
Lexicographic Breadth First Search – A Survey

Derek G. Corneil

Department of Computer Science, University of Toronto,
Toronto M5S3G4, Ontario, Canada

dgc@cs.utoronto.ca

Abstract. Lexicographic Breadth First Search, introduced by Rose,
Tarjan and Lueker for the recognition of chordal graphs is currently the
most popular graph algorithmic search paradigm, with applications in
recognition of restricted graph families, diameter approximation for re-
stricted families and determining a dominating pair in an AT-free graph.
This paper surveys this area and provides new directions for further re-
search in the area of graph searching.

1 Introduction

Graph searching is a fundamental paradigm that pervades graph algorithms. A
search of a graph visits all vertices and edges of the graph and will visit a new
vertex only if it is adjacent to some previously visited vertex. Such a generic
search does not, however, indicate the rules to be followed in choosing the next
vertex to be visited. The two fundamental search strategies are Breadth First
Search (BFS) and Depth First Search (DFS). As the names indicate, BFS visits
all previously unvisited neighbours of the currently visited vertex before visiting
the previously unvisited non-neighbours, whereas DFS follows unvisited edges
(if possible) from the most recently visited vertex. Both searches seem to have
been “discovered” in the 19th century (and probably earlier) as algorithms for
maze traversal. DFS, as popularized by Tarjan [41], has been used for such di-
verse applications as connectivity, planarity, topological ordering and strongly
connected components of digraphs. BFS has been applied to shortest path prob-
lems, network flows and the recognition of various graph classes.

In the mid 1970s, Rose, Tarjan and Lueker [42] introduced a variant of BFS
called Lexicographic Breadth First Search (LBFS). Their application of LBFS
was to the recognition of chordal graphs. This algorithm is one of the classic
graph algorithms and, given the current interest in LBFS, it is somewhat sur-
prising that little work was done on LBFS until the mid 1990s.

In this paper, we survey many of the applications of LBFS (in Section 4).
Before doing so, we provide the graph theoretical background for the paper as
well as a description of LBFS and its two most common variants (Section 2)
and, in Section 3, present some LBFS structural results. Concluding remarks
are made in the final section.

J. Hromkovič, M. Nagl, and B. Westfechtel (Eds.): WG 2004, LNCS 3353, pp. 1–19, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 Derek G. Corneil

2 Background

Before presenting LBFS and its various variants, we give some relevant defi-
nitions. We start with standard graph theoretical definitions and then define
various graph families and indicate some characterizations that will be used in
the relevant LBFS algorithms. Further information regarding the definitions and
families can be found in [6].

2.1 Definitions and Notation

All graphs will be assumed to be undirected and finite. For a graph G(V, E), we
use n to denote |V | and m to denote |E|. Kn, Cn and Pn denote the Clique,
Cycle and Path respectively on n vertices. A House, Hole and Domino are
respectively: a C4 sharing an edge with a K3; an induced Ck, k > 4; a pair
of C4s sharing an edge. A subset of vertices M is a module if for all vertices
x, y ∈ M and z ∈ V \M, xz ∈ E if and only if yz ∈ E. Module M is trivial if
M = V, M = ∅ or |M | = 1. A maximal clique module is a module that is a clique
and is maximal with respect to both properties. Subset S of V is a separator
if the graph induced on V \ S is disconnected. A moplex is a maximal clique
module whose neighbourhood is a minimal separator.

The distance between two vertices u and v is the length of a shortest path
between u and v and is denoted d(u, v). For vertex v, ecc(v), the eccentricity of
v is the length of a longest shortest path with v as an endpoint. The diameter
(diam(G)) is the maximum eccentricity of all vertices in G. A vertex is simplicial
if its neighbourhood is a clique. An ordering v1, v2, · · · , vn of V is a perfect
elimination ordering (PEO) if for all i, 1 < i ≤ n, vi is simplicial in the graph
induced on v1, · · · , vi. A vertex v is semisimplicial if v is not the midpoint of any
induced P4. An ordering v1, v2, · · · , vn of V is a semiperfect elimination ordering
if for all i, 1 < i ≤ n, vi is semisimplicial in the graph induced on v1, · · · , vi.
A vertex v is 2-simplicial if there is no induced P4 in the graph induced on
{u : d(u, v) ≤ 2}. An ordering v1, v2, · · · , vn of V is a 2-simplicial elimination
ordering if for all i, 1 < i ≤ n, vi is 2-simplicial in the graph induced on v1, · · · , vi.

We say that path P misses vertex v if P ∩ N(v) = ∅ (i.e., no vertex of P
is adjacent to v). A path P is a dominating path if no vertex of G is missed by
P . A pair of vertices x, y is a dominating pair if every path between x and y
is a dominating path. Two vertices x, y are unrelated with respect to vertex v if
there are paths P between x and v and Q between y and v such that P misses y
and Q misses x. An independent triple of vertices x, y, z is an Asteroidal Triple
(AT), if between every pair of vertices, there is a path that misses the third. A
vertex v is admissible if there are no unrelated vertices with respect to v. An
ordering v1, v2, · · · , vn of V is an admissible elimination ordering (AEO) if for
all i, 1 < i ≤ n, vi is admissible in the graph induced on v1, · · · , vi.

For t ≥ 1, an ordering v1, v2, · · · , vn of V is a strong t-cocomparability ordering
(strong t-CCPO) if for all i, j, 1 ≤ i < j < k ≤ n, d(vi, vk) ≤ t implies d(vi, vj) ≤
t or d(vj , vk) = 1. Note that a graph is a cocomparability graph (there is a

Lexicographic Breadth First Search – A Survey 3

transitive orientation of the edges of the complement) if and only if it has a
strong 1-CCPO [28].

A graph is chordal if there is no induced cycle of length greater than 3.
Fulkerson and Gross [23] showed that a graph is chordal if and only if it has a
perfect elimination ordering. G is weakly chordal if G and G contain no induced
cycle Ck, k ≥ 5. A graph is strongly chordal if it is chordal and every cycle of even
length at least 6 has an odd chord, namely a chord where the distance on the
cycle between the endpoints is odd. An interval graph is the intersection graph of
intervals of a line. If all intervals are of the same length, then G is a unit interval
graph (equivalently known as proper interval graphs, where no interval is allowed
to properly contain another interval). A graph G is a distance hereditary graph
if for every connected subgraph H , x, y ∈ H implies that dH(x, y) = dG(x, y).
Nicolai [35] has shown that a graph is distance hereditary if and only if it has a
2-simplicial elimination ordering. A graph is HHD-free if it contains no House,
Hole or Domino, as defined above. Bipartite graphs with no induced cycles of
size greater than 4 are called chordal bipartite.

Cographs are the graphs formed by the closure of the disjoint union and
complementation operations on individual vertices. There are many equivalent
characterizations of cographs including being the graphs that contain no induced
P4, and having a cotree representation. A cotree is a rooted tree with the leaves
being the vertices of the cograph and the internal vertices alternating between
being “0” and “1” nodes. Two vertices x, y of a cograph are adjacent if and only
if the lowest common ancestor of x and y in the cograph is a “1” node. See
Figure 1 for an example of a cograph and its related cotree. Cographs can be
extended in the following ways: a graph where each vertex belongs to at most
one P4 is called a P4-Reducible graph; a graph where every set of five vertices
induces at most one P4 is called a P4-Sparse graph. Both P4-Reducible and
P4-Sparse graphs (as well as distance hereditary graphs) have a tree structure
representation that is an extension of cotrees. G is AT-free if it contains no
AT. A graph is a permutation graph if it is the intersection graph of lines whose
endpoints are on two parallel lines. Permutation graphs strictly contain cographs
and are cocomparability graphs and thus are also AT-free.

A bipartite graph with bipartition (X, Y) is an interval bigraph if each vertex
v is assigned an interval Iv and x ∈ X, y ∈ Y are adjacent if and only if Ix∩Iy �= ∅;
an interval bigraph is proper if no interval contains another. These graphs are
also known as bipartite AT-free graphs and bipartite permutation graphs.

2.2 LBFS

As mentioned in the Introduction, BFS is one of the fundamental graph searching
paradigms and can be found in any standard graph theory text. BFS uses a queue
to ensure that whenever a vertex x is visited, its previously unvisited neighbours
must be visited before its previously unvisited non-neighbours. A layer of a BFS
is a set of vertices all of the same distance from the initial vertex of the BFS.
LBFS is a restriction of BFS; in the following, we present the details of the
generic LBFS algorithm and its implementation. We then describe two popular
variants of this generic algorithm.

4 Derek G. Corneil

a

z

c

x

c xa

w y d
zv u

R

by

w

v

u

b

d

0
1

1

1

0

a)

1

0

b)

1

0

Fig. 1. a) A cograph. b) Its cotree.

Generic LBFS: Note that in the following algorithm, we require the sweep to
start at given vertex x; if the algorithm is to start from an arbitrary vertex, then
Step 1 is omitted and Step 2 is replaced by assigning Λ to label(y) for all y ∈ V .
Note that Step 4 allows the choice of any vertex that has the lexicographically
largest label. Later we will present various modifications that explicitly choose
the next vertex. We warn the reader that our LBFS ordering of the vertices of
the graph may seem “backwards” compared to the ordering produced by other
LBFS descriptions.

Procedure LBFS(x)
{Input: Graph G(V, E) and a distinguished vertex x of G;
Output: An ordering σ of the vertices of G.}

1. label(x) ← |V |;
2. for each vertex y in V \ {x} do label(y) ← Λ;
3. for i← |V | downto 1 do
4. pick an unnumbered vertex y with lexicographically the largest label;
5. σ(y)← |V |+ 1− i; {assign to y number |V |+ 1− i};
6. for each unnumbered vertex z in N(y) do append i to label(z).

In an LBFS σ with two arbitrary vertices u and v, if vertex u is visited before
v, i.e. u <σ v we say that u occurs before v in σ or that u is visited before v or
that u is to the left of v. As mentioned above, this generic LBFS algorithm allows
arbitrary choice of a vertex in Step 4. We call the set of tied vertices encountered
in Step 4 a slice and denote it by S. Note that all vertices of a slice with respect
to LBFS σ appear consecutively in σ. Given two vertices u and v of an LBFS σ
such that u <σ v, Γ σ

u,v denotes the vertex-minimal slice with respect to σ that
contains both u and v. As an example of these concepts consider the graph in
Figure 2 where the boxes indicate the slices, including V itself, with respect to
the LBFS σ (note that the vertices are numbered as visited by σ). Γ σ

9,10 consists
of {5, 6, 7, 8, 9, 10}.

Lexicographic Breadth First Search – A Survey 5

V

1

2

3
4

5

6

789

10

11

Fig. 2. A graph with its LBFS slices

To implement the generic LBFS algorithm, we use the implementation pre-
sented in [24], namely one that follows the paradigm of “partitioning”. In this
scheme, we start with all vertices in the same cell (i.e., slice) and choose an
arbitrary vertex (for reasons that will come clear later, we will choose the first
vertex in the cell). When a vertex is chosen, i.e., is chosen as the pivot, it is
placed in its own cell and invokes a partitioning of all cells that follow it in the
ordering. Under this partitioning of a cell, vertices that are adjacent to the pivot
form a new cell that precedes the cell containing the vertices not adjacent to the
pivot. After this partitioning is complete, a new pivot is chosen from the cell
immediately following the old pivot and the process of refinement continues. We
refer the reader to Figure 3 for an example of a few steps of partitioning on the
graph in Figure 2.

Variants of the Generic LBFS Algorithm: We now describe two variants
of the generic LBFS algorithm. In subsequent sections we will reference other
variants that have appeared in the literature. In the first case, we break ties
in Step 4 by referring to a previous LBFS ordering σ. This variant has been
independently investigated by Simon [44] and Ma [32].

Procedure LBFS+ (σ)
{Input: Graph G(V, E) and an LBFS σ of G;
Output: An ordering σ+ of the vertices of G.}

Do an LBFS of G. When Step 4 is encountered, let S be the set of vertices with
the lexicographically largest label. Now y is chosen to be the vertex in S that
appears last in σ.

As an example, LBFS+ when given the graph in Figure 2 and that LBFS,
would produce the order: 11 6 9 8 4 2 7 5 10 3 1.

As pointed out by Lanlignel [30], one of the advantages of using the parti-
tioning implementation of generic LBFS described above, is that we immediately
have an implementation of LBFS+. Once σ has been determined, we merely re-

6 Derek G. Corneil

pivot

pivot

pivot

8 4 2 7 5 10 3 111 6 9

11 6 9 8 7 5 4 2 10 3 1

11 6 10 9 8 7 5 4 3 2 1

11 10 9 8 7 6 5 4 3 2 1

Fig. 3. The first few steps of a partitioning.

verse its ordering of V and run the generic algorithm again. Every time a slice
is encountered, the last vertex from σ is automatically the vertex at the front
of the list. The example in Figure 3 represents the first few steps of the LBFS+
for the sweep presented in Figure 2.

The second variant produces an LBFS of G, the complement of graph G.
Note that in doing so, we do not calculate the complement but rather, as we
shall see, slightly modify the generic implementation of LBFS. Furthermore this
sweep also requires a previous LBFS as input so that a specific vertex is chosen
in Step 4. Note that an overbar placed on an LBFS ordering indicates that the
ordering is an LBFS of G.

Procedure LBFS− (σ)
{Input: Graph G(V, E) and an LBFS σ of G;
Output: An ordering σ− of the vertices of G.}

Do an LBFS of G. When Step 4 is encountered, let S be the set of vertices with
the lexicographically largest label. Now y is chosen to be the vertex in S that
appears first in σ.

An example of this algorithm will appear in Section 4, in the example of
the Cograph recognition algorithm. As noted in [33, 24], an LBFS of G can be
done in O(n + m) time by making a slight modification of the implementation
of the generic LBFS algorithm. In particular, during the partitioning, the cell
containing the vertices adjacent to the pivot is placed after the cell containing

Lexicographic Breadth First Search – A Survey 7

the nonadjacent vertices. To make sure that the correct vertex in S is chosen, we
merely input σ in its natural order. By choosing the first vertex of every slice as
the next pivot, we automatically meet the choice requirement of the algorithm.

3 Structure Results

In this section we present some of the important structure results concerning
LBFS. For most families of graphs where LBFS has been used, there are par-
ticular results that are unique to that family. The first result is the following
characterization of vertex orderings that can be achieved by an LBFS. This char-
acterization is used heavily in the various multi-sweep LBFS algorithms and it
is somewhat surprising to note that, except for Maximum Cardinality Search
(MCS), similar characterizations for other well known graph searches have only
recently been discovered [16].

Theorem 1. [22] An ordering ≺ of the vertices of an arbitrary graph G(V, E)
is an LBFS ordering if and only if for all vertices a, b, c of G such that ac ∈ E
and bc �∈ E, c ≺ b ≺ a implies the existence of a vertex d in G, adjacent to b
but not to a and such that d ≺ c.

The following lemma establishes the existence of special paths in Γ σ
u,v .

Lemma 1. [17] (The Prior Path Lemma) Let σ be an arbitrary LBFS of a graph
G. Let t be the first vertex of the connected component of Γ σ

u,v containing u.
There exists a t, u-path in Γ σ

u,v all of whose vertices, with the possible exception
of u, are missed by v. Moreover, all vertices on this path, other than u, occur
before u in σ. (Such a path is called a prior path).

As an example of this Lemma, consider the graph in Figure 2 and let u = 7, v =
10. Now Γ σ

7,10 = {5, 6, 7, 8, 9, 10} and path 7−6−5 is a prior path for this choice
of u, v.

In the fundamental paper by Rose, Tarjan and Lueker [42], their chordal
graph recognition algorithm was based on the following theorem.

Theorem 2. [42] Let σ be an LBFS of a chordal graph G and let v be an
arbitrary vertex of G. Let W denote the set of vertices w that occur before v in
σ. Then v is simplicial in the subgraph of G induced by W ∪ {v}.
From this theorem, we immediately see that the reverse ordering of an LBFS of
a chordal graph G yields a PEO of G. Berry and Bordat [2] have generalized
this theorem as follows:

Theorem 3. [2] Let σ be an LBFS of a chordal graph G and let v be an arbitrary
vertex of G. Let W denote the set of vertices w that occur before v in σ. Then v
belongs to a moplex in the subgraph of G induced by W ∪ {v}.
Furthermore they showed that the vertices in the moplex containing v are con-
secutive vertices in σ up to and including v.

Interestingly, a very similar result to Theorem 2 holds for an arbitrary LBFS
in an AT-free graph. In particular,

8 Derek G. Corneil

Theorem 4. [18] Let σ be an LBFS of an AT-free graph G and let v be an
arbitrary vertex of G. Let W denote the set of vertices w that occur before v in
σ. Then v is admissible in the subgraph of G induced by W ∪ {v}.
Again, this theorem yields the result that the reverse ordering of an LBFS of an
AT-free graph G yields an AEO of G. Unfortunately, the existence of an AEO
for a graph G does not imply that G is AT-free. More will be said about this
issue later in this section. Given any subset of vertices X in either a chordal or
an AT-free graph, these two theorems show the importance of x, the last vertex
of X , in any LBFS. In particular, such a vertex is guaranteed to be simplicial
(respectively, admissible) in the subset of vertices that have occurred up to and
including x and thus also in X itself. In many multi-sweep LBFS algorithms, we
want to “break ties” by choosing a vertex with a particular property. LBFS+,
the algorithm that starts a slice S with the last S vertex in the previous sweep,
was developed for precisely this reason and, as we shall see in Subsection 4.1,
is currently the most popular restricted version of LBFS in multi-sweep LBFS
algorithms.

To formalize the notion of “last vertex” mentioned above, we define a vertex
x to be an end-vertex of graph G if there is an LBFS of G that ends at x. Is it
possible that end-vertices of a graph can be characterized? For interval graphs,
the answer is affirmative as shown in the following Lemma.

Lemma 2. [17] A vertex in an interval graph is an end-vertex if and only if it
is simplicial and admissible.

This result can be extended to arbitrary graphs in the following way.

Lemma 3. [15] Let G be an arbitrary graph. If x is a simplicial and admissible
vertex of G, then x is an end-vertex.

Unfortunately, it seems unlikely that there is a nice characterization of end-
vertices for arbitrary graphs, as shown by the following complexity result.

Theorem 5. [15] Given a graph G and vertex x, it is NP-complete to determine
whether x is an end-vertex of G.

Furthermore, the problem remains NP-complete for weakly chordal graphs, is
linearly time solvable for interval graphs (using an LBFS followed by an LBFS+)
and remains unresolved for both chordal and AT-free graphs [15].

As we shall see, most LBFS based algorithms involve a number of LBFS
sweeps and thus require some knowledge of the behaviour of parts of the graph
in previous sweeps. Typically such arguments are based on either the behaviour
of paths (where the Prior Path Lemma is fundamental) or the behaviour of slices,
which we now discuss. In particular, we look at the restriction of an LBFS to
a slice from some other LBFS. The strongest result of this type is for chordal
graphs.

Lemma 4. [17](The LBFS Lemma) Let G be a chordal graph and let S be a
slice of an arbitrary LBFS ordering τ of G. Further let σ be another arbitrary
LBFS ordering of G. Then the restriction of σ to S is an LBFS ordering of the
graph induced by the vertices of S.

Lexicographic Breadth First Search – A Survey 9

As stated in [17], “to put this lemma in perspective, it is important to note
that the desired property does not hold for arbitrary subsets of chordal (or even
interval) graphs. For example, consider the interval graph shown in Figure 4. The
numbering of the vertices indicates a legitimate LBFS ordering; however when
vertex 1 is removed, the restriction of this ordering to the remaining subset is
not a legitimate LBFS ordering of the subset. Also, as shown in Figure 5, the
lemma does not hold for AT-free graphs. S = {2, 3, 4} is a slice of the LBFS: 1
2 3 4 5. Now consider an arbitrary LBFS starting at 5. Vertex 3 occurs after 2
and 4, which cannot occur in an LBFS of S.”

It is somewhat surprising and disappointing that the LBFS Lemma does not
generalize to AT-free graphs. Nevertheless, there is something that can be said
in this regard for AT-free graphs. First we note the following obvious Corollary
of Theorem 2 and Lemma 4.

Corollary 1. Let G be a chordal graph with S a slice with respect to LBFS σ.
Then for every LBFS τ of G, x, the last vertex of τS, is an end-vertex of S.

As shown in [15], there is a similar result for AT-free graphs.

Lemma 5. [15] Let G be an AT-free graph with S a slice with respect to LBFS
σ. Then for every LBFS τ of G, x, the last vertex of τS , is either an end-vertex
of S or is adjacent to an end-vertex of S.

Finally, to end this section, we mention a pair of graph families that are charac-
terized by properties of every LBFS. The reader is cautioned that a statement
of the form: “G is an X-graph if and only if every LBFS has property P” can
be quite misleading in the sense that “every” can either be interpreted as “an
arbitrary” (for example, chordal and distance hereditary graphs, as discussed in
the next Section) or “all”, (for example, HHD-free and AT-free graphs) as we
now present.

Lemma 6. [27] G is an HHD-free graph if and only if all LBFSs are semiperfect
elimination orderings.

Lemma 7. [15] G is an AT-free graph if and only if all LBFSs are admissible
elimination orderings.

1
2

3

4

5

Fig. 4. The LBFS Lemma does not hold
for arbitrary subsets of interval graphs.

1

2

3

4

5

Fig. 5. The LBFS Lemma does not hold
for AT-free graphs.

10 Derek G. Corneil

4 Applications of LBFS

In this section, we survey many of the applications of LBFS. The most notable
application, presented in Subsection 4.1, is the recognition of various restricted
graph classes. For many graph classes, the current “best” recognition algorithm
is based on LBFS, usually in the form of a multi-sweep algorithm. In Subsection
4.2, we will show other diverse applications of LBFS including diameter approx-
imation for various graph classes and the determination of a dominating pair in
an AT-free graph.

4.1 Recognition of Various Graph Classes

LBFS was discovered in the development of a simple, linear time chordal graph
recognition algorithm [42]. The algorithm is based on the following fundamental
result:

Theorem 6. [42] A graph is chordal if and only if an arbitrary LBFS yields a
perfect elimination ordering.

Thus the associated chordal graph recognition algorithm is as follows:

The Chordal graph Recognition Algorithm[42]
{Input: Graph G(V, E);
Output: A statement declaring whether or not G is a chordal graph.}

1. Do an arbitrary LBFS σ.
2. If the reverse of σ is a perfect elimination ordering, then conclude that G is
a chordal graph; else, conclude that G is not a chordal graph.

Since determining whether a particular ordering is a perfect elimination or-
dering can be accomplished in linear time, the algorithm has a straightforward
linear time implementation. In a subsequent paper, Tarjan and Yannakakis [43]
extended this algorithm to be certifying by showing how to find, in linear time,
an induced cycle of size greater than three if the reverse of σ is not a perfect
elimination ordering.

Interestingly there is another family of graphs that has the same single LBFS
recognition algorithm. In particular, Dragan and Nicolai [21] proved the following
theorem:

Theorem 7. [21] A graph is distance hereditary if and only if an arbitrary LBFS
yields a 2-simplicial elimination ordering.

As with chordal graph recognition, there is an associated distance hereditary
graph recognition algorithm.

Although this is a very simple algorithm, it does not seem to have a linear
time implementation since it is not clear how one can determine in linear time
whether the reverse of σ is a 2-simplicial elimination ordering. Later in this

Lexicographic Breadth First Search – A Survey 11

subsection, we will discuss a linear time multi-sweep LBFS distance hereditary
graph recognition algorithm.

We now turn our attention to LBFS recognition algorithms that require at
least two LBFS sweeps. In presenting such multi-sweep recognition algorithms,
we will take two “basic” algorithms for the recognition of unit interval graphs
and cographs, respectively, and show how modifications of these algorithms can
lead to recognition algorithms for related graph families. All of these algorithms
are easily implementable in linear time. Typically, they are not the first linear
time algorithm for the particular recognition problem but they are simpler than
the previous non-LBFS algorithms. References to these other algorithms are
contained in the appropriate reference describing the LBFS algorithm.

Unit Interval Graphs: The LBFS based unit interval graph recognition algo-
rithm [11] is the following:

The Unit Interval graph Recognition Algorithm[11]
{Input: Graph G(V, E);
Output: A statement declaring whether or not G is a unit interval graph.}

1. Do an arbitrary LBFS σ.
2. LBFS+ (σ) yielding sweep σ+.
3. LBFS+ (σ+) yielding sweep σ++.
4. If σ++ satisfies a “particular condition”, then conclude that G is a unit
interval graph; else, conclude that G is not a unit interval graph.

In the case of unit interval graphs, the “particular condition” to be tested is
the “Neighbourhood Condition”, namely that G(V, E) is a unit interval graph
if and only if there is an ordering of V such that for all v ∈ V , N [v] (the closed
neighbourhood of v) is consecutive. For this and other characterizations of unit
interval graphs, see [39], [40] and [31].

This algorithm is not “certifying” in the sense that if the input graph fails
the Neighbourhood Condition and the algorithm concludes that the input graph
is not a unit interval graph, then there is no immediate “proof” that the graph
is in fact not a unit interval graph. Note, that the algorithm does certify the
conclusion that the graph is a unit interval graph since it is easy to build a
unit interval model if the Neighbourhood Condition is satisfied. Recently, two
algorithms have been developed to provide a certificate of nonmembership. The
first, by Meister [34], is similar to the above algorithm in that it uses three LBFS
sweeps with the second and third sweeps using “min-LexBFS” which requires a
special implementation rather than LBFS+ which, as pointed out in Subsection
2.2, has an immediate partitioning implementation. The certificate that Meister’s
algorithm produces is either an induced cycle of size greater than 3 (thereby
showing that the graph is not chordal, and thus not interval) or an AT (showing
that the graph is not AT-free, and thus not interval) or a claw (i.e., K1,3). The
second certifying algorithm, by Hell and Huang [25], augments the algorithm
presented above and uses Wegner’s characterization of unit interval graphs [45],

12 Derek G. Corneil

namely that a graph is a unit interval graph if and only if it does not contain an
induced cycle of size greater than 3, a claw, or a “3-sun” or its complement, the
“net” which consists of a triangle each of whose vertices is adjacent to a unique
vertex of degree 1. One of the pretty aspects of the Hell and Huang algorithm
is that it incorporates the certificate steps throughout the algorithm, in the
sense that it does some testing after each of the three LBFS steps, and only
proceeds to the next sweep if the test has been satisfied. Furthermore, they also
show that the algorithm presented above can be augmented to provide a linear
time certifying recognition algorithm for proper interval bigraphs. Again the
certification is distributed throughout the algorithm. Chang, Ho and Ko [9] have
presented a linear time 2-sweep LBFS based algorithm for recognizing bipartite
permutation graphs (equivalent to proper interval bigraphs). Their algorithm
modifies the second LBFS sweep to break ties according to the value of a degree
related function.

One of the early uses of LBFS appeared in the Korte - Möhring interval
graph recognition algorithm [29]. By using LBFS, they were able to streamlne
the first linear time interval graph recognition algorithm by Booth and Lueker
[3]. We now present a second extension of the unit interval graph recognition
algorithm that provides an easily implementable, linear time recognition algo-
rithm for interval graphs. This algorithm is as follows:

The Interval graph Recognition Algorithm[17]
{Input: Graph G(V, E);
Output: A statement declaring whether or not G is an interval graph.}
1. Do an arbitrary LBFS π.
2. LBFS+ (π) yielding sweep σ.
3. LBFS+ (σ) yielding sweep σ+.
4. LBFS+ (σ+) yielding sweep σ++.
5. LBFS* (σ+, σ++) yielding sweep σ∗.
6. If σ∗ satisfies the “Interval Graph Ordering Condition” then conclude that
G is an interval graph; else, conclude that G is not an interval graph.

The “interval Graph Ordering Condition” states that a graph G(V, E) is an
interval graph if and only if there is a linear ordering ≺ on V such that for every
choice of vertices u, v, w, with u ≺ v and v ≺ w, uw ∈ E =⇒ uv ∈ E [26, 36,
38, 37]. LBFS* requires two previous sweeps and breaks ties for a slice S by ex-
amining the last vertices of S in each of these two sweeps. Since LBFS* and the
“Interval Graph Ordering Condition” can easily be implemented in linear time,
the entire algorithm is easily implementable in linear time. (See [17] for further
details.) Recently Choi and Farach-Colton [10] have used this algorithm to de-
velop a new interval graph based algorithm for the sequence assembly problem
that is significantly superior to existing algorithms. It is interesting to note that
Simon ([44]) incorrectly claimed that terminating the algorithm after the third
LBFS+ would suffice to recognize interval graphs. Ma [32], however, showed
that Simon’s algorithm is flawed and that for any constant c, there is an interval

Lexicographic Breadth First Search – A Survey 13

graph, and an initial LBFS ordering such that after c applications of LBFS+,
the linear ordering of vertices is still not apparent! It is known, however, that
using n applications of LBFS+ will work, but of course not in linear time [14].

Cographs: Our second basic algorithm is the one for cographs. The generic
algorithm is as follows:

The Cograph Recognition Algorithm[8]
{Input: Graph G(V, E);
Output: A cotree if G is a cograph, or an induced P4 otherwise.}

1. Do an arbitrary LBFS σ.
2. LBFS−(σ) yielding sweep σ− (of G).
3. LBFS−(σ−) yielding sweep σ− (of G).
4. If σ−, σ− satisfy a “particular condition”, then Construct Cotree; else
Report P4.

In the case of cograph recognition, the “particular condition” is the “Neigh-
bourhood Subset Property”, a property that can easily be checked in linear time,
yielding an easily implementable linear time algorithm. See [7, 8] for further de-
tails. As an example of the algorithm, consider the cograph in Figure 6. The two
LBFS− sweeps satisfy the “Neighbourhood Subset Property” and the algorithm
produces the cotree.

The first extension of this cograph recognition algorithm is to P4-Reducible
graphs, namely those graphs where each vertex belongs to at most one P4. The
algorithm is as follows:

The P4-Reducible graph Recognition Algorithm[7]
{Input: Graph G(V, E);
Output: A P4-R tree, if G is a P4-Reducible graph, or two P4s containing one
vertex otherwise.}

1. Do an arbitrary LBFS σ.
2. LBFS+ (σ) yielding sweep σ+.
3. LBFS−(σ+) yielding sweep σ− (of G).
4. LBFS−(σ−) yielding sweep σ− (of G).
5. If σ−, σ− satisfy a “particular condition”, then Construct P4-R tree;
else Report Multiple P4.

The appropriate “particular condition” for this algorithm is the “P4-Reduc-
ible Neighbourhood Property” described in [7]. This condition is easily tested in
linear time.

P4-Sparse graphs, namely graphs for which no set of five vertices induces more
than one P4, generalize P4-Reducible graphs and have a very similar recognition
algorithm.

14 Derek G. Corneil

y

w

v

u

b

d

c

a

z

x

σ : xywzuvadcb

σ− : xadcbzyuvw

σ− : xzywuvadcb

Fig. 6. The execution of the algorithm on the cograph in Figure 1.

The P4-Sparse graph Recognition Algorithm[7]
{Input: Graph G(V, E);
Output: A P4-S tree, if G is a P4-Sparse graph, or a set of five vertices inducing
two P4s otherwise.}

1. Do an arbitrary LBFS σ.
2. LBFS+ (σ) yielding sweep σ+.
3. LBFS−(σ+) yielding sweep σ− (of G).
4. LBFS−(σ−) yielding sweep σ− (of G).
5. If σ−, σ− satisfy a “particular condition”, then Construct P4-S tree;
else Report 5 set.

The appropriate “particular condition” for this algorithm is the “P4-Sparse
Neighbourhood Property” described in [7]. Again an easily implementable linear
time algorithm is obtained.

Finally we turn to a new LBFS based recognition algorithm for distance
hereditary graphs. Given Theorem 7, it is not surprising that cographs play a
critical role in characterizing distance hereditary graphs. In particular, Bandelt
and Mulder [1] showed that every layer of any BFS of a distance hereditary graph
is a cograph and that there are specific neighbourhood intersection conditions
inside and between layers. Bretscher [7] has shown that these conditions can be
expressed by neighbourhood conditions on LBFS slices in BFS layers to produce
an LBFS characterization of distance hereditary graphs. By using this charac-
terization and the new LBFS cograph recognition algorithm, she has produced
a new simpler linear time LBFS based distance hereditary graph recognition
algorithm [7].

4.2 Other Applications

These applications vary from diameter approximation for various families of
graphs to the determination of a dominating pair in an AT-free graph to common
properties of powers of graphs.

Lexicographic Breadth First Search – A Survey 15

Diameter Approximation: Determining the diameter of a graph is a funda-
mental graph property whose current best algorithm (i.e. O(nm)) is too slow
for very large input graphs. This naive algorithm performs a BFS from each
vertex x, thereby calculating the eccentricity, ecc(x) of x. The diameter is then
determined by finding the maximum eccentricity of any vertex in G. Since any
BFS from a vertex of maximum eccentricity immediately produces the diameter
of the graph, one approach to approximating a graph’s diameter is to search for
a vertex of high eccentricity. The most common way of finding such a vertex
has been to take the end-vertex of a specific search from an arbitrary vertex.
The searches that have been considered are BFS, LBFS, LL and LL+ where LL
chooses an arbitrary vertex in the last BFS layer and LL+ chooses an arbitrary
vertex in the last BFS layer that has minimum degree into the second last BFS
layer. For the restricted graph families considered in [13], none of BFS, LL or
LL+ beat LBFS. In particular, the eccentricity of an LBFS end-vertex is guar-
anteed: to be diam(G) for interval graphs [22] and {AT,claw}– free graphs [4];
to be at least diam(G)− 1 for chordal [22] and AT-free [12] graphs; and to be at
least diam(G)− 2 for graphs that contain no induced cycles of size greater than
4 [13]. Dragan [19] presented similar LBFS results on other restricted families
of graphs. Corneil et al [12] also looked at the end-vertex of a “double-sweep”
LBFS algorithm (see the following Dominating Pair Algorithm) on chordal and
AT-free graphs. They established a forbidden subgraph structure on chordal or
AT-free graphs where diam(G) − 1 is the eccentricity of the end-vertex of the
second sweep. They also showed examples of chordal and AT-free graphs where
for no c, the “c-sweep” LBFS algorithm is guaranteed to find a vertex of max-
imum eccentricity. Furthermore, for any c there is a graph G (albeit with large
induced cycles whose size depends on c) where the eccentricity of the chosen
vertex is at least c away from the diameter of G.

In a related approach, Dragan [20] showed how particular vertex orderings
(including LBFS) can be used to appoximate the All Pairs Shortest Path problem
to within a small additive constant for various restricted families of graphs.

Dominating Pairs in AT-free Graphs: One of the first indications that
LBFS has far-reaching applications beyond families of graphs related to chordal
graphs came in the 2-sweep algorithm for finding a dominating pair in a con-
nected AT-free graph. The algorithm is as follows:

The Dominating Pair Algorithm[18]
{Input: A connected AT-free graph G(V, E);
Output: A pair of vertices x, y that form a dominating pair of G.}

1. Do an arbitrary LBFS σ where x is the end-vertex of σ.
2. Do an LBFS(x) τ where y is the end-vertex of τ .
3. Return x, y.

As noted in [18], this algorithm can be modified to return, in linear time, a
succinct representation of all dominating pairs in any connected AT-free graph of

16 Derek G. Corneil

diameter greater than 3. In particular, if diam(G) > 3, then there are nonempty,
disjoint sets X and Y of vertices of G, such that x, y is a dominating pair if and
only if x ∈ X and y ∈ Y . The algorithm returns the sets X and Y .

Properties of Powers of Graphs: In families of graphs related to chordal
graphs, considerable attention has been given to the problem of determining the
graph class membership of various powers of a given graph. For example, it is
known that every odd power of a chordal graph is chordal. This result is an
immediate corollary of the following theorem:

Theorem 8. [5] The reversal of every LBFS ordering of a chordal graph G is
a common perfect elimination ordering of all odd powers of G.

A similar result is captured in the following theorem:

Theorem 9. [21] The reversal of every LBFS ordering of a distance hereditary
graph G is a perfect elimination ordering of every even power G2k, k ≥ 1.

Note that the result in Theorem 8 does not imply that the reversal of an LBFS
ordering of G is also a reversal of an LBFS ordering of odd powers of G [16]. In
fact, there are chordal graphs where no LBFS ordering is also an LBFS ordering
of any powers of the graph. On the other hand, every LBFS ordering of a chordal
bipartite graph is also an LBFS ordering of its square, a property that does not
hold for bipartite graphs [16].

In a similar vein, Chang, Ho and Ko [9] with respect to LBFS orderings and
strong 2-CCPOs, considered τ , the ordering produced by the second LBFS in
the Dominating Pair Algorithm and proved:

Theorem 10. [9] Given an AT-free graph G, τ is a strong 2-CCPO of G.

5 Concluding Remarks

One of the surprising observations in the development of LBFS based algorithms
is that LBFS works so well on both chordal and AT-free related families of
graphs, yet these two families have very little structural similarity (other than
the absence of large induced cycles). Is there some generalization of these two
families that explains the success of LBFS?

Although there is now a very impressive list of graph families whose recog-
nition is best achieved using an LBFS approach, there have been a number of
graph families, especially strongly chordal, chordal bipartite and permutation
graphs, that so far have resisted this approach. Currently no linear time recog-
nition algorithm is known for the family of strongly chordal graphs. Chordal
bipartite graphs are a closely related family (see [6]) that has also resisted lin-
ear time recognition. Although there are linear time recognition algorithms for
permutation graphs, it is possible that there is a simpler LBFS based one.

Given the number and power of multi-sweep LBFS algorithms, it is somewhat
surprising that other graph searches have seldom been used in a multi-sweep
fashion. One reason for this may be that, until recently [16], most of them do

Lexicographic Breadth First Search – A Survey 17

not have a vertex ordering characterization similar to that for LBFS presented
in Theorem 1. This also raises the possibility of multi-sweep hybrid algorithms
where BFS and DFS variants are combined. Finally, given the power of the
“lexicographic” extension of BFS, it is natural to wonder whether DFS would
benefit from a similar extension; a candidate algorithm for Lexicographic Depth
First Search is presented in [16].

Acknowledgements

Financial assistance from the Natural Sciences and Engineering Research Council
of Canada was gratefully received. Many thanks to Anna Bretscher, Feodor
Dragan, Ekki Koehler and Lorna Stewart for their improvements of an earlier
draft of this paper.

References

1. H-K. Bandelt and H.M. Mulder: Distance-hereditary graphs, J. Combin. Theory
B 41 (1986) 182–208.

2. A. Berry and J-P. Bordat: Separability generalizes Dirac’s theorem, Disc. Appl.
Math. 84 (1998) 43–53.

3. K.S. Booth and G.S. Lueker: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci. 13
(1976) 335–379.

4. A. Brandstädt and F.F. Dragan: On linear and circular structure of a (claw,net)-
free graph, Disc. Appl. Math. 129 (2003) 285–303.

5. A. Brandstädt, F.F. Dragan and F. Nicolai: LexBFS-orderings and powers of
chordal graphs, Disc. Math. 171 (1997) 27–42.

6. A. Brandstädt, V.B. Le and J.P. Spinrad: Graph Classes: A Survey, SIAM Mono-
graphs on Disc. Math. and Applic., SIAM 1999.

7. A. Bretscher: LexBFS based recognition algorithms for cographs and related fami-
lies, Ph.D. thesis in preparation, Dept. of Computer Science, University of Toronto,
Toronto, Canada.

8. A. Bretscher, D.G. Corneil, M. Habib and C. Paul: A simple linear time LexBFS
cograph recognition algorithm (extended abstract), LNCS 2880 (2003) 119–130.

9. J-M. Chang, C-W. Ho and M-T. Ko: LexBFS-ordering in Asteroidal Triple-free
graphs, LNCS 1741 (1999) 163–172.

10. V. Choi and M. Farach-Colton: Barnacle: an assembly algorithm for clone-based
sequences of whole genomes, Gene 320 (2003) 165–176.

11. D.G. Corneil, A simple 3-sweep LBFS algorithm for the recognition of unit interval
graphs: Disc. Appl. Math. 138 (2004) 371–379.

12. D.G. Corneil, F.F. Dragan, M. Habib and C. Paul: Diameter determination on
restricted graph families, Disc. Appl. Math. 113 (2001) 143–166.

13. D.G. Corneil, F.F. Dragan and E. Koehler: On the power of BFS to determine a
graph’s diameter, Networks 42 (2003) 209–222.

14. D.G. Corneil and E. Koehler: unpublished manuscript.
15. D.G. Corneil, E. Koehler and J-M. Lanlignel: On LBFS end-vertices, in prepara-

tion.

18 Derek G. Corneil

16. D.G. Corneil and R. Krueger: A unified view of graph searching, in preparation.
17. D.G. Corneil, S. Olariu, and L. Stewart: The LBFS structure and recognition

of interval graphs, under revision; extended abstract appeared as The ultimate
interval graph recognition algorithm? (extended abstract) in Proc. SODA 98, Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms (1998) 175–180.

18. D.G. Corneil, S. Olariu, and L. Stewart: Linear time algorithms for dominating
pairs in asteroidal triple-free graphs, SIAM J. Comput. 28 (1999) 1284–1297.

19. F.F. Dragan: Almost diameter of a house-hole-free graph in linear time via LexBFS,
Disc. Appl. Math. 95 (1999) 223–239.

20. F.F. Dragan: Estimating all pairs shortest paths in restricted graph families: a
unified approach (extended abstract), LNCS 2204 (2001) 103–116.

21. F.F. Dragan and F. Nicolai: Lex-BFS-orderings of distance-hereditary graphs,
Schriftenreihe des Fachbereichs Mathematik der Universität Duisburg, Duisburg,
Germany, SM-DU-303 (1995).

22. F.F. Dragan, F. Nicolai, and A. Brandstädt: LexBFS-orderings and powers of
graphs, LNCS 1197 (1997) 166–180.

23. D.R. Fulkerson and O.A. Gross: Incidence matrices and interval graphs, Pacific J.
Math. 15 (1965) 835–855.

24. M. Habib, R. McConnell, C. Paul and L. Viennot: Lex-bfs and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing, Theoret. Comput. Sci. 234 (2000) 59–84.

25. P. Hell and J. Huang: Certifying LexBFS recognition algorithms for proper interval
graphs and proper interval bigraphs, to appear SIAM J. Disc. Math. (2004).

26. M.S. Jacobson, F.R. McMorris, and H.M. Mulder: Tolerance intersection graphs,
in 1988 International Kalamazoo Graph Theory Conference, Y. Alavi et al, eds.,
Wiley 1991 705–724.

27. B. Jamison, S. Olariu: On the semi-perfect elimination, Advances in Appl. Math.
9 (1988) 364–376.

28. D. Kratsch and L. Stewart: Domination on cocomparability graphs, SIAM J. Disc.
Math. 6 (1993) 400–417.

29. N. Korte and R.H. Möhring: An incremental linear-time algorithm for recognizing
interval graphs, SIAM J. Comput. 18 (1989) 68–81.

30. J-M. Lanlignel: Private communications, 1999.
31. P.J. Looges and S. Olariu: Optimal greedy algorithms for indifference graphs, Com-

puters Math. Applic. 25 (1993) 15–25.
32. T. Ma: unpublished manuscript.
33. R.M. McConnell and J. Spinrad: Linear-time modular decomposition and efficient

transitive orientation of comparability graphs, Proc. SODA 94, Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms (1994) 536–545.

34. D. Meister: Recognizing and computing minimal triangulations efficiently, Techni-
cal Report 302, Fakultät für Mathematik und Informatik, Universität Würzburg,
2002.

35. F. Nicolai: A hypertree characterization of distance-hereditary graphs, manuscript,
Gerhard-Mercator-Universität Duisburg (1996).

36. S. Olariu: An optimal greedy heuristic to color interval graphs, Inform. Process.
Lett. 37 (1991) 65–80.

37. G. Ramalingam and C. Pandu Rangan: A uniform approach to domination prob-
lems on interval graphs, Inform. Process. Lett., 27 (1988) 271–274.

38. A. Raychaudhuri: On powers of interval and unit interval graphs, Congr. Numer.
59 (1987) 235–242.

Lexicographic Breadth First Search – A Survey 19

39. F.S. Roberts: Indifference graphs, in: F. Harary, ed., Proof Techniques in Graph
Theory, Academic Press, New York, 1969 139–146.

40. F.S. Roberts: On the compatibility between a graph and a simple order, J. Combin.
Theory Ser. B 11 (1971) 28–38.

41. R.E. Tarjan: Depth first search and linear graph algorithms, SIAM J. Comput. 1
(1972) 146–160.

42. D.J. Rose, R.E. Tarjan, and G.S. Lueker: Algorithmic aspects of vertex elimination
on graphs, SIAM J. Comput. 5 (1976) 266–283.

43. R.E. Tarjan and M. Yannakakis: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,
SIAM J. Comput. 13 (1984) 566–579.

44. K. Simon: A new simple linear algorithm to recognize interval graphs, LNCS 553
(1992) 289–308.

45. G. Wegner: Eigenschaften der Nerven homologisch-einfacher Familien in Rn, Ph.D.
thesis, Universität Göttigen, Germany, 1967.

	1 Introduction
	2 Background
	2.1 Definitions and Notation
	2.2 LBFS

	3 Structure Results
	4 Applications of LBFS
	4.1 Recognition of Various Graph Classes
	4.2 Other Applications

	5 Concluding Remarks
	References

