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Abstract: We study the Perspective-n-Point (PNP) problem, which is fundamental in 3D vision,
for the recovery of camera translation and rotation. A common solution applies polynomial sum-
of-squares (SOS) relaxation techniques via semidefinite programming. Our main result is that the
polynomials which should be optimized can be non-negative but not SOS, hence the resulting convex
relaxation is not tight; specifically, we present an example of real-life configurations for which the
convex relaxation in the Lasserre Hierarchy fails, in both the second and third levels. In addition to the
theoretical contribution, the conclusion for practitioners is that this commonly-used approach can fail;
our experiments suggest that using higher levels of the Lasserre Hierarchy reduces the probability of
failure. The methods we use are mostly drawn from the area of polynomial optimization and convex
relaxation; we also use some results from real algebraic geometry, as well as Matlab optimization
packages for PNP.

Keywords: PNP; rotation recovery; convex relaxation; polynomial optimization

1. Introduction

The Perspective-n-Point (PNP) problem is a cornerstone of 3D computer vision [1–5].
We deal with its most fundamental variant: given 2D projections of 3D points whose real-
world coordinates pi = (xi, yi, zi)

n
i=1 are known, one seeks to determine the camera position

and angle, i.e., a translation vector T and rotation matrix R, relative to the world coordinate
frame, which provide an optimal fit between the 3D points and their projections on the
camera image plane. We prove here a negative result in terms of complexity: specifically,
that a commonly-used approach for convex relaxation of the problem fails for an open
subset in the configuration space. A concrete example of such a configuration is provided.
On the positive side, we note that, as the levels of the convex relaxation increase, the
probability of failure decreases.

The PNP Problem: Details

Denoting by {ui} the unit vectors in the direction of the projections of {pi}, we obtain
the very well-known expression to minimize, as a function of T and R:

∑
i
‖Qi(Rpi + T)‖2, Qi , I − uiut

i (1)

Geometrically (see Figure 1), this means rotating and translating the point set {pi}, so
that the sum of squared norms of their respective projections on the lines spanned by the
{ui} is maximized (i.e., the points are optimally aligned with the respective “lines of sight”).
Due to the great importance of this problem in real-life applications, it was addressed in
numerous papers. The solution obtained by minimizing Equation (1) is global and does
not rely on approximations and iterative schemes.
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Figure 1. Illustration of the PNP problem. 

The minimization proceeds by first solving for T by differentiation, and then sub-
stituting back into Equation (1). If the rotation matrix R is “flattened” and viewed as a 
vector of length 9, we obtain the following minimization problem over rotation matrices 
(details are described in [2], see also a general survey on optimization of quadratic func-
tions over rotation groups in [6]): 

Minimize ܴ௧ܴܲ, ܲ = (ܥ௧ − ௧)ܣ ܳ(ܥ − ,(ܣ ܣ ≜ ൭ ܳ ൱ିଵ ൭ ܳܥ ൱ (2)

where: 

ܥ ≜ ൭ݔ ݕ ݖ 0 0 0 0 0 00 0 0 ݔ ݕ ݖ 0 0 00 0 0 0 0 0 ݔ ݕ  ൱ݖ

Note that since ܳଶ = ܳ and ܳ௧ = ܳ, P is positive semidefinite. To minimize this 
quadratic polynomial over the space of rotation matrices, it is customary to represent R’s 
elements as quadratics in the four components of a unit quaternion [7]: 
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Plugging this representation into Equation (2) yields a positive semidefinite quartic 
homogenous polynomial in q1, q2, q3, q4, which should be minimized under the additional 
constraint ݍଵଶ + ଶଶݍ + ଷଶݍ + ସଶݍ = 1. Since this polynomial depends on the input, {pi} and 
{ui}, it will be denoted by P{,௨}(ݍ), where ݍ ≜ ,ଵݍ) ,ଶݍ ,ଷݍ -ସ). We shall say that a polyݍ
nomial is realizable in PNP iff it is equal to P{,௨}(ݍ) for some {pi} and {ui}. We add the 
common requirements that, for every i, the z-coordinate of {pi} is non-negative, and 〈pi,ui〉 
≥ 0; these requirements correspond to the physical scenario of a forward-looking camera, 
i.e the field of view is limited to one side of the image plane. 

The dependence of the 35 coefficients of P{,௨}(ݍ) on {pi} and {ui} is very compli-
cated, due to the operations of matrix inversion and multiplication in Equation (2). While 
for given values of {pi} and {ui} it is straightforward to compute P{,௨}(ݍ), the question of 
characterizing the realizable polynomials is quite subtle, and we are not aware of a gen-
eral solution to it.  

Summarizing, the PNP problem becomes one of minimizing a homogenous quartic 
polynomial over ܵଷ = ݍ} ∈ ℜସ| ||ݍ|| = 1}. However, there is no closed-form solution to 

Figure 1. Illustration of the PNP problem.

The minimization proceeds by first solving for T by differentiation, and then substitut-
ing back into Equation (1). If the rotation matrix R is “flattened” and viewed as a vector
of length 9, we obtain the following minimization problem over rotation matrices (details
are described in [2], see also a general survey on optimization of quadratic functions over
rotation groups in [6]):

Minimize RtPR, P = ∑
i

(
Ct

i − At)Qi(Ci − A), A ,

(
∑

i
Qi

)−1(
∑

i
QiCi

)
(2)

where:

Ci ,

 xi yi zi 0 0 0 0 0 0
0 0 0 xi yi zi 0 0 0
0 0 0 0 0 0 xi yi zi


Note that since Q2

i = Qi and Qt
i = Qi, P is positive semidefinite. To minimize this

quadratic polynomial over the space of rotation matrices, it is customary to represent R’s
elements as quadratics in the four components of a unit quaternion [7]:

R = [q2
1 + q2

2 − q2
3 − q2

4, 2q2q3 + 2q1q4, 2q2q4 − 2q1q3,
2q2q3 − 2q1q4, q2

1 + q2
3 − q2

2 − q2
4, 2q3q4 + 2q1q2,

2q2q4 + 2q1q3, 2q3q4 − 2q1q2, q2
1 + q2

4 − q2
2 − q2

3]
(3)

Plugging this representation into Equation (2) yields a positive semidefinite quartic
homogenous polynomial in q1, q2, q3, q4, which should be minimized under the additional
constraint q2

1 + q2
2 + q2

3 + q2
4 = 1. Since this polynomial depends on the input, {pi} and {ui},

it will be denoted by P{pi ,ui}(q), where q , (q1, q2, q3, q4). We shall say that a polynomial
is realizable in PNP iff it is equal to P{pi ,ui}(q) for some {pi} and {ui}. We add the common
requirements that, for every i, the z-coordinate of {pi} is non-negative, and 〈pi,ui〉 ≥ 0; these
requirements correspond to the physical scenario of a forward-looking camera, i.e the field
of view is limited to one side of the image plane.

The dependence of the 35 coefficients of P{pi ,ui}(q) on {pi} and {ui} is very complicated,
due to the operations of matrix inversion and multiplication in Equation (2). While for
given values of {pi} and {ui} it is straightforward to compute P{pi ,ui}(q), the question of
characterizing the realizable polynomials is quite subtle, and we are not aware of a general
solution to it.

Summarizing, the PNP problem becomes one of minimizing a homogenous quartic
polynomial over S3 =

{
q ∈ <4| ||q|

∣∣= 1
}

. However, there is no closed-form solution to
this problem, as it requires finding the minimal value of a fourth-degree homogeneous
quartic in four variables, which are constrained to lie on S3 (i.e., the sum of their squares
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must be equal to 1). While the global minimum is known to exist, since the target function
is continuous and S3 is a compact set, recovering the minimum is a notoriously difficult
problem [8,9]. In principle it can be solved using Lagrange multipliers, which reduce the
optimization to the solution of a polynomial system, but this solution is lengthy, applies
numerical techniques, and often multiple solutions are present, which need to be pruned
(in addition to removing complex solutions); please see Appendix A for the details.

These difficulties have led practitioners [2,4] to apply a very well-developed and pop-
ular method for polynomial optimization, known as sum of squares (SOS) relaxation [8–10],
which we now briefly describe.

2. Previous Work and Methods

Clearly, the problem
argmin

q∈S3
p(q)

is equivalent to the problem

argmax
γ∈R

suchthatp(q)− γ ≥ 0 forall q ∈ S3

That is, the minimal value p(q) attains on S3 is equal to the maximal value of γ such
that the polynomial p(q) − γ is non-negative on S3. Thus, the task of finding γ can be
expressed as the problem of determining whether a polynomial is non-negative on S3. If
there was a mechanism that allows to quickly determine whether a polynomial has this
property, it could have been used (possibly combined with a binary search on γ) to find the
minimum.

Alas, determining whether a polynomial is non-negative (even on a compact set) is
notoriously difficult [8–10]. Therefore, a great deal of work concentrated on a sub-family
of positive polynomials—which are defined by the property that they can be written as
a sum of squares (SOS) of other polynomials (hence are clearly non-negative). The class of
SOS polynomials has an important advantage: the question of whether a homogeneous
polynomial of degree d in n variables is an SOS can be cast and solved as a semidefinite
programing (SDP) problem, on matrices of size O

(
nd
)

[8,10].
The question whether every non-negative polynomial is SOS was first studied by

Hilbert [11], who was able to prove the existence (but not an explicit construction) of
non-negative, non-SOS polynomials. Much later, some simple and beautiful examples of
such polynomials were found, one of them which we will use in this paper.

Lemma 1 ([12]). Denote b(q1, q2, q3, q4) = q2
1q2

2 + q2
1q2

3 + q2
2q2

3 + q4
4 − 4q1q2q3q4. Then b is

non-negative but is not an SOS.

The set of non-negative, non-SOS quartic polynomials in four variables is denoted
∆4,4, and it is known to be open (in the natural topology in coefficient space). This means
that if a polynomial is in ∆4,4, then small enough perturbations of its coefficient will define
polynomials that are also in ∆4,4.

To apply SOS polynomials to the minimization of polynomials over a sphere (similar
results hold for more general algebraic varieties, but are more complicated and will not be
described here), the following result is often applied:

Theorem 1 ([13]). Assume that a polynomial p(q) is positive on S3. Then there exist polynomials
φ(q) and s(q) such that p(q) =

(
‖q‖2 − 1

)
φ(q) + s(q), where s(q) is an SOS polynomial.

Note that if such polynomials exist, then, since on S3, ‖q‖2 − 1 = 0, it holds that
on S3, p(q) = s(q), hence p(q) is non-negative. This is often referred to as a certificate of
positivity for p(q) on S3. However, the theorem does not guarantee a bound on the degrees
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of the “auxiliary” polynomials φ(q) and s(q). For example, if the degree of p(q) is 4, then
it may well be that the degree of φ(q) is 4 and the degree of s(q) is 6 (i.e., it is the sum of
squares of cubic polynomials). In that case, the terms of degrees 5 and 6 will cancel out in(
‖q‖2 − 1

)
φ(q) and s(q).

Since the degrees of φ(q) and s(q) are not known in advance, optimization is carried
out in the framework of the Lasserre hierarchy [10] for successively approximating the
minimum. In our case, the levels of the hierarchy are defined as follows: setting deg(s) = 2t
(clearly, the degree of an SOS polynomial is even), defines the t-th level. As the levels
increase, the minimum approaches the correct one, alas the computational complexity
rapidly increases with t, since the size of the matrices to optimize over in the corresponding
semidefinite programming problem is of order 4t × 4t. The quest for a fast solution led
researchers to implement the case t = 2 (i.e., the second level), which runs in reasonable
time, and noting that, empirically, it appears to work well [2,4]. Still, the question remains: can
this approach run into cases in which the second level fails to find the minimum (i.e., it is
not tight)? We answer this question in the affirmative. To the best of our knowledge, we
provide the first concrete example of a PNP configuration leading to a polynomial which
fails the second Lasserre level. We then provide an example which also fails the third level.

Other Work on Convex Relaxation for Rotation Recovery

Recently, the question whether convex relaxation for rotation recovery (and other
problems in computer vision) is tight, was addressed. In [14], the following question is
studied: given an initial value at which the relaxation is tight, is there a neighborhood
of this initial value at which tightness holds? (here, we empirically study the opposite
scenario—i.e., how stable under additive noise is the “bad” property of the relaxation not
being tight. In [15], an improved Lagrangian dual relaxation is provided, and it is noted
that empirically, its performance is excellent, i.e the relaxation is tight. The work which
we found to be closest to ours in spirit is [6], in which the question as to when the convex
relaxation is tight is directly addressed, both for recovery of a single and multiple rotations.
The authors note that, empirically (while not theoretically!), the convex relaxation for the
recovery of a single rotation is tight, as opposed to the case of two rotations. Then, a general
study of the tightness of convex relaxations is undertaken, relying in part on deep results
from algebraic geometry, notably a study of minimal varieties [16].

Interestingly, the results in [6,15] suggest that the example we provide here, for the
failure of convex relaxation for single rotation recovery, is rare; alas, it is not singular (i.e,
the set of points-lines configurations in which this failure occurs are of full dimension,
which immediately follows since ∆4,4 is an open set). An interesting question, which we
hope to pursue in the future, is to estimate “how rare” it is, in terms of probability of failure.
This question is related to estimating how many positive polynomials are not SOS [17];
while asymptotic results exist, we are not aware of research on this question for small
numbers of variables and low degrees.

3. Results

We now present the results, which consist both of theoretical analysis and experiments
which support them.

3.1. Main Result: The Inadequacy of the Second Lasserre Level for Solving the PNP Problem

Recall the polynomial b(q1, q2, q3, q4) = q2
1q2

2 + q2
1q2

3 + q2
2q2

3 + q4
4 − 4q1q2q3q4 which is

non-negative and also non-SOS. For any scalar c > 0, denote

bc(q1, q2, q3, q4) = b(q1, q2, q3, q4) + c‖q‖4

Lemma 2. The minimum of bc(q1, q2, q3, q4) on S3 cannot be recovered in the second Lasserre
level.
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Proof. Since there are points on S3 for which b(q1, q2, q3, q4) = 0, the minimum of
bc(q1, q2, q3, q4) on S3 is c. But the following identity, which is required for obtaining
the solution in the second Lasserre level, cannot hold for a quartic SOS s(q):

b(q) + c‖q‖4 − c =
(
‖q‖2 − 1

)
φ(q) + s(q) (4)

To see this, note that when Equation (4) is restricted to S3, it becomes b(q) = s(q) =
∑
i

p2
i (q), where pi(q) are quadratics in q (since s(q) is a quartic SOS). Denote pi(q) =

p2000q2
1 + . . . + p0000 (i is suppressed since the following holds for every pi(q)). Obvi-

ously, if q0 ∈ S3 and b(q0) = 0, then pi(q0) = 0. There are 14 points on S3 at which
b(q0) = 0: (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0), as well as all combinations of the form(

1
2

)
(±1,±1,±1,±1) in which an even number of the coordinates are positive. Substitut-

ing these 14 points in p2000q2
1 + . . . + p0000, equating to 0 and solving, yields that every

pi(q) must be of the form ai

(
‖q‖2 − 1

)
+ ri(q), where ri(q) is a quadratic form (i.e has

no linear and constant terms). Therefore, it must hold that b(q) = ∑
i

a2
i

(
‖q‖2 − 1

)2
+

2
(
‖q‖2 − 1

)
ri(q) + r2

i (q). Restricting to S3 again, b(q) = ∑
i

r2
i (q), but now both sides of

the identity are homogenous quartics. Since they are equal on S3, they must be equal
everywhere, but b(q) is not an SOS, a contradiction. �

Note: The proof depends on the fact that b(q) is not an SOS polynomial. To see
this, observe that if s is a quartic SOS, then the following identity holds: s + c‖q‖4 − c =(
‖q‖2 − 1

)(
c‖q‖2 + c

)
+ s.

In order to prove that an instance of the PNP problem can also fail in the second
Lasserre level, we need:

Lemma 3. There exists a PNP configuration of 3D points,{pi}, and their lines of projection on the
camera image plane, {ui}, such thatP{pi ,ui}(q) = bc(q1, q2, q3, q4) for some c > 0.

Proof. The proof is constructive, and consists of an example of {pi}, {ui}, which yield
bc(q1, q2, q3, q4). To find such {pi}, {ui}, the following paradigm was adopted:

(1) Fix a certain value of c. This yields a polynomial bc(q1, q2, q3, q4) with fixed scalar
coefficients.

(2) Define a distance between two polynomials f , g as the sum of squares of differences
of their coefficients. In our case, f , g are homogenous quartics, hence there are 35
terms in this sum (the number of coefficients).

(3) For any choice of {pi}, {ui}, define the function E({pi, ui}) as the distance between
P{pi ,ui}(q) and bc(q1, q2, q3, q4).

(4) Find {pi}, {ui} which minimize E({pi, ui}).
We note that the optimization problem 4 above is rather difficult, as the relation

between {pi}, {ui} and the coefficients of P{pi ,ui}(q) is very complicated. Even when setting
the vectors {ui} to scalar values, each of the 35 coefficients is a quadratic polynomial in the

3n variables {(xi, yi, zi)}n
i=1, i.e., its size is

(
3n
2

)
. After summing the squares of all these

expressions with the respective coefficients of bc(q1, q2, q3, q4) subtracted, the resulting
expression to be minimized is a quartic in the 3n variables {(xi, yi, zi)}n

i=1, hence its size
is O

(
n4). The most general expression—with non-scalar values for the vectors {ui}—

has the same structure, but with each of the O
(
n4) coefficients being a very complicated

rational function of the components of all the u′is, resulting from the matrix inversion and
multiplication operations in Equation (2).
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Therefore, in order to obtain a feasible minimization problem, we have applied the
following methodology:

• Chosen n = 14.
• Set the {ui} to fixed scalar values, by evenly distributing them over the upper half of

the unit sphere.
• Minimized E({pi, ui}) only over {pi}. Note that even then, no closed-form solution

exists; however, the Optimization routine of the Maple© software package (Waterloo
Maple Inc., 615 Kumpf Dr, Waterloo, ON N2V 1K8, Canada) was able to solve this
problem with very high accuracy, obtaining a minimal value of E({pi, ui}) roughly
equal to 10−18.

• Empirically, it turned out that a solution exists only for values of c larger than a certain
threshold. Since our goal in this short submission is only to demonstrate that real PNP
scenarios can fail the second Lasserre level, we did not attempt to find the smallest
values of c and n; however, these are interesting problems which merit further study.
In order to verify the correctness of the optimization, the resulting values of {pi},
{ui} have been plugged into two packages for solving the PNP problem using SOS
relaxation, and have indeed caused them to fail (see “Experimental Results”).

�

3.2. Some Comments on the Result

• The long running time required to produce the configuration which yields bc(q1, q2, q3, q4)
is not an issue, as our goal was to show that such a configuration exists.

• The configuration is stable, i.e small perturbations in the {pi}, {ui} still yield a polyno-
mial which fails the relaxation. This is due to the fact that the set ∆4,4 is open [18]. That
is, the “problematic” configurations are not restricted to a low-dimensional manifold.

• Note that a rotation of {pi} and {ui} would have yielded a different polynomial,
which would have also failed the relaxation; further, it would have been different
from bc(q1, q2, q3, q4). Thus, the problem the configuration poses cannot be solved by
checking whether the resulting polynomial is equal to bc(q1, q2, q3, q4).

• While, as proved in the following section, the third Lasserre level can solve the PNP
configuration which yield bc(q1, q2, q3, q4), the solution did not converge due to nu-
merical instabilities; a solution was obtained only at the fourth level. The numerical
instability of solving optimization problems involving polynomials which are positive
but not SOS was noticed by other researchers [9]. From the practical point of view,
this indicates that there are PNP configurations at which higher Lasserre levels are
required for the solution, than those indicated by Lemmas 3 and 5.

• One may wonder why the expression c‖q‖4 is added to b(q1, q2, q3, q4). The reason
is that we could not realize b(q1, q2, q3, q4) in PNP, since b(q1, q2, q3, q4) assumes the
value of 0 at 14 points on S3. This means that to realize it in PNP, the matrix P in
Equation (2) would have had to be highly singular.

3.3. PNP and the Third Lasserre Level

It turns out that a PNP configuration which yields bc(q1, q2, q3, q4) can theoretically
be solved in the next Lasserre level—the third one. To prove this, we must produce a
quartic polynomial φ(q) and a sextic SOS polynomial s(q) satisfying b(q) + c‖q‖4 − c =(
‖q‖2 − 1

)
φ(q) + s(q). Noting that:b(q) + c‖q‖4 − c =

(
‖q‖2 − 1

)(
c‖q‖2 + c− b(q)

)
+
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‖q‖2b(q), it remains to prove that ‖q‖2b(q) is an SOS. This can be proved by directly
verifying that:

6‖q‖2b(q) = 6(w3 − xyz)2
+ (−w2x− 3wyz + 2xy2 + 2xz2)

2
+

(−w2y− 3wxz + 2x2y + 2yz2)
2
+ (−w2z− 3wxy + 2x2z + 2y2z)2

+2x2(y2 − z2)
2
+ 2y2(x2 − z2)

2
+ 2z2(x2 − y2)

2
+ 5w2(wx− yz)2+

5w2(wy− xz)2 + 5w2(wz− xy)2

(where in order to reduce equation clutter, we denote q = (x, y, z, w)).
It turns out that for our problem, the properties of being solvable in the third Lasserre

level and of p(q)‖q‖2 being an SOS are equivalent. This is summarized in the following:

Lemma 4. Assume that p(q) is a homogenous quartic which is non-negative on S3 and, in addition,
its minimum on S3 is equal to 0. Assume further that the minimum of p(q) on S3 can be obtained
in the third Lasserre level. Then the polynomial p(q)‖q‖2 must be an SOS.

Proof. Assume that the minimum can be obtained in the third Lasserre level. Then, there is
a quatric φ(q) and a sextic SOS s(q), such that the following holds:

p(q) + c‖q‖4 − c =
(
‖q‖2 − 1

)
φ(q) + s(q) (5)

Next, we write down Equation (5), but while separating φ(q) and s(q) to homoge-
neous forms (in order to reduce equation clutter, q is suppressed wherever possible, as all
polynomials are in q):

p + c‖q‖4 − c =
(
‖q‖2 − 1

)
(φ4 + φ3 + φ2 + φ1 + φ0) +

k

∑
i=1

(Ci + Qi + Li + Ai)
2 (6)

That is, φl contains only terms of total degree l, and Ci, Qi, Li, Ai stand for cubic,
quadratic, linear, and constant terms in the polynomials whose squares compromise s(q).

Since two polynomials are equal iff all their respective forms are equal, Equation (6)
yields the following identities for the even-degree forms:

Degree 0: −c = −φ0 + ∑
i

A2
i

Degree 2: 0 = ‖q‖2φ0 − φ2 + ∑
i

L2
i + 2 ∑

i
AiQi

Degree 4: p + c‖q‖4 = ‖q‖2φ2 − φ4 + ∑
i

Q2
i + 2 ∑

i
LiCi

Degree 6: 0 = ‖q‖2φ4 + ∑
i

C2
i

Extracting φ4, φ2, φ0, substituting in the equation for degree 4 above, and multiplying

by ‖q‖2, yields: ‖q‖2 p(q) = ∑
i

(
Ci + Li‖q‖2

)2
+ ‖q‖2 ∑

i

(
Qi + Ai‖q‖2

)2
, which is a sum of

squares. �

As a consequence of the above, the question of whether the PNP problem can also fail
to have a solution in the third Lasserre level is equivalent to the question whether there
exists a polynomial p(q) such that the following hold:

• p(q) is non-negative on S3, and its minimum on S3 is 0.
• p(q) + c‖q‖4 is realizable in PNP for some c > 0.
• p(q)‖q‖2 is not an SOS polynomial.

Lemma 5. The answer to the above is affirmative.
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Proof. Define p(q) = b
(
q1, q2, q3, q4

5
)
. As for b(q) + c‖q‖4, direct optimization proves that

p(q) + c‖q‖4 is realizable in PNP for c = 2. Also, p(q)‖q‖2 is not an SOS, as can be verified
directly by applying dedicated software. �

More generally:

Lemma 6. b
(
q1, q2, q3, q4

r
)

is not an SOS for r >
√

6 [19–21].

As noted in Section 2, the complexity of solving the SOS problem quickly increases
with the Lasserre level, as its solution requires processing matrices of size O

(
4t). On the

average, running time (on an Intel(R) CoreTM i5-1135G7 CPU @ 2.40 GHz) were 0.07, 0.196,
0.98, 5.275 and 27.02 s, respectively for levels 2, 3, 4, 5 and 6.

3.4. Experimental Results

The experiments in this paper consisted of obtaining PNP configurations which fail
the second and third Lasserre levels, as explained in Lemma 3; such a configuration is
depicted in Figure 2. In this figure, the 14 points which were recovered in the optimization
described in Section 3.1 are plotted in 3D space, with the corresponding lines of sight
for each of them, in the same color. Thus, Figure 2 depicts a setting of the PNP problem
which fails the second stage in the Lasserre hierarchy. In order to verify the result, this
configuration was run on two existing PNP packages. In addition, the effect of adding noise
to the configuration was examined; see Figure 3. This addition of noise was performed
in order to demonstrate that the configurations which fail the second stage are “stable”,
i.e., do not lie on a low-dimensional manifold in the input space; intuitively speaking, if a
configuration fails the second level, so will configurations which are close to it. The noise,
which was uniform in the interval [−ε, ε], was added to each of the coordinates of the points
pi in the configuration. As the power of the noise increased, the probability of finding a
solution in the second level increased, as well as in the third level; since (by definition)
the third level solutions contain all the solutions of the second level, the probability for
obtaining a solution in the third level is always higher. A more elaborate analysis of the
effect of adding noise to the solution is provided in Appendix B.
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original configuration failed the second and third levels of the Lasserre hierarchy. Adding uniform
noise in [−ε, ε] decreases the percentage of failures, but only when the noise reaches 0.04 (which is
about 4% of the data’s average size) does the commonly used solution (level 2) succeed with high
probability. Similar results were obtained when using the software package in [23].

4. Conclusions

We proved, both theoretically and experimentally, that there exist non-degenerate
configurations which fail a commonly used convex relaxation to the PNP problem. The
probability of failure decreases with the increase of the Lasserre Hierarchy level. We hope
that this observation will contribute to further research in solving PNP, as well as other
computer vision problems involving convex relaxations. Thus the theoretical implication
of the work presented here is that the underlying optimization problem in PNP (and
generally in rotation recovery) is difficult in some cases, and cannot always be solved
by the first stages of the convex relaxations in the Lasserre hierarchy; however, if the
solution in the second level fails, then a practical solution is to continue increasing the level,
until a pre-defined threshold is reached. If no solution is obtained, one should resort to
his/hers method of choice for constrained polynomial optimization—which are, indeed,
more time-consuming than the convex relaxation method.
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Appendix A. The Complexity of Solving the Optimization Problem with
Lagrange Multipliers

An alternative approach to minimizing a quartic on S3 is via the well-known method of
Lagrange multipliers, which in this case leads to a system of five equations in five variables
(q1, q2, q3, q4 and the Lagrange multipliers required for the condition that (q1, q2, q3, q4) ∈
S3). The degrees of these equations are 3,3,3,3,2. Known bounds for an exact solution are
cubic in D, which is defined as the product of the degrees of the equations, multiplied
by a factor which is exponential in the number of variables. Another recent bound is
O
(

n(3d)3n
)

, where n is the number of variables (5 in our case), and d the maximal degree
(3 in our case). Hence, the complexity of the solution is very high. For a thorough summary
of results on the complexity of solving polynomial systems, see [24].

Appendix B. The Effect of the Noise Power on the Lasserre Levels

As the noise power increases, so does the probability of achieving a solution in a lower
Lasserre level. This is due both to the fact that the “pathological” PNP configurations
occupy a small volume in the configuration space [6], and to the fact that the solutions
obtained in any Lasserre level include those in the lower levels.

A measure to the power of the noise required to obtain an SOS polynomial (which can
be solved in any level) is provided by the following lemma:

Lemma A1. Let p(x1 . . . xn) be a form of degree 2d. Then the polynomialp(x1 . . . xn) + r(x2d
1 +

. . . + x2d
n ) , where r is the sum of the absolute values of p’s coefficients, is an SOS.

Proof. A 1891 theorem of Hurwitz states that for any monomial of even degree:

xα = xα1
1 · · · x

αn
n , 0 ≤ αk ∈ Z, ∑

k
αk = 2d

the form:

Hα(x) :=
n

∑
k=1

αk
2d

x2d
k − xα1

1 · · · x
αn
n

is SOS. Usually, this is given multiplied by 2d as

n

∑
k=1

αkx2d
k − 2dxα1

1 · · · x
αn
n .

If any of the αk’s is odd, then xk 7→ −xk shows that

H′α(x) =
n

∑
k=1

αk
2d

x2d
k + xα1

1 · · · x
αn
n

is SOS; if all αk’s are even, then this expression is a sum of monomial squares. So we can
write

− xα = Hα(x)−
n

∑
k=1

αk
2d

x2d
k , xα = H′α(x)−

n

∑
k=1

αk
2d

x2d
k .

Suppose now that
p(x) = ∑

α

cαxα

is any form of degree 2d. Then we may write p as a disjoint sum, depending on whether cα

is positive or negative

p(x) = ∑
α

|c(α)|Hα(x) + ∑
β

|c(β)|H′β(x)−
n

∑
k=1

(
∑
α

|c(α)| αk
2d

)
xk.
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If we choose
r ≥∑

α

|c(α)| ≥∑
α

|c(α)| αk
2d

for all k

then:

p(x) + r

(
n

∑
k=1

x2d

)
= ∑

α

|c(α)|Hα(x) + ∑
β

|c(β)|H′β(x) +
n

∑
k=1

tkxk

where:
tk = r−∑

α

|c(α)| αk
2d

;

and so this expression is always an SOS, which completes the proof. �
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