(T,). We then split M, — M, ., into the same proportions, and
subtract the second portion from M, so that the last inequality above still holds when we
“pretend” that # (o) = M, ;. We now finish the proof with the sequence of inequalities

S AT) + al(T)) M,y >72dT) + ol(T)) M,
< + =1+In =1
ey t*(e) t5(a) 41
msKS)
t5a, S)

+ In
O
Now we preprocess k&-RGH (k-RGH(0)) with /-RGH(e) in the following way. We run

I-RGH(«) obtaining a Steiner tree 7 and add all Steiner points of 7 to the initial terminal
set S. Then we apply k-RGH to the modified terminal set.

Proof of Theorem I. Our goal is to obtain the limit performance ratio of k-RGH after
preprocessing with /-RGH(«) while /, k — . Denote by S, the modified terminal set after
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preprocessing and by s, the cost of the optimal Steiner tree for S, Note that ms«(S,) =
a(T).

By Lemma 2 and Theorem 4, while / — 22, the bound for (d(T) + «/(T))/s converges
to

B:(H;‘)(Hlnl 2a). 4)
L@

By Theorem 4 and Lemma 1, the cost of the output of ~-RGH applied to S, is at most

mst(S;) ,
(I + In _)rk(S,) = (1 +1 ) (1S) + I(T)). (%)

(S) N S) + IT)

Since lim,_,.. 7,(S) = s, (4) and (5) imply that the limit output cost is at most

(T
(I-i—ln 1 ) )(s-ki(Bsd(T))). (6)
«
5+&(B.s-d(T))

As a function of d(T"), (6) has one maximum for d(7 ) such that

(a + B)s — d(T) B ad(T)
A7) T at B — dT)

Denote by f(a) the solution of the equation x = In(a/x). Then we obtain the following
upper bound for the limit output cost

fla)(1 + Bla)
The last function has a minimum for « = 0.5 which is about 1.644... Thus, &-RGH

preprocessed with [-RGH(0.5) has a limit performance ratio at most 1.644... while /, k —
o0, d

4. Preprocessing Berman-Ramaiyer’s algorithm

An r-restricted Berman-Ramaiyer's preprocessing (r-BRP) differs from the usual »-BR
only in the gain function substituted with the relative gain function.

Lemma 5. Let 7(r) be an output tree of -BRP. Then g'(T(r)) = D/ y ————



n
(93]

1T

Proof. Let K be a full tree. We introduce a new function d'(K ) = d(K') + I
relative cost of K. The relative cost of a Steiner tree T with full components K, i € 4, is

T

) called the

defined as follows

ATy — N JEN
“ \1} - L (21 \\l\f} (7}
i€4
Let T be a Steiner tree with the smallest relative cost. Since the relative cost function
col es with the usual cost function for 2-restricted Steiner trees,
d'(T) < mstS) (8)

1%
=
O
[¢]
—
:3‘
(IO
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=
=
o
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O
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o
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o
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W
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=
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o
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(¢}
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[¢]
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<
(¢}
9
=S
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=)
Q
=
o
=
—_
=
-
(93
7]
o
[}
o
-
—
o

LD fi~1 - li . ‘

(1 the relative gam of the output tree of -BRP 1s at least ZJI_ " 1
i —

the value of 7; in respect to the relative cost function. Lemma follows from the fact that the
value r coincides with the value ¢ in respect to the usual cost function d for any i = 1,.

r.

Let S, be the union of the terminal set S with the set of all Steiner points of 7{r). Denote
by G, L and G' = G — L the total gain, loss and relative gain of 7(r), respectively. Then
1(S,) = t;(S) — G and ¢(S,) = t(S) + L by Lemma 1

Let bound the cost of the output of &-BR applied to S,. By (2), it is at most

kg H(S,) + z,.(S,,) z,(S) + 1,(S,) % H(S) = G+ 1S) (S — G + 19
S G- 1) —1 & (i— i * k-1
L—G kot —
= B N A 9
2 igg i—1 ( )

Lemma 5 and (9) imply
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Proof of Theorems 2 and 3. Note that »-BRP has the same order of runtime as #-BR since
r-trees with a positive relative gain should have a positive gain and a loss of an #-tree can
be found very fast using a greedy algorithm. By Lemma 3 and Theorem 5, 4-BR prepro-
cessed with 4-BRP satisfies Theorem 2.

In the rectilinear metric, the output length of 4-BR preprocessed with 4-BRP can be

thig length ¢ ot mact
[SEU) l\/llélll 1d au 111uUdL
f. — t. f, t PR J— 14 1 t £ 4
T iy By Ty 1T iy ig f
5 S T Tz T3y TRttt =
< 2 L ol J o) J 0
3, +4n Lt 4t 3 5 7 19
— - —=-st=-s+t—5=—s
24 3 24 8 6 120 15

]

5. The value of ¢* for NSP

Proof of Lemma 3. Further assume that some terminals are connected with short edges
such that g(K') =< I(K) for any 4-tree K. We may prove Lemma for each full Steiner
component separately. We transform such a component to the form of the compiete binary
tree by replicaiing certain vertices, so that copies of the same vertex are connected with

- of thic trae We lahal ite verticas with worde o B¥ — (o = R
Let k be the depth of this tree. We label its vertices with words from B* = {« € B
\o| = k}, where B = {0, 1}. Let p be the root and « have children o0, «1. The set of

terminals with the common anchestor « is denoted by «a also.

Some more denotations: Let s = s(p) denote the cost of the Steiner minimal tree, t =
H{p) be the cost of MST for the whole terminal set, s(a) = >, pl=ipepd(aB, afb), H =
H(p) = s¢(p) + s,(p), P(cor) denote the cost of the cheapest path from « to S.

An average path cost is defined to be

XVh—1 ~Ak—1

5 212 sle) A
P = P(p) = = > 27%(p)

o) T 2 4D

2 i=1
This cost has the following two obvious properties
2 an
P(Q)EP(Q) i1y
2P(a) = sy(a) + P(0) + P(al) (12)
Since P = —, the following inequality is slightly stronger than Lemma



wn
~J

(13)

We will prove (13) by induction on &. Indeed, for £ = 2, (13) is trivially true. Let (13)
be true for all trees of depth at most k&. We will prove it for a tree of depth £ + 1 (Fig. 1).
Further assume that 5,(0) = s,(1).

Now we partition s(p) into five subtrees:

s(p) = > s(a) + D,

aEA
a4

where a € 4 = {000,001,01,1} and D = so(p) + 54(0) + 5,(00) (thick lines on Fig. 1).
These five parts correspond to some spanning tree:

1

> o) + 1, 14)
acA

IA

p)

where t' is the cost of three cheapest edges connecting four MST for the sets a € 4.
By induction, inequaiity {13) holds for every a & A4:
Ho) = 2s(a) — 2P(q) — ————— (15)

Substituting (15) into (14) we obtain

(e 5 s(a) — H(a) '
Ho)=2(s — D) =2 > Plo)— > n + ¢t
aEA4 aEA4
nnd tharafAra
Oll\,l, Lllblclulb,
A

0 VAN
/\ A001 010 4 -011
w/ \ /N

Fiocure I A full comnonent
figure [ A Tull component.
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o)~ (25— 2p =" = 1 0p 5" H _p 0 S oy
\ g / 8 =
< S(a) = H(er)
a4

To prove (13) it is sufficient to show that the RHS of the last inequality is nonpositive,
which is equivalent to the following inequality

(s —H- 3 (s(a) - H(a)\) =2D+2 3 Pla)~ (' +2P) (16)

A a4 / aEA4

o | ==

Claim 1. The RHS of (16) is at least P(0) — d(0,00).

Proof. Consider an arbitrary 4-tree g with Steiner points ¢ and 00 and four terminals
achievable from 000, 001, 01 and 1, respectively. Note, that ¢ = #(g), where #(q) =
d(q) + g(g) is the cost of three corresponding longest edges on paths connecting treminals
of g. Let terminais of g be the nearest to the corresponding vertices of 4. Since g(g) = i(q)

nnnnn /OO

= d(0,00) + P(00), we obtain

’

N/ Y | drn
Pla) + d(0

IA
I\
o
=

%,
o,
=)
2

4 [ I
4 T

m
EN

«

Now Claim can be proved straitforwardly using the properties (11) and (12) of the
average path cost:

AN LA N D [ L ADY —

20+ 2 >, Ploy— (' +2P) =
a4

2D+ Pry) — ‘o ' > 2

2D +2 Y Pla) — (D + 2 Pla) + d(0,00) + PO0) + so{p) + P(O) + P(1)) =
aEA4 aEA4

1 1
The LHS of (i6) equals to g(D + Daes Hla) — H) = §(51(1> + 54(01) + 5,(01) +
50(00) + 5,(00) + 5,(00)). By Claim and our assumption of s5,(00) + 5,(01) = 5,(0) =
5,(1), (16) follows from the following inequality

Qo=

(25,(01) + 5,(01) + 254(00) + 5,(00) + 5,(00)) = P(0) — d(0, 00) (17)

o

)
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Similarly, the corresponding partition of the Steiner minimal tree induced by the 4-tree
with Steiner points 0 and 01 implies that it is sufficient to prove

é(ZSO(OO) +5,(00) + 25,(01) + 5,(01) + 5,(01)) = P(0) — d(0, 01) (18)

Thus, to prove (13) we may show that one of the inequalities (17) or (18) is true. This
follows from the fact that their sum is true. Indeed, summing (17) and (18) we obtain

%(450(00) + 25,(00) + 5,(00) + 45,(01) + 25,(01) + 5,(01)) = 2P(0) — 5,(0)
= P(00) + P(01),

which trivially follows from the definition of the average path cost. O

6. The value of ¢* for RSP
Hwang [11] proved that there is a Steiner minimum tree where every full component has
one of the shapes shown in Fig. 2. It was suggested in [3] some partition of a full
component into so called Steiner segments. Below we breifly describe this useful tech-
nique.

Let a,,..., a, and b, = 0, b\,..., b, be the lengths of horizontal and vertical lines of a
full Steiner component F with terminals s,..., 5. The horizontal lines form its spine.
Moreover, in case (i) b, < b,_, holds. In case (1) assume that b, = 0. Consider the
sequences by, by, bs...., by y,... and by, bs,..., by, Let

biioy = bos Diiyse-os bppety = by (19)
be the sequence of local minima of these sequences, i.€. b, _y = by < i If
h(p) = k — 1, we exclude the member b, from (19). For the case of 4(j + 1) = A{j) +
1, = 1,..., p — 1), we exclude arbitrarily either b, ., or by;. So, we get h(j + 1) —

h(j) = 3. The elements of the refined sequence (19) are called hooks. Further we assume
that a full Steiner tree nontrivially contains at least 4 terminals (k = 4). A Steiner segment

S

c;1 osk-z [+ Sk oSI o Sk—2
g—l_’—_-__J_‘_#‘ ° -t Li(
: v |

JJS lS ¢ S ¢ ¢ S
2 . k-1 2 . k-1
(1) (1)

Figure 2. Two types of a full component.



60 KARPINSKI/ZELIKOVSKY

K is a part of a full Steiner component bounded by two sequential hook terminals. So two
neighbouring Steiner segments have a common hook. K contains the two furthest termi-
nals below and above the spine called fop and bottom, respectively.

Now we are ready to start the following.

Proof of Lemma 4. Further assume that some terminals are connected with short edges
such that g(K') = [(K) for any 4-tree K. It is sufficient to prove Lemma for a full Steiner
component F with a terminal set Ser. Let F = U’ K, be a partition of F into Steiner
segments. Then d(F) = >F d(K) — S !h, where h, are hooks. Consider some
Steiner segment K = K of F' with terminal set S = S, hooks 4/ = 4, and hr = b, and
the length s = d(K'). Similarly to Section 5, denote the MST-length for a terminal set X
by #(X). We intend to prove that

{S)—s= %5 - % (Al + k) 20y

k - k ~
f(Set) = 3 «(S) =7 T d(K) — = 2 (h,+ h,, ) =
i=0 2 =0 “’ =0
7 k k=1 7
(X dK) — X h) =<d(F)
d =0 i=1 S
Let top of K be to the left of its bottom. We partition S into three parts S = L U C |

R, where L is the set of terminals from the left hook till the first before top, C contains all
terminals from the first before top till the next after bottom and R contains ones from the
next after bottom till the right hook. Similarly, we partition F into three corresponding
parts

— Taf+ L
LCJ[ T

where center contains all edges spanning C, and left and right consists of the rest of the
Steiner segment to the left and right of center (Fig. 3). Denote by v/ and v the lengths of
two vertical lines which bound cenrer from the left and the right. Note that X should

E I S 1

contain center, but lefi and right might be empty.
We have two cases depending on the size of center

Case 1. Let bottom be the next to top (Fig. 4). For this case we need the following useful

Lemma 6. [3] There are two trees (Fig. 4(i)) Top (dashed lines) and Bor (dotteded lines)
spanning terminals of K with a total length

d(Top) -+ d(Bot) = 3s — 2(hl + hr) — Rest;
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hi I

Figure 3. The partition of the Steiner segment.

Rest sums the lengths of the thin drawn Steiner tree lines.

3 Rest
Lemma 6 says that r = ES - %S — (hl + hr). Tt is easy to see that (20) holds if Rest

3
is big enough, i.e. Rest = % ~3 (hl + hr). So further assume that

Rest =

(hl + hr). (21)

(N ROS)

3
5
We may span R and L with the alternative chains (Fig. 3), therefore,

t(L) + t(R) =< left + right + Rest — x, (22)

where x is the horisontal edge length of Rest.

Let ¢ be the quadruple with terminals from C (Fig. 4(ii)). Lemma assumes that g(g) =
{(C) — center is at most /(g). But the loss of g is at most x plus the length of the shortest
among four dotted lines (we may shift the central edge up or down till dashed lines).
Therefore,

Figure 4. top besides bottom: the whole segment (i) and its center (ii).
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center — (2vl + 2vr + x) 5 — Rest — (hl + hr)
[ T

H{C) — center < I(g) < x + =X
4 4 20N
(23)
Thus, we can prove (20) using (21), (22), (23):

HS) — s = (H(C) — center) + (t(L) — left + {R) — right) < x

s — Rest — (hl + hr\\

+ + Rest — x =
a
« bl L1 1 1. - 1/ % T AR L1 L L o 7
S D ne T nr S I3 e Ty rie oy Z /
7+7Resr—f57+7‘——3 )* =Zs5——(hl+ hr)
4 &4 4 a4 415 5 / 4 5 10

Case 2. Let two terminals lie between fop and bottom. Now center contains two qua-
druples g1 and ¢2 with central edges x1 and x2 (Fig. 5). We construct 5 spanning trees for
the set C Three trees contam some connectlon of the quadruple ql and palrs of edges

edges in the da

out of the dark region. Then

T1 — center = d(ql) + l(ql) + light + a + h3 — center = l{g]) + a + h3 = x1

+c+a+h3

T2 —center<1Igl)y+h2+d=hl+b+h2+d

+x2=x1+5b

+ 2a + x2
Ld T X4

Fgure 5. 2 terminals between [Op and bottom.
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T4 — center <1(g2) +b+hl <x2+d+ b+ hl

TS—center=1g2)+hR2+c=h+a+h2+c

5(C) — Scenter =2(x1 +x2+c+d+hl +h2+h3 +2a+2ph)— b

=< 2(center — 3(vi + vr)).
Therefore,
5HC) — Scenter = 2center — 6(vl + vr) (24)

If there are more terminals between fop and bottom then cenfer contains several qua-
druples g,. Three necessary spanning trees contain connections of odd quadruples and two
contain connections of even quadruples. Similarly, we obtain (24) using the Lemma
assumption that such connections are no longer than d(g,) + /(g,).

To prove (20), we will show that

(L) + HR)) — 5Uleft + right) = 2(left + right) — 4(hl + hr) + 6(vl + vr),
which means for the right side of the Steiner segment

SHR) — 5ri

L

ht — Ahr + Gyr (25)
1 SAr T O (£2)

If vr is the right hook (v» = hr), then (25) is trivial, since #(R) = right = 0.

If the hook is the next after vr (Fig. 6(i)), then we use the solid line five times and two
times replace the edge of T1 and 72 (the thick dashed line) with the dotted line. In the latter
case we replace vr and Ar with f, the horizontal edge length. Thus, we obtain 5#R) —
Sright = Svr + 2f — 2hr = 2right — 4hr + 6vr.

For a nontrivial R we use the following 5 trees (Fig. 6(ii)) which contain:

(1) thick solid and dotted lines. It doubles v and Steiner tree lines crossed by its dotted
lines.

Figure 6. The short (i) and the long (ii) right.
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—

p—

@o———

Figure 7. An instance of RSP with /* = 7/5.

(2-3) thick solid and dashed lines or the thin dashed line if the hook is above the spine
(2 times). It doubles the Steiner tree lines crossed by its edges and saves the hook Ar.

(4-3) the alternative chain (Fig. 3) (2 times). It doubles all vertical lines except v+ and
hr.

Thus, these trees double right — Ar at most two times, v only once, and save /r two

S .

times. .
Note that the inequality in Lemma 4 cannot be improved. Fig. 7 illustrates the following

™ P St 1 1 o~ - ] N a4 - < e N

Kemark [. 1he bound o1 g 1S tight 101 77 1n the rectilinear plane.

- ral ) ] . h ] N 1y

7. Conclusion and open probiems

The main open question remaining for the Network Steiner Tree Problem is to compute

approximability (NP-hardness) of this problem. Such a constant c must ex1st since NSP is
MAX SNP-complete [5]. We prove that ¢ lies somewhere below 1.644 ... for that problem.
Note that we do not know at the moment whether RSP is also MAX SNP-complete, and
therefore it could have a polynomial time approximation scheme. At the end a word about
achieved heuristics: Our paper shows for the first time that we are able to solve with at

cize eav 11h to 55 wharaae all
most 26.7% error any practical instance of RSP of size, say, up to 10”7 in 1 h, whereas all
other known algorithms of the same quality are able to solve RSP only for about 30 points

in 24 hours on a SUN3 workstation (see [18]).
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