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Abstract: One of the most-extensively studied problems in three-dimensional Computer Vision is
“Perspective-n-Point” (PnP), which concerns estimating the pose of a calibrated camera, given a
set of 3D points in the world and their corresponding 2D projections in an image captured by the
camera. One solution method that ranks as very accurate and robust proceeds by reducing PnP to
the minimization of a fourth-degree polynomial over the three-dimensional sphere S3. Despite a
great deal of effort, there is no known fast method to obtain this goal. A very common approach is
solving a convex relaxation of the problem, using “Sum Of Squares” (SOS) techniques. We offer two
contributions in this paper: a faster (by a factor of roughly 10) solution with respect to the state-of-
the-art, which relies on the polynomial’s homogeneity; and a fast, guaranteed, easily parallelizable
approximation, which makes use of a famous result of Hilbert.

Keywords: the PnP problem; polynomial optimization

1. Introduction

The PnP problem is a classic computer vision problem that involves estimating the
pose of a calibrated camera in 3D space, given a set of correspondences between 3D points
in the world and their 2D projections in the camera image. The goal is to determine the
camera’s position and orientation (i.e., its pose) relative to the 3D points in the world.
The PnP problem has many important applications in robotics, augmented reality, and
computer vision. There are several algorithms that have been developed to solve the
PnP problem, including the classic Direct Linear Transformation (DLT) [1] algorithm and
more recent algorithms such as the Efficient Perspective-n-Point (EPnP) [2] algorithm and
the Universal Perspective-n-Point (UPnP) [3] algorithm. These algorithms are based on
different optimization techniques, and they have been shown to provide better accuracy
and robustness than the classic DLT algorithm. Other work includes [2,4–8].

We next present the notations used hereafter and outline the approach we followed,
which yielded a polynomial optimization problem. Thus, we continue a long line of
research, starting with [4], with some of the more recent work including [5,6,9,10]. As we
shall elaborate in the following sections, our contribution is twofold: we offer a method
to solve the optimization problem, which is much faster than previous work, as well as a
guaranteed approximation, which is also easily parallelizable.

Given 2D projections of 3D points whose real-world coordinates {(xi, yi, zi)}n
i=1 are

known, one seeks to determine the camera position and angle, i.e., a translation vector T
and a rotation matrix R, relative to the world coordinate frame, which provide an optimal
fit between the 3D points and their projections on the camera image plane.

Denoting by ui the unit vectors in the direction of the projections of pi, we obtain the
following very-well-known expression to minimize [4]:

∑
i
‖Qi(Rpi + T)‖2, Qi , I − uiut

i (1)
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Geometrically (see Figure 1, borrowed from [11]), rotating the point set {pi} by the
optimal R and translating by the optimal T maximize the sum of squared norms of their
respective projections on the lines spanned by {ui} (i.e., the points are optimally aligned
with the respective “lines of sight”).

Figure 1. Geometric interpretation of the PnP problem.

To minimize Equation (1), one first differentiates by T and equates to 0; this yields T
as a function of R. Substituting back in Equation (1) yields:

Minimize RtPR, P = ∑
i
(Ct

i − At)Qi(Ci − A), A ,

(
∑

i
Qi

)−1(
∑

i
QiCi

)
(2)

where R is the “flattened” (9× 1) rotation matrix, and

Ci =

xi yi zi 0 0 0 0 0 0
0 0 0 xi yi zi 0 0 0
0 0 0 0 0 0 xi yi zi

.

Therefore, we are now faced with the problem of minimizing a quadratic polynomial
in the nine elements of a rotation matrix, which are subject to six quadratic constraints
(the rows must form an orthonormal system). The common approach to this problem is to
parameterize the set of rotation matrices by unit quaternions, as follows:

R =


q2

1 + q2
2 − q2

3 − q2
4 2q2q3 + 2q1q4 2q2q4 − 2q1q3

2q2q3 − 2q1q4 q2
1 + q2

3 − q2
2 − q2

4 2q3q4 + 2q1q2

2q1q3 + 2q2q4 2q3q4 − 2q1q2 q2
1 + q2

4 − q2
2 − q2

3


which transforms the problem into one of minimizing a quartic over the three-dimensional
unit sphere S3 = {(q1, q2, q3, q4) | q2

1 + q2
2 + q2

3 + q2
4 = 1}. This solution is global and

does not rely on iterative schemes. In an extensive set of experiments [5], it was found
to be more accurate than other methods. The accuracy of this approach is also noted
in many other publications, including the recent [9,10]. Since the running time of the
algorithm in [5] is faster than the ones provided in other papers, which approach PnP as
the polynomial minimization problem described herewith (more on this in Section 5.1), we
directly compared our running times with those given in [5], but the improvement was
generic, as will be elaborated in Section 3.

We shall refer to the polynomial that should be minimized as p4 and, to reduce
equation clutter, will denote its variables as x, y, z, w, and not q1, q2, q3, q4.
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Due to the great importance of PnP in real-life applications, the minimization problem
has been addressed in numerous papers, starting with [4]; for a recent survey, see [5]. There
does not exist, however, a fast solution that is guaranteed to work in all problem instances;
solving with Lagrange multipliers leads to a set of equations for which no closed-form
solution exists. Therefore, it is customary to apply a convex relaxation approach, which we
describe in Section 2. In Section 3, we describe a faster solution to the relaxation approach,
which also requires less memory. In Section 4, we present a different type of solution, which
achieves a guaranteed approximation to the non-relaxed problem; experimental results
are presented in Section 5; conclusions are offered in Section 6; some technical details are
provided in Appendix A.

2. The Lasserre Hierarchy

Our point of departure from previous work is the approach for minimizing
p4(x, y, z, w) on S3. We begin by describing the existing approach; see, for example, [5].

The Lasserre hierarchy [12–14] is a powerful tool for solving polynomial optimization
problems and has found many applications in a variety of fields, including control theory,
robotics, and machine learning. One advantage of the Lasserre hierarchy is that it can
be implemented using off-the-shelf semidefinite programming solvers, which makes it
accessible to a wide range of users. The main drawback of the Lasserre hierarchy is that the
computational complexity of the hierarchy grows rapidly with the degree of the polyno-
mials involved, which limits its applicability to problems with a low to moderate degree.
Here, we only describe its application to the problem at hand, minimizing p4(x, y, z, w)
over the three-dimensional unit sphere S3 = {(x, y, z, w) | x2 + y2 + z2 + w2 = 1}.

Definition 1 ([15]). (2.4): Given a fourth-degree (quartic) polynomial q(x, y, z, w) and an even
integer k ≥ 2, define the corresponding k-th degree problem by

max
γ

[q(x, y, z, w)− γ] = φ(x, y, z, w)(1− x2 − y2 − z2 − w2) + s(x, y, z, w) (3)

where φ(x, y, z, w) is an arbitrary polynomial of degree k − 2 and s(x, y, z, w) a polynomial of
degree k, which can be expressed as the Sum Of Squares of polynomials (SOS) of degree k/2.

The advantage of this so-called “SOS relaxation” is that solving for the maximal γ can
be reduced to a Semidefinite Programming (SDP) problem, for which there exist efficient
numerical algorithms.

Note that, if the polynomial equality:

q(x, y, z, w)− γ = φ(x, y, z, w)(1− x2 − y2 − z2 − w2) + s(x, y, z, w)

holds, then, since 1− x2− y2− z2−w2 = 0 on S3 and obviously s(x, y, z, w) ≥ 0 everywhere,
clearly, q(x, y, z, w) ≥ γ on S3; hence, γ is a lower bound on the sought minimum. Alas,
there is no useful upper bound on the value of k for which the resulting γ is equal to the
minimum. This problem is exacerbated by the fact that the complexity of the SDP problem
rapidly increases with k. To see why, observe the following result (for the proof, see [16]).

A polynomial s(x, y, z, w) of even degree k in (x, y, z, w) can be expressed as a sum of
squares iff it can be written as vBvt, where v is the vector of monomials in (x, y, z, w) of a
total degree not exceeding k/2 and B a semidefinite positive matrix. For example, if k = 4,
we must have that:

s(x, y, z, w) = vBvt

where B is a 15× 15 semidefinite positive matrix, and

v = (x2, xy, xz, xw, y2, yz, yw, z2, zw, w2, x, y, z, w, 1)

However, while there are 15 monomials of a total degree no more than 2, for the next
case (k = 6), we must consider all monomials of a degree no more than 3, of which there
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are 35, which means that the corresponding B will be of size 35× 35. Generally, there are
(4+k/2

4 ) such monomials.
In order to obtain reasonable running times, a solution that has been widely adopted

by the computer vision community [4,5] is to solve the SOS relaxation for the case of
k = 4. This immediately raises the following question: Are there PnP instances in which
the solution of the fourth-degree problem is different from the correct one (i.e., the global
minimum of p4)? To the best of our knowledge, this question was first answered (in the
affirmative) in two recent papers [11,17]. These cases appear to be very rare, as described
in [17]. An exact answer to the question of just how rare they are is unknown, as it touches
on the very difficult and yet-unsolved problem of the relative measure of SOS polynomials
among all positive polynomials, for which only asymptotic results are known [18].

In this paper, we offer two solutions to optimizing p4(x, y, z, w):

• Algorithm 1: This solves the four-degree problem, but in a much faster way
than [2–5,9,10], by relying on the fact that p4(x, y, z, w) is homogeneous (i.e., con-
tains only terms of total degree four). While it is not guaranteed to recover the global
minimum, neither is the commonly accepted solution described above. In numerous
tests run on real PnP data, both solutions gave identical results, with our proposed
method being faster by an order of magnitude.

• Algorithm 2: In order to obtain a guaranteed approximation to the global minimum, we
optimized p4 on “slices” of S3, each of which is a linear image of the two-dimensional
unit sphere S2. Then, we applied a famous theorem of Hilbert, which states that every
positive homogeneous fourth-degree polynomial in three variables can be represented as
a sum of squares. We offer an analysis, backed by experiments, to determine how many
slices are required to obtain a good approximation of the global minimum over S3.

We now proceed to a detailed study of the relaxed problem and offer our improvement.

3. Algorithm 1: Approach and Reduction of Complexity

We began by studying the complexity of the widely used fourth-degree relaxation,
sketched in Section 2. Recall the problem:

max
γ

[p4(x, y, z, w)− γ] = φ(x, y, z, w)(1− x2 − y2 − z2 − w2) + s(x, y, z, w)

where
s(x, y, z, w) = vBvt,

B is a 15× 15 semidefinite positive matrix:

v = (x2, xy, xz, xw, y2, yz, yw, z2, zw, w2, x, y, z, w, 1),

and φ(x, y, z, w) is an arbitrary second-degree polynomial in x, y, z, w.
This leads to a Semidefinite Programming (SDP) problem, in which γ must be maximized,

under the following constraints:

1. B is a semidefinite positive matrix.
2. There are 70 equalities that must be satisfied, which correspond to the 70 coefficients

of p4(x, y, z, w).
3. These 70 equalities also depend on the 15 coefficients of the quadratic polynomial

φ(x, y, z, w).

In the SDP formulation, this problem is posed as follows:

Minimize C · X subject to X � 0 and X · Ai = bi

where, for two matrices of the same dimensions A, B, A · B is defined as ∑i,j Ai,jBi,j (also
equal to the trace (AB)) and for a square and symmetric matrix P, P � 0 stands for P being
semidefinite positive.
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This problem is typically solved by formulating the following dual-problem, which
also allows recovering the point at which the minimum is obtained:

Maximize ∑
i

biyi subject to C−∑
i

yi Ai � 0

The SDP problem can be solved using available packages such as SDPA [19] or by
direct optimization [5].

3.1. Improving Algorithm 1

The size of the SDP problem is, naturally, a crucial factor in the complexity of its
solution. In the above problem, the matrix X is of size 15× 15, and there are 70 equality
constraints, corresponding to the 70 coefficients of p4(x, y, z, w). In addition, there are 15
“free” (i.e., without constraints) coefficients of φ(x, y, z, w), which must be recovered.

Proceeding as in [19], this entails an optimization procedure based on the famous
iterative barrier method, with a Hessian of size 70× 70 and, with each iteration step, solving
linear systems of size 85× 85.

We propose a substantially simpler solution, which is an order of magnitude faster
than previous work, while producing identical results in numerous tests on real PnP data.
Specifically, in our solution, the matrix X is smaller (10× 10 vs. 15× 15), and there are
fewer coefficients to recover (34 vs. 85). Since a major part of the solution is computing the
inverse of the Hessian matrix (which is O(n3) for a matrix of size n× n) and our Hessian is
quite smaller, the proposed solution is about 10-times faster than in previous work (it takes
about 1 ms, on a relatively weak i7-6500u processor to find the minimum).

Details of Our Proposed Improvement

Our proposed solution uses the fact that the polynomial p4(x, y, z, w) is homogeneous,
meaning it contains only monomials with total degree four, and all the other coefficients
are equal to 0.

Suppose that the minimum of p4(x, y, z, w) on S3 is γ. Since on S3, it holds that
x2 + y2 + z2 + w2 = 1, then on S3, the following trivially holds:

q4(x, y, z, w) , p4(x, y, z, w)− γ(x2 + y2 + z2 + w2)2 ≥ 0

However, q4(x, y, z, w) is also homogeneous, as it clearly contains only monomials of
total degree four; hence we have, for every real number α:

q4(αx, αy, αz, αw) = α4q4(x, y, z, w)

but for every (x, y, z, w) ∈ R4, (x,y,z,w)
‖(x,y,z,w)‖ ∈ S3, and

q4(x, y, z, w) = ‖(x, y, z, w)‖4 q4

(
(x, y, z, w)

‖(x, y, z, w)‖

)
;

therefore, q4(x, y, z, w) ≥ 0 on S3 iff q4(x, y, z, w) ≥ 0 on R4.
Next, we followed the standard SOS relaxation [12]: assume that if a fourth-degree

polynomial qx(x, y, z, w) is non-negative on R4, it can be written as

q4(x, y, z, w) = (x2, xy, . . . , w2)B(x2, xy, . . . , w2)t (4)

for some 10× 10 matrix B such that B � 0. Note that we used the fact that the polynomial is
homogeneous; hence, the vector of monomials contains only 10 entries, and not 15.

Therefore, we can replace the previous optimization problem by

max γ such that p4(x, y, z, w)− γ(x2 + y2 + z2 + w2)2 = (x2, xy, . . . , w2)B(x2, xy, . . . , w2)t (5)
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The size of the problem can be further reduced as follows. By equating the coefficient
of x4 on both sides of Equation (5) and denoting the coefficient of p4(x, y, z, w) by a4000, we
can see that a4000 − γ = B1,1. Since we wish to maximize γ, we can minimize B1,1 (because
a4000 is fixed). Therefore, now, the problem becomes

min B1,1 such that p4(x, y, z, w)− (a4000 − B1,1)(x2 + y2 + z2 + w2)2 =

(x2, xy, . . . , w2)B(x2, xy, . . . , w2)t

This problem has no inequality constraints and can be described as the problem of
minimizing trace(CB), where C is the 10× 10 matrix with C1,1 = 1 and all other elements
equal to 0, under 34 equality constraints on B, corresponding to the 34 coefficients (we do
not need one for B1,1). In addition to working with smaller matrices, we do not require any
auxiliary variables as the 15 coefficients of φ(x, y, z, w) in previous work, e.g., [5], and the
constraint matrices corresponding to the 34 coefficients are very sparse (see Appendix A),
which further reduces the running time [20].

Next, we considered the dual-problem, with the well-known method of replacing

min trace(CB) such that trace(AiB) = bi

with

max b1y1 + . . . + bkyk such that C− b1 A1 − . . .− bk Ak is a semidefinite positive matrix,

yielding the following problem:

Maximize y34a3100 + y33a3010 + y11a0211 + y12(a0220 − 2a4000) + y13a0301 + y14a0310

+y15(a0400 − a4000) + y16a1003 + y17a1012 + y18a1021 + y19a1030 + y32a3001 +

y31(a2200 − 2a4000) + y30a2110 + y29a2101 + y20a1102 + y28(a2020 − 2a4000) + y21a1111 +

y22a1120 + y23a1201 + y24a1210 + y25a1300 + y26(a2002 − 2a4000) + y27a2011 +

y10(a0202 − 2a4000) + y9a0130 + y8a0121 + y7a0112 + y6a0103 + y5(a0040 − a4000) +

y4a0031 + y1(a0004 − a4000) + y2a0013 + y3(a0022 − 2a4000)

such that:

Y =



Y11 −y34 −y33 −y32 −y31 −y30 −y29 −y28 −y27 −y26
−y34 −y31 −y30 −y29 −y25 −y24 −y23 −y22 −y21 −y20
−y33 −y30 −y28 −y27 −y24 −y22 −y21 −y19 −y18 −y17
−y32 −y29 −y27 −y26 −y23 −y21 −y20 −y18 −y17 −y16
−y31 −y25 −y24 −y23 −y15 −y14 −y13 −y12 −y11 −y10
−y30 −y24 −y22 −y21 −y14 −y12 −y11 −y9 −y8 −y7
−y29 −y23 −y21 −y20 −y13 −y11 −y10 −y8 −y7 −y6
−y28 −y22 −y19 −y18 −y12 −y9 −y8 −y5 −y4 −y3
−y27 −y21 −y18 −y17 −y11 −y8 −y7 −y4 −y3 −y2
−y26 −y20 −y17 −y16 −y10 −y7 −y6 −y3 −y2 −y1


where Y11 = 1 + 2y26 + y28 + y1 + 2y31 + 2y3 + y5 + 2y10 + 2y12 + y15 is a semidefinite
positive matrix.

3.2. Finding a Good Starting Point

It is well known that finding a good initial point greatly affects the running time of
SDP algorithms. These algorithms seek a solution in which a matrix B must be semidefinite
positive. Typically, they follow the “barrier method”, which imposes a penalty on matrices
whose determinant is very small, thus keeping the candidate matrix from crossing the
“barrier” defined by the set of singular matrices [14,19,21]. Ideally, an initial point is at the
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center of the region that contains the viable solutions for B. We next describe how this can
be achieved for our problem.

Recall that, in the proposed solution, the term containing the matrix B equals

(x2, xy, . . . , w2)B(x2, xy, . . . , w2)t.

It is known from the theory of SDP [12,14] that the optimal B consists of the corre-
sponding moments of the solution (x0, y0, z0, w0) (and this is what allows extracting the
solution from B). Since we know that all points (x0, y0, z0, w0) ∈ S3 are equally viable as
solutions, we can compute the center of mass of the viable B-region by

B1,1 =
∫

S3
x4dxdydzdw

B1,2 =
∫

S3
x3ydxdydzdw

...

B10,10 =
∫

S3
w4dxdydzdw

These integrals can be computed as follows. Firstly, note that, from the symmetry and
parity considerations, all of them are equal to 0, except∫

S3
x4dxdydzdw,

∫
S3

x2y2dxdydzdw . . . ,

i.e., all those containing a fourth power of a variable or the product of squares of two

variables. Next, we computed
∫

S3
x4dxdydzdw using the well-known parameterization

of S3:

x = cos(φ1)

y = sin(φ1) cos(φ2)

z = sin(φ1) sin(φ2) cos(φ3)

w = sin(φ1) sin(φ2) sin(φ3)

and the Jacobian, corresponding to the three-dimensional area element, equals sin2(φ1) sin(φ2).
Therefore, after normalizing by the surface area of S3, which equals 2π2, we obtain

1
2π2

∫ π

0

∫ π

0

∫ 2π

0
cos4(φ1) sin2(φ1) sin(φ2)dφ1dφ2dφ3 =

1
8

and similarly, the matrix elements corresponding to x2y2 equal 1
24 . It follows that the center

of mass of the viable region, henceforth denoted by Cm, is equal to:

1
24



3 0 0 0 1 0 0 1 0 1
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 3 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 3 0 1
0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 0 1 0 3


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After offering our improvement for the solution of the relaxed problem, we next
handled the non-relaxed version and offer a fast, easily parallelizable solution with
guaranteed accuracy.

4. Algorithm 2: Solution with “Slices”

In this section, we offer our additional contribution to solving the algebraic optimization
problem. While efficient and widely used, the method we discussed in Sections 2 and 3 does
not solve the original problem of minimizing p4(x, y, z, w) on the unit sphere S3, but a
relaxed version of it; specifically, the relaxation consists of replacing the condition that a
polynomial is everywhere positive (which is notoriously difficult to check; actually, it is
NP-complete [12,14]), by an easy-to-verify (and impose) condition: that the polynomial is
the sum of squares of polynomials—or, equivalently, that it can be written as vBvt, where B
is a semidefinite positive matrix and v the vector of monomials with half the degree of the
given polynomial (clearly an odd degree polynomial cannot be everywhere positive).

Since the entire well-developed and very successful theory of Sum Of Squares (SOS)
optimization relies on this relaxation, a great deal of effort has been put into studying
the following question: How “tight” is the relaxation, i.e., can the difference between the
optimal solution and the relaxed one be bounded? There are still no general answers to
this question. In the context of the PnP problem, recent work showed that, in principle, the
relaxation may fail [17], and in [11], a concrete example was provided for such a failure,
even in the six-degree stage of the Lasserre hierarchy (Definition 1).

We propose a very simple approximation algorithm to optimizing p4(x, y, z, w), with
the following properties:

• p4(x, y, z, w) is optimized on a pre-set number of “slices” of S3, defined by the inter-
section of S3 with sub-spaces defined by w = βiz, i = −n, . . . , n.

• Applying a famous theorem of Hilbert [22] (see the ensuing discussion) to our ap-
proach described in Section 3, it turns out that the absolute minimum on every slice
can be exactly computed using the relaxation we presented in Section 3.

• The optimization for each slice is extremely fast, as the sought positive semidefinite
matrices are of size 6× 6.

• Since the difference between the coefficients of the polynomials of two nearby slices
is very small, the optimization solution for the ith slice can be used to find a good
starting point for optimizing over the (i + 1)th slice.

• Further speedup of the optimization can be achieved by parallelizing the optimization,
by diving it into separate optimizations run in parallel over sets of adjacent slices.

We next describe the method. First, for a given scalar β, denote

Sβ = S3
⋂
{(x, y, z, w) | w = βz}

which we refer to as the β-slice. In Figure 2, the equivalent notion of slices of S2 is depicted.
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Figure 2. “Slices” through the two-dimensional sphere S2.

Next, we address the problem of optimizing p4(x, y, z, w) on Sβ. Clearly,

p4(x, y, z, βz) , pβ(x, y, z)

is a fourth-degree homogeneous polynomial in three variables, and by re-scaling z, it can
be considered as defined on S2 = {(x, y, z) | x2 + y2 + z2 = 1}. As in Algorithm 1, we can
seek its minimum by solving

max γ such that p4(x, y, z)− γ(x2 + y2 + z2)2 = (x2, xy . . . z2)B(x2, xy . . . z2)t

However, due to the following famous theorem of Hilbert, there is a crucial difference
between this problem and that of Algorithm 1.

Theorem 1. Every non-negative homogeneous polynomial of degree four in three variables can be
expressed as a sum of squares or, equivalently, as

(x2, xy, xz, y2, yz, z2)B(x2, xy, xz, y2, yz, z2)t

for some 6× 6 semidefinite positive matrix B.

The theorem was first proven by Hilbert [22]. Easier-to-follow proofs were later discov-
ered, for example Chapter 4 in [16], but they are still quite elaborate. It follows immediately
that the corresponding SDP problem will always return the global minimum over Sβ.

Approximation Quality of the Slices Method

In order to estimate how well the minimum over the slices approximates the minimum
over S3, we first provide a result that quantifies how well the slices approximate every
point on S3.

Lemma 1. It is possible, with n slices, to approximate every point on S3 to within a distance of O
(

1
n

)
.

Proof. We shall use two types of slices: w = βz and z = βw. Hence, we can assume
without loss of generality that |w| ≤ |z|. We used slices with βi = −1,− n−1

n , . . . , 0, 1
n , . . . , 1.

Using rotational symmetry, we can assume that w = βz, for 0 ≤ β ≤ 1
n , and sought the

closest point to (x, y, z, w) on the hyperplane defined by w = 0. This point is readily seen
to equal

(x, y, z)√
x2 + y2 + z2
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and its squared distance from (x, y, z, w) equals(
x− x√

x2 + y2 + z2

)2

+

(
y− y√

x2 + y2 + z2

)2

+

(
z− z√

x2 + y2 + z2

)2

+ β2z2

Since we have, for the β-slice, x2 + y2 + z2 + β2z2 = 1, the previous expression equals(
x− x√

−β2z2 + 1

)2

+

(
y− y√

−β2z2 + 1

)2

+

(
z− z√

−β2z2 + 1

)2

+ β2z2;

its Taylor expansion around β = 0 equals

β2z2 +

(
1
4

x2z4 +
1
4

y2z4 +
1
4

z6
)

β4,

and since 0 ≤ β ≤ 1
n and |z| ≤ 1, the result immediately follows.

Next, we analyzed the distance between the minimum over the slices and the mini-
mum over S3. Recall that the function to be minimized is:

(x2, xy, xz, xw, y2, yz, yw, z2, zw, w2)B



x2

xy
xz
xw
y2

yz
yw
z2

zw
w2


, (6)

for some semidefinite positive matrix B, which depends on the input to the PnP problem
(i.e., points pi and directions ui; see Section 1). Therefore, we need to analyze the difference
between Equation (6) for a point p , (x, y, z, w) ∈ S3 and a point q whose distance from p
is at most 1

n . Proceeding as in matrix perturbation theory [23], we denote q = p + ε, where
ε = (εx, εy, εz, εw) denotes a “small” vector, in the sense that all squares of its components
are very small and can be ignored in the forthcoming analysis.

We start by estimating the difference between P and Q, which denotes the length-10
vectors constructed from p, q, i.e., P = (x2, xy, xz, xw, y2, yz, yw, z2, zw, w2) and similarly
for Q. Since a direct computation shows that:

(x2 + y2 + z2 + w2)2 − ‖P‖2 = x2w2 + y2w2 + z2w2 + x2y2 + x2z2 + y2z2,

it is clear that ‖P‖ ≤ 1. Furthermore, we have:

‖P−Q‖2 = ((x + εx)
2 − x2)2 + ((x + εx)(y + εy)− xy)2 + · · ·+ ((w + εw)

2 − w2)2.

Ignoring terms of order at least two in ε, we obtain:

4(x2ε2
x + . . . + w2ε2

w) + (xεy + yεx)
2 + . . . + (zεw + wεz)

2.

Expanding and using x2 + y2 + z2 +w2 = 1, as well as the Cauchy–Schwarz inequality
allow bounding the last expression by 16ε2; hence, we have ‖P−Q‖ ≤ 4‖ε‖ ≤ 4

n . Lastly,
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denoting Q = P + E and again ignoring the higher-order terms, we obtain (using the
inequality ‖P‖ ≤ 1):

PBPt −QBQt ≈ 2PBE t ≤ 2‖B‖‖E‖ ≤ 8‖B‖
n

(‖B‖ = operator norm of B),

which provides a bound on the error of the approximate minimum.

Next, the results of both our algorithms are presented.

5. Results

Experimental Data

The data we used for comparison with [5], as well as the results for the various
methods tested in [5] can be found at https://tinyurl.com/bdudy3z3, accessed on 11 April
2023. These data are described in detail in [5] and consist of webcam and drone data, as
well as noisy and synthetic data. Altogether, there are 230MB of data, consisting of image
coordinates pi and line of sight direction ui (Equation (1)). The results are for all methods
and consist of the rotation matrix R and translation T between frames (Equation (1)). Our
results were identical to those of the NPnP method introduced in [5], but about ten-times
faster on average (Figure 3).

9.6 9.8 10.0 10.2 10.4 10.6
Running Time (ms)

(a)

0

200

400

600

800

1000

0.950 0.975 1.000 1.025 1.050 1.075
Running Time (ms)

(b)

0

200

400

600

800

1000

1200

Figure 3. Histograms of running times (milliseconds) for the state-of-the-art algorithm in [5] (a) and
the proposed algorithm (b).

5.1. Experimental Results for Algorithm 1

We chose the experiments in the recent paper [5] as a baseline for comparison, for the
following reasons:

1. It contains extensive experiments, comparing many different algorithms, on different
types of data, also with varying levels of noise.

2. To the best of our knowledge, it is the only paper that addresses the solution of PnP
as an SDP problem (first suggested in [4]) with dedicated software, as opposed to
an off-the-shelf SDP package. The considerable effort to tailor the solution to PnP
reduced the running time by a factor of about three relative to standard packages.

3. The comparison of the global optimization approach to PnP (which we also followed
here) proved it to be more accurate than other popular methods, including EPnP [2],
DLS [24], RPnP [25], and the iterative method presented in [26].

4. Additional evidence for the superior performance (in terms of accuracy) of SDP-based
methods is provided in other papers, including the recent [9]; this further motivated
our effort to reduce the running time of SDP.

Using the approach described in Section 3.1 with Cm (Section 3.2) as an initial point for
the SDP iterations, with the SDPA package [19], yielded a reduction in the running time of
about an order of magnitude relative to the state-of-the-art results in [5]. This improvement
can be expected, given the reduction in the number of variables relative to previous work,

https://tinyurl.com/bdudy3z3
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which entails a reduction in the size of matrices that should be inverted (from 85× 85 to
34× 34). Thus, its advantage does not depend on the specific SDP tools applied, nor the
computational platform.

The proposed algorithm was compared to [5] on 10,000 PnP inputs. In all cases, the
results were identical up to four decimal points. The distributions of the running times are
presented in Figure 3.

5.2. Experimental Results for Algorithm 2

In experiments on 10,000 instances of real PnP data, the error was quite small and
decreased rapidly when the number of slices was increased. Table 1 provides the average
and maximal relative error of Algorithm 2 vis-à-vis the global minimum (note that the error
was one-sided, that is the global minimum was always smaller than the one provided by
Algorithm 2).

Table 1. Relative error, Algorithm 2.

Number of Slices Average Error Maximal Error

50 0.0014 0.0022
100 0.00023 0.00033
200 0.000061 0.00012
400 0.000017 0.000028

Running Time of Algorithm 2

For an individual slice, the solution consisted of optimizing a quartic ternary form,
i.e., a homogeneous polynomial of degree four with three variables. Using the approach
described in Section 3 for the similar problem with four variables led to an SDP problem
with a 6× 6 matrix, which can be solved very quickly. Further speedup was obtained by
partitioning the slices into disjoint sets, each consisting of consecutive β values, and solving
for each set separately, in parallel, on a standard multi-core processor. Since the coefficients
for polynomials of consecutive slices are nearly identical, further speedup can be obtained
by using the solution for the previous slice as a starting point for the current one; this is,
however, not trivial as for other optimization problems, as we now elaborate.

Using an Initial Guess for Consecutive Slices

Suppose we have optimized the polynomial pβ1(x, y, z), and wish to continue with the
consecutive slice, that is optimize pβ2(x, y, z), where β2 is very close to β1. Since the coefficients
of both polynomials are very close, ostensibly, we could use the solution for pβ1(x, y, z) as
an initial point for optimizing pβ2(x, y, z); alas, there is a subtle issue at play. Recall that the
sought semidefinite positive matrix B appears in the expression, which we optimized as

(x2, xy, xz, y2, yz, z2)B



x2

xy
xz
y2

yz
z2

; (7)

therefore, it is well known from moment theory [14] that, if (x0, y0, z0) is the point at which
the minimum is attained, the optimal B is of the form:
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

x4
0 x3

0y0 x3
0z0 x2

0y2
0 x2

0y0z0 x2
0z2

0

x3
0y0 x2

0y2
0 x2

0y0z0 x0 y3
0 x0 y2

0z0 x0y0 z2
0

x3
0z0 x2

0y0z0 x2
0z2

0 x0 y2
0z0 x0y0 z2

0 x0 z3
0

x2
0y2

0 x0 y3
0 x0 y2

0z0 y4
0 y3

0z0 y2
0z2

0

x2
0y0z0 x0 y2

0z0 x0y0 z2
0 y3

0z0 y2
0z2

0 y0 z3
0

x2
0z2

0 x0y0 z2
0 x0 z3

0 y2
0z2

0 y0 z3
0 z4

0



.

Evidently, this matrix is highly singular (of rank one), while a good starting point
should be in the interior of the feasible region (semidefinite positive matrices). We tested
two solutions to this problem, which still allow gaining from the proximity of the two slices:

• While solving for the first slice in a set of nearby slices, if n iterations are required (for
the SDPA package we used, typically n = 14), store the n

2 iteration, and use it as a
starting point for the other slices. This initial guess, while closer to the solutions than
a random starting point, is well within the interior.

• As in Section 3, compute the center of the feasible region, Cm, for our problem. Then,
if the solution matrix for the β1 slice is Bβ1 , choose as an initial point for the β2 slice
(β2 ≈ β1) a convex combination of Cm and Bβ1 . Intuitively speaking, we take the
(singular) solution for β1 and slightly “push it away” from the boundary of the feasible
region, thus creating an initial point that is both close to the solution and in the interior
of the feasible region.

Method 2 above produced slightly better results in terms of running times. For 40 slices,
the average running time was 1.35 ms, i.e., slightly higher than Algorithm 1.

6. Conclusions and Future Work

The PnP problem (recovering camera translation and rotation from point matches) is
fundamental in three-dimensional computer vision. A widely used and accurate solution
requires minimizing a quartic polynomial over S3. Alas, this minimization problem is
difficult; therefore, a very common solution is to apply convex relaxation, which reduces
the solution to that of Semidefinite Programming (SDP).

While, typically, the solution of the relaxed problem is identical to that of the original
problem, PnP configurations for which the relaxation fails were provided recently [11,17].

In this paper, we presented two novel algorithms:

• Algorithm 1 solves the relaxed problem, but is faster than the state-of-the-art solutions,
as it optimizes over smaller matrices (10× 10 vs. 15× 15) and contains fewer variables
(34 vs. 85), thus reducing the running time by roughly an order of magnitude.

• Algorithm 2 provides a fast, guaranteed approximation to the original (non-relaxed)
PnP problem, by solving it over a set of “slices” through S3. This solution makes use
of a famous theorem of Hilbert, to prove that the solution for each slice is optimal.
We provided a bound for the difference of the minimum over the slices vis-à-vis the
minimum over S3 and presented methods to speed up the optimization.

Future work will consider problems with more variables, for example simultaneous
recovery of a few rotation matrices [17].
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Appendix A

We provide the constraint matrices for the SDP problem in Section 3. Recall that
the constraints on the sought positive semidefinite 10× 10 matrix B can be expressed as
trace (AiB) = bi. We provide the Ai matrices below, with the index i replaced by ijkl,
which stand for the corresponding powers of the monomials xiyjzkwl , with i + j + k + l = 4.
Only the non-zero entries of the matrices are provided; in total, only 109 entries of all
35 10 × 10 matrices are non-zero, indicating a very high degree of sparseness, which
reduces the running time [20]. Note that, in previous solutions, ranging from [4,5], there
were 70 constraint matrices, each of size 15× 15.

A0004[10, 10] = 1 A0013[9, 10] = 1 A0013[10, 9] = 1 A0022[8, 10] = 1 A0022[9, 9] = 1

A0022[10, 8] = 1 A0031[8, 9] = 1 A0031[9, 8] = 1 A0040[8, 8] = 1 A0103[7, 10] = 1

A0103[10, 7] = 1 A0112[6, 10] = 1 A0112[7, 9] = 1 A0112[9, 7] = 1 A0112[10, 6] = 1

A0121[6, 9] = 1 A0121[7, 8] = 1 A0121[8, 7] = 1 A0121[9, 6] = 1 A0130[6, 8] = 1

A0130[8, 6] = 1 A0202[5, 10] = 1 A0202[7, 7] = 1 A0202[10, 5] = 1 A0211[5, 9] = 1

A0211[6, 7] = 1 A0211[7, 6] = 1 A0211[9, 5] = 1 A0220[5, 8] = 1 A0220[6, 6] = 1

A0220[8, 5] = 1 A0301[5, 7] = 1 A0301[7, 5] = 1 A0310[5, 6] = 1 A0310[6, 5] = 1

A0400[5, 5] = 1 A1003[4, 10] = 1 A1003[10, 4] = 1 A1012[3, 10] = 1 A1012[4, 9] = 1

A1012[9, 4] = 1 A1012[10, 3] = 1 A1021[3, 9] = 1 A1021[4, 8] = 1 A1021[8, 4] = 1

A1021[9, 3] = 1 A1030[3, 8] = 1 A1030[8, 3] = 1 A1102[2, 10] = 1 A1102[4, 7] = 1

A1102[7, 4] = 1 A1102[10, 2] = 1 A1111[2, 9] = 1 A1111[3, 7] = 1 A1111[4, 6] = 1

A1111[6, 4] = 1 A1111[7, 3] = 1 A1111[9, 2] = 1 A1120[2, 8] = 1 A1120[3, 6] = 1

A1120[6, 3] = 1 A1120[8, 2] = 1 A1201[2, 7] = 1 A1201[4, 5] = 1 A1201[5, 4] = 1

A1201[7, 2] = 1 A1210[2, 6] = 1 A1210[3, 5] = 1 A1210[5, 3] = 1 A1210[6, 2] = 1

A1300[2, 5] = 1 A1300[5, 2] = 1 A2002[1, 10] = 1 A2002[4, 4] = 1 A2002[10, 1] = 1

A2011[1, 9] = 1 A2011[3, 4] = 1 A2011[4, 3] = 1 A2011[9, 1] = 1 A2020[1, 8] = 1

A2020[3, 3] = 1 A2020[8, 1] = 1 A2101[1, 7] = 1 A2101[2, 4] = 1 A2101[4, 2] = 1

A2101[7, 1] = 1 A2110[1, 6] = 1 A2110[2, 3] = 1 A2110[3, 2] = 1 A2110[6, 1] = 1

A2200[1, 5] = 1 A2200[2, 2] = 1 A2200[5, 1] = 1 A3001[1, 4] = 1 A3001[4, 1] = 1

A3010[1, 3] = 1 A3010[3, 1] = 1 A3100[1, 2] = 1 A3100[2, 1] = 1 A4000[1, 1] = 1

A0400[1, 1] = −1 A0040[1, 1] = −1 A0004[1, 1] = −1 A2200[1, 1] = −2 A2020[1, 1] = −2

A2002[1, 1] = −2 A0220[1, 1] = −2 A0202[1, 1] = −2 A0022[1, 1] = −2
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