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Some Classical Mechanics

Isaac Newton

- Lagrangian formulation: particle wants to minimize
the total of the Lagrangian 3=T -V = 3(x, x,1),
where: T'=kinetic energy

V'=potential energy

x=location
x= velocity (dx/dt)
{=time
* Given initial and final location/time (x,,?,),(x,,?,),

1

the path x(¢) classically taken minimizes
(extremizes) the action

Ly
S[x(¢)] = j 3(x,x)dt (hereV 1s time independent)
why © 9999



* Via calculus of variations, this leads to the
following equation, which holds in the classical

path for every ¢

03 d| o3

Ox,(1) dt| ox,(t)

 Often, the following notations are used:

X.=(. F .=—— (force) P.= o (momentum)
l l l aql l aql
e And so
dp. dv d(mv) d
E — pl maa = n—= ( ) — —p
! dt dt dt dt
Force

» In the continuous case, often I = J(f, £, f',¢)
and one minimizes ” 3(f, f, [, )dxdt =

03 d o3 d o3 /"' Stands for the coupling of

. =0 NP :
' * “infinitely close particles”
5f at 6f dx 6f (e.g. points of a string).




The Hamiltonian

03

*Wehave p=-—

0q

* Suppose we want to find an expression, call it H,

such that
cH .
—=q. SO :
op
. . dg
H=f1-qdp=pq—fp—zdp—
. 03 dq
d
Pq - j@q i p = pq -

« What is H in physical terms? Look at a particle
moving under a simple potential:

mvz mv2
H=pg—-3=(mv)x— =
Pq (mv) (2 5

« So H is the TOTAL ENERGY (kinetic + potential).




 What are the Hamiltonian equations? As we saw

o _
op 1
e And also
ocH Jdpg—-3) 03 .
oq oq oq P
* So
oH OH




Example: Free Kall

H = - mgx = - mgx

 Note that we have to write the energy as a
function of the momentum and the coordinates,
as opposed to the coordinate and 1its time
derivatives (the latter is appropriate for the
Lagrangian formulation).

* The equations are (remember: ¢ = X, q = V)

H .
o =q = L _, (nothing new)
op m
oH

—=—-p=>mg=—(mv)=—ma=>a=-g
0q

Which 1s indeed the free fall equation.



Example: Harmonic Oscillator

— |

 The point at which the spring is at zero potential
energy will be taken to be x = (). The
Hamiltonian 1s then

2 2
H
H=2 +kx : 8_:_p:>
2m 2 0Oq
. .. .. k
kx=—mv=—mxi—=>x=——x>—
m
k . k
x=Acos| .|—t |+Bsin| ,|[— ¢
m m

* 4,B are determined by the 1nitial conditions.



Example: Coupled Harmonic Oscillator

x, X, are the displacements from equilibrium.

— "

2 2
pr P k[o, > 2]
H=—"-+"4+—|x+x, +(x,—x,) [=

2m 2m 2
. =2k k . k 2k
X,=——XxX,+—X,, X, =—X, —— X,
m m m m

* Let us discuss differential equations of the form
Qx =X
Where:

e X 1s a vector of functions.

« () is Hermitian with negative eigenvalues — 4°,— 1,
and eigenvectors €, €,

e
Denote £=| ' | (Eisa2x2 matrix)
€



Qx=X=FEQFE'y =7
FQFE' =D, x=E'y, y=Ex
/_212 0 A
D = , |» £ 1s unitary
L0 =4

 After diagonalizing, the system 1s easy to solve.
If we assume that the initial velocity 1s zero,

y = cos(A,t),cos(A,)
e Initial conditions:

% (0) = a,x,(0)=b,% (0)=0,%,(0) =0

a /
* For y, the initial conditions are then £ (bj = [ j

so the solution 1s

(cos(ﬂ.lt) 0 ]{a'] (a'j
y= =C
0 cos(A,t) \ b’ b’



e To return to x,

;=% Ol e,
x=FECFE =F + E —
b 0 0 0 c,() b

[011(t)e1elt +¢5(0)e,e, ](Zj —
x(2)) =U ()| x(0)), U(t) = ¢, (0)| {1 |+ ¢, ()| LT ) L]

Where we have taken the opportunity to
introduce a common QM notation, Dirac’s
famous bra and ket:

. ?>, <‘7‘ stand for column and row vectors.

. ]>,

*¢,,(?),c,, (2) are solutions to the differential

equations with one variable, f =, f, f =w, [
where @), ®, are Q's eigenvalues.

11 > stand for QQ's eigenvectors.

« U(?) is called the propagator and is of
fundamental importance in QM.



Example: Vibrating String

* Once we realize that the propagator formulation
carries over to the infinite dimensional case, we can
write down 1n a straightforward manner the
solution to more general problems, such as the
vibrating string:

L N

L

e First, we have to write down the corresponding
differential equation. Think of the string as being
composed of many small springs, that is, the
limiting case of many masses coupled by springs:



Assume the
spring constant k
to be equal to 1.

i—1 17 i+1
N N N
L
* The Lagrangian is the limit of (denote ﬁ = hj

...+%mq'l.2 +...—%[...+h2 +(q,—q.,) +h>+(q.,,—q,)’ +]

qi.1— 2% + 44

hence the equations are =q,
m

but in the limit, ¢, , —2¢, +q;,; is just the well-
known approximation to the second derivative, so —
1gnoring constants — the spring equation 1s

0" f(x,t) 0" f(x,1)
x> o




GACHIACR)

* To solve . ——, proceed as before:
Ox ot
e First, find the (normalize) eigenvectors/eigenvalues
0’ . .
{ . Since they’re restricted to be

zero at 0 and L, they are
1

(2)2 . (Wlﬂ' j m’m’
I =|—| sin| —x |, eigenvalue = —
L L

« What are the equivalents of ¢;;(Z),C,, (¢)?

As before, 1f we restrict the 1nitial velocity to be 0,

mi
the solutions are COS(—t and — also as

L

before — the general solution can be written with
a propagator:

U(t):icos(mTﬂt I f () =U®@) f(x,0) =
)= | Seos " )0, 50 -
ZCOS( j<1 WO,



But in the limit the internal product is just an
integral, so

fx.0) = Zcos( jU f(x0)1, dxj .

Why all this?....

 Later, we will see that in QM, every single
particle has a function — the probability
amplitude — associated with 1t, and the main
goal 1s to determine how it changes over
time. It turns out that this function satisfies a
first order (in time) differential equation (as
opposed to our examples which had a
second time derivative), called
Schrodinger’s equation, and one seeks the
propagator which — given the probability
amplitude at r =0 — computes it for every ¢:

w(x,0)=U )|y (x,0))




Poisson Brackets and Canonical Transformations

Let w(p,q) be some function of the state variables
p,q, where we assume no explicit dependence on .
Then its change over time 1s given by

do Z(a—wél —Pz]

0q, op,
ow oH Ow oH
— =0,H
Z,-:(@qi op, Op, 5%] .Hj

* For any two w(p,q), A(p,q) define the Poisson
bracket by

{a),z}zzi;(@“) 0L o azj

oq; Op; Op; 0q,

* Note that

{Qi’Qj}: 0 {piﬂpj}: 0 {qz'apj}: 51]



 We may want to define new variables

q—>q(p,q), p — p(p,q)

A straightforward calculation yields that if we
want Hamilton’s equations to hold in the new
coordinates, we must have

{qi?gj}:() {ﬁi’ﬁj}zo {q“l—?]}:ﬁy

Such a transformation 1s called canonical.

Note the similarity: in classical mechanics

da)

o {a) H}

And in quantum mechanics

M) o)



Examples:
 Rotation 1s a canonical transformation (check 1t).

 Important: the two body problem. Assume we have
two bodies 1n space, with locations and masses
given by (m,, r,),(m,, 7, ). Assume also that there’s
a potential which depends only on their relative
distance, V(I”1 — 7”2)- We can then define a
canonical transformation that reduces the analysis to
that of two independent bodies:

mr, + m,r.
— 1"1 272 _ —
Vg = , My, =m, +m,, V., =0 (the center of mass)
m, +m,
mm
r=r—r,m=—-—2—=uV =V(r)(the reduced mass)
m, + m,

 Thus the center of mass is a free particle, and the
reduced mass moves under the potential V. One can
then solve for them separately. One such system, for
example, is the hydrogen atom.

* We will later show how one can guess such a
transformation; it follows from the requirement that
the Hamiltonian be diagonal 1n the new coordinates.



The Electromagnetic Lagrangian

 The force acting on a charge g, moving at speed v,
due to an electric field E and a magnetic field B, 1s

F:q(E + %XB), with the potentials A,¢

satisfying VxA=B,E=-V ¢ — % %—?

Next, define a Lagrangian 3 = %MV°V—Q¢+%V'A
d(03) 03

We have to check that dtk &, j: o it yields

d gA | q d B
E mV+7 = —Q(V ¢)‘|‘;V (VA):> E(WZV)—
"canonical

momentum"

o V) Vo)~ L

q
—q(V ¢)+; -
AL,
%—?+(V-V)A

% \V(V-A)—(V.V)A :q(E + %xBj. Note however that

(VXA =B |

qo— %V-A is not really a potential.



The Electromagnetic Hamiltonian

|
As before, H=p-V—S:§mv-V+q¢=T+q¢

But in order to write it correctly, it has to be

expressed in terms of p:mV+%A, SO

2

_ 9
p CA

H= 7 +q¢.




QM was developed in order to explain
physical phenomena which were not
consistent with classical physics.

Werner Erwin
Heisenberg

R
‘

Louis de Broglie Paul Dirac Richard Feynman



Part I. Physical Intuition
and the Finite-
Dimensional Case



Prelude: The Nature of Light

Light was thought to be made of particles, which
move 1n a straight line. Later, light interference
was discovered (Young, 1801), which led to the
conclusion that light 1s a wave:

Two slit
experiment

The mathematics behind this: a wave can be described by
the equation ¢’ (fx — 1) . Such a wave moves through
space at a speed of @/k. @ is the frequency, k the wave
number. If another wave 1s A behind, their sum is

ei(kx—a)t) n ei(k(x+A)—a)t) _ ‘ei(kx—a)t)(1+eikA)‘: ‘l_i_eikA‘

which peaks/is zero when kA =2nz/ kA =(2n+1)x.
Denoting 1 =2xz/k (the wavelength), there is a maximum
if A = nA, which is hardly surprising — it means that if the
lag between the two waves is a multiple of the wavelength,
they contribute to each other (they are in phase).




EU} A {b]

—
—J, [
.,
- \
, \O% \

>

g

R L * Li+1o

| -

Wave interference: as opposed to the drawing,

assume d >> a,x. Then the lag between the two
ax

wavesm\/d%rx —\/d2+(x a) d = A.

so, the maxima correspond to ax/d = nA, which
implies that the distance between adjacent maxima
is Ad/a (this can actually be used to measure the
light’s wavelength).

« Mathematically, i1f the (complex) wave functions
are h,,h,,then the energy arriving when slit 7 is
l. * and the energy arriving when both are

open 18
openis NOT |h| + ‘2 ", but h,
o+ h| =[] +|h| +2\ ,|c0s(S) O h,

1nterfererce term

So far so good — but it turns out that the wave
model fails to explain certain phenomena.



When you shine light upon certain metals,

electrons are emitted (the photoelectric effect).
Lights

+

=y

()
It turns out that N
Ammeter

 The emitted electrons move with greater speed if the light
has a higher frequency.

* No electron is emitted until the light passes a threshold
frequency — no matter how strong the light is.

* The electrons are emitted too quickly.

All this contradicts the hypothesis about the wavelike nature
of light.

* Einstein solved this problem (and was awarded the Nobel
prize for that), by suggesting that light is composed of little
“quanta”, which impact like “baseballs”, and not like waves.
These were later termed photons, and it turned out that a
photon with frequency ¢ has an energy and momentum

given by E—heo |
h iS avery _hk note: E == pC.
small constant. p=




It also turns out that not only don'’t the
lightwaves behave like waves — also,
particles don’t behave like particles.

Let’s go back to the two slit experiment. How will 1t

look with particles (electrons)? We may assume 1t
will look like

(a) II A (b) A

+x

S|-| .Kz

- |

o |
//\\

I
2 B

B =L+I,

II+2

1.e., the number of electrons hitting any specific
point on the wall when both slits are open, will be
the sum of the numbers when only the
first/second slit 1s open.

But that doesn’t happen; the electrons also
interfere. That is, at some points, LESS
electrons hit when BOTH slits are open!!
This happens even if the electrons are fired
very slowly (one at a time).



There 1s no way to explain this — 1t just happens.

* Note: we can immediately realize that each
electron cannot go through one slit. However, they
don’t “break”, because when they arrive at the
wall, the energy corresponds to a “whole” electron.

* Fortunately, the simple model that describes
wave Interference (Vl +h ‘ ) also explains particle
interference. The problem is, of course, to compute
the so-called “probability amplitudes” h,h,.

S @ (b

There are h,,h, such
1
Y that P V’l‘
\ 2 P, Vz +h ‘

electron gun

What happens if we try to watch the electrons? If
we see them all, there’s no interference!

S @ (b

To be explained
1 later. Intuitively, the
D » measurement forces
the particle to
2 assume a definite
position.




Some QM axioms:

* Probability is the squared absolute value of the
amplitude.

* [f there are several possibilities for an event to
happen, the amplitudes for these possibilities are
summed. So, to get the total probability, you first
sum and then take absolute value squared — thus
there 1s interference.

 When it 1s possible to decide what alternative was
taken, you sum the probabilities (as usual —no
interference).

* There is uncertainty; we cannot predict what will
happen, even 1f we know everything in advance. This
uncertainty 1s reflected, for example, in the inability to
exactly describe both a particle’s position and
momentum — the famous Heisenberg uncertainty
principle. All we can do 1is provide probability
distributions. But, as opposed to our standard
understanding of what uncertainty is, here 1t’s much
deeper; 1t’s not “I know the particle 1s somewhere, I just
don’t know where” — the particle isn’t anywhere, so to
say. And 1f we try to nail it down, we lose its
momentum. There’s no way out of this.



It’s strange — but it works.

To quote Feynman...

“That’s how it is. If you
don’t like it, go to a
different universe, where

the laws are simpler” — R. P
Feynman, NZ, 1979.



The Heisenberg Uncertainty Principle

 Take the limiting case of a wave with amplitude

e' ™=@ Tt has exact momentum (71 k) and

energy (/1 ) but there’s no information on its
location, because for every x the probability 1s 1.

 Real particles have amplitudes that are not
uniform 1n space. They may look like a Gaussian,
meaning that there’s a far higher probability to
find the particle near the Gaussian’s center. But in
order to get a Gaussian, you have to add many
“pure waves”. Each “pure wave” has definite
momentum — but when you mix them, the
uncertainty in the momentum increases. The
narrower the “position Gaussian™, the broader the
“momentum Gaussian” (more later).



YAVAVAVAVAVAV/

x >
Momentum certain, but zero Position certain, but zero
knowledge on position knowledge on momentum
Momentum

/ uncertainty

Position

/ uncertainty




Trying to measure both location and momentum

|
|
|
|
Scattered :
|
|
|
|
|

photon \ 8
" ’ Scattered
"\ Electron
*o——>
P.
Incident
photon

The smallest distance between two points 1n an object that
will produce separated images is A_ ~ A/sin(8). Ifa
photon has energy %@, it possesses momentum 7/ 1. To
be collected by the lens, the photon must be scattered
through any angle between — @ to 6. So, the x-
component of the momentum may have any value
between —#isin(@)/A to hsin(d)/A. Thus the
uncertainty in the electron's momentum is ~ 7 sin(6) / A.
So, the product of the uncertainties is = Jj.

Intuitively, we need a “powerful” photon (high frequency) to
get good position measurements; but the higher the energy,
the more it knocks off the electron, hence the momentum
uncertainty becomes larger.



Interlude — the Resolution of a Microscope

Airy Patterns and the Limit of Resolution .
- The resolution of an

optical microscope is
defined as the shortest

Rﬂﬁ!ﬁl ittinn Unresolved

™~
resoea, 0 W L

| '*~.. . ._. . pisks  distance (I between two
- . ™ ./ points on a specimen that
@ . - L ] can still be distinguished
\ k3 s'® by the observer or
“~_ Airy camera system as

Patterns —

separate entities. When ﬂ,
becomes close to I, it’s
impossible to distinguish.
That’s why electron
microscopes are used
(much smaller
wavelength).

3-Dimensional
Point Spread Figure 1

Function
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In order to distinguish the objects, the two
maxima should fall in the view area, so we
must have

dsin(&’)zﬂ:az .Z
a sin(&)




Another experimental demonstration of the
uncertainty principle — shooting a particle
through a single slit (Fraunhofer diffraction):

wavelength = /4

[nciden
plane
W EVE

slit width = W

S5ingle 51it Diffraction

One can prove that

Qzl/W.

e
ws®
"
s
.®
vs®
s

.
Y0
e
]

Before the particle (wave) hits the barrier, we can assume
that its y-momentum is zero. After it passes the slit, we know
its position with an accuracy of Ay = W ,but there’s an
uncertainty in the y-momentum, Ap y = pﬂ. / W (where p is
the original momentum). So, AyAp y = pA, but QM tells

us that pA = h(= 27h).

* The narrower we make the slit, the more confident we are
about the location; but then the diffraction pattern becomes
wider, and we lose confidence in the momentum.



De Broglie Waves: The Wavy Nature of Particles

In the previous slide, we adapted to particles a result
connecting the wavelength and momentum of a photon. This
is based on De Broglie’s ingenious “hunch’ in 1924: “if
waves (light) behave also like particles, then particles should
also behave like waves”. It turns out that a moving body
behaves in certain ways as though it has a wavy nature. Its
wavelength /] 1is defined, just like

for a photon, by J = h = h

P mv.

If so, electrons for example must diffract. This was proved
experimentally by Davisson and Germer in 1927: they shot
electrons at a crystal made of layers. An electron is scattered
from different layers, hence there’s a phase difference, hence
there’s diffraction.

0

7 — — —Plane 2

Note: larger objects (baseballs) also show interference, but J is so small
that the interference pattern is practically impossible to create and observe.



Application: the Radius of an Atom

* Let the “average radius” of the hydrogen atom be
denoted by a.

» The momentum p should be, on the average, 4/a.
this implies that the average kinetic energy is

p2 ~ h2

om  2ma’

» The potential energy is — ¢?/a, where e is the
electron charge. Hence the total energy 1s

* [t’s easy now to find the @ minimizing this
expression, and it’s indeed pretty close to the true
radius.

* Why then can’t we squash an atom, and why doesn’t the
electron collapse onto the nucleus? Because then the
uncertainty in the position will go to zero, and the uncertainty

— and hence the average — of the momentum (and the energy)
will go to infinity.



More on Probability Amplitudes

Two slit experiment again:

4 X X
’
DETECTOR V P
l:._."
> Al KL‘/ F;g
-~ — |
i B P
= €=~ - —-- -] - -
N ‘1‘“--\-.
S
ELECTRON - & ) <,’J~
GUN ~ 2
P,
d
’ A
WALL BACKSTOP

Denote the amplitude that a particle from s will
arrive at x by Dirac’s “bra and ket” notation:

<particle arrives at x |particle leaves S> = <x ‘ S>

We will later see that it’s just an inner product.

We know that the probability is the square of the
amplitude. We also know that amplitudes add:

<X ‘ S>bothslits open — <x‘S>slit10pen + <X‘S>slit20pen



Another law about amplitudes: the amplitude
for a path 1s the product of the amplitudes to go
part of the way and the rest of the way.

g d %
§ ol %
S //’ ;I @ /‘//IE?
S / %
u, ¥ /
/ c| /
1 r
) %
(x[s)="2 {x[a)eli)ils)
i=1,2
a=a,b,c

 We will later address amplitudes with a time
variable (e.g. what 1s the amplitude for a particle

to be somewhere at a given time).

* Another amplitude rule — 1f two particles don’t
interact, the amplitude for them to do two things
1s the product of the individual amplitudes.



Applying the amplitude rules to the two-slit
experiment with a light source (trying to find
what slit the electron went through)

/ ]
/1
]
%
%
/1
11
L1
L/
%
— 9
LHHHEMH
ELECTRON ?-‘
GUN -%
A
A

Ifthere’s no light, (x]s) = ¢ + ¢, = (x/1)(1[s)-+ (x|2(2]s)

If there’s light, there are certain amplitudes for a photon to
arrive at D (D,) if the electron went through 1 — call these
amplitudes a(b). Applying the principles and some symmetry
considerations: photon at D, photon at D,

r N\ r A\

Pr(electron at x) =|ag, +ba,|" +|ag, +be|

If we can detect the slit via which the electr02n wentzwith total
certainty, then =0 and the probability is ‘¢1‘ + ‘¢2 , hence no

interference at all. If we try to decrease the photon energy, we
will have to increase its wavelength, hence b will grow and

we’ll have more and more interference.
Question: how can a light source affect the
interference of baseballs?



Another Example: Scattering from a Crystal

neutron R crystal ............ 9 ...........
SOuUrce

/ neutron

counter

There are some crystals for which the scattering has
both “classical” and interference components:

number of
neutrons

Why does this happen?



* Sometimes the crystal nuclei have a property called
“spin” (they may be “spin up” or “spin down” — more
later).

 Usually, the neutron 1s scattered without “leaving a
mark” on the specific atom which scattered it. That case 1s
like the two slit experiment without light, and we get
interference.

* But sometimes the neutron can “leave a mark™ on the
atom that it scattered from — by changing the latter’s spin
(and also i1ts own spin). That 1s equivalent to the two-slit
experiment with light; in that case, we can distinguish
what path the neutron took, and therefore we should add
probabilities and not amplitudes (so no interference).

* In this crystal the neutron sometimes changes the nuclei
spin and sometimes it doesn’t — hence we have a mixture
of both distributions: interference and no interference.
Note: it makes no difference whether we try or don’t
try to find the atom from which the neutron scattered!

\—I— _J\\L

result spin changed Spin not changed



Bosons and Fermions

Let’s look at a scattering of two particles:
D, D,

\g \9
O—s 4 ) e
b

-8

— —0 O—
| - / /
D 2

e [f the amplitude for the left event is f(€), then
the probability of any particle arriving at the
detector D, 1s

2

Pr:|f(¢9)|2+|f(7z—6’)|2:9=%:>Pr=2|f(§j

« But what if the particles are identical? Then we
cannot differentiate between the left and right events,
and we have to add amplitudes before taking the
squared absolute value to find the probability.



.. Exchanging the particles does not change the
physics (probabilities), but 1t may change the phase.
Since exchanging again brings us back to the
original system, the amplitude must either remain
the same or be multiplied by — 1.1t turns out that
there are two types of particles: for Bosons the
amplitudes are the same, for Fermions they are
Inverse.

* So, for a scattering of two bosons, the probability
of one of them arriving at D, 1s

Pr=|f(0)+ f(z-0) :6’:§:>Pr:4|f(§)

2

* And for two Fermions it 1s
2 T
PI‘I‘f(@)—f(ﬂ'—@)‘ :QZESPrzO

. T
* So, two Fermions cannot scatter at an angle of —!

2



2

 Let’s look at a double scattering. We know that the
. . 2 2
probability for this 1s ‘<1 ‘ a> ‘<2 ‘ b>‘ .
 Assume that the particles are distinct. The probability for
(a—>1Ab—>2)v(a—>2Ab—1)

s (1) (218" +[(1]e)[(2]a)

« [f ] approaches 2, we can denote
(la) = (2[a) = a,(1|b) = (2]b) = b

20,12
so the probability for both particles to go to / approaches 2‘61‘ ‘b‘ :

* But if they are Bosons, we cannot differentiate which went
where, so we have to add amplitudes and then square:
2 21412
(1a)2[b)+(1[b)2]a)f -, 4al o
* This yields a probability two times bigger than for distinct

particles. So: Bosons like to go to the same place, Fermions
like to stay afar from each other. This is the Pauli exclusion
principle, and without it atoms would have looked very
different (electrons would stick together).




Light Polarization

Waves can be characterized by being either:

* Transverse: the thing that is "waving" is
perpendicular to the direction of motion of the
wave (light waves).

* Longitudinal: the thing that 1s "waving" 1s in
the direction of motion of the wave (sound
waves).

P
ﬂ'r f ﬂ
%Eii“% . uﬂ% lll

Two possible polarizations of light waves. The
arrows depict the oscillations of the
electromagnetic wave. These will be called x and y
polarizations.



Polarizers:

o
T! i
The reflection coefficients are
N different for waves parallel and
Fner‘_penu:hcular to the plane of 100%
incidence.
Brewster 1 — Reflected intensity
angle i for rays parallel
= and perpendicular
~ % to the plane of
| & incidence.
=
S0% =
o
[
[t
| =
=]
=
When light is incident at the Brewster 0% _
angle, the reflected Tight is linearly (1 30° /'ﬁl]“ ap°
polarized because the reflection
. . Brewster
coefficient for the Il component is zero. Angle

Polarization by reflection.

There are apparatuses that allow only light as a
certain polarization to go through (LCD, polaroid
sunglasses).



* From the QM point of view, every single photon
has a mixture of the two polarizations associated
with it, and we can only compute the probability
that 1t goes through a certain polarizer.

. ‘x> and ‘y> resp. refer to the state of a single
photon 1n an x resp. y beam which is polarized in
the classical sense.

* Filtering with a polarizer in angle @ relative to
x-y yields the state |x") = cos(8)|x) + sin(6)| y>.

y AXIS OF POLARIZER

STATE Ix?> -

If we place a second polarizer at angle 0, then the
probability that |x') goes through is cos®(#), which is
in perfect accordance with classical physics — but
here, 1t’s not that the wave energy 1s decreased by this
factor, but that only cos’(8) of the photons go
through — and those which do, don’t lose any energy.



Thus — a classical, macro, continuous
phenomena 1s explained by a (rather
different) micro, discrete, QM phenomena.

Light 1s (classically) said to be RHC polarized 1t
its x and y components are equal but 90 out of
phase (in this case, the field 1s not linear as before,
but oscillates 1n a circle which lies in the plane
perpendicular to the light’s direction). The QM
interpretation for a single photon 1s

RHC) = () +i]3)
Where does the i come from? We know thata 90°
phase shift, when repeated twice on \y>, yields —‘ y>.

So, we can see why it 1s represented by a
multiplication with i.



Interlude: Wiesner’s Quantum Money

* Bank has a list of bills; each has a serial number
and 20 photons embedded in the bill, each with
one of four possible polarizations:

» A would-be counterfeiter cannot copy the bill,
since any attempt to measure the polarization
will not only probably destroy the original
polarization, but will also leave too many
possibilities. For example, if a photon measured
with a green polarizer gives zero (the photon
doesn’t pass), it can be either a black, red, or
blue photon. As with the electron, the
measurement operation changes the state, this
1s why the method works.

* Note that the bank may say “yes” even if some photons are not

correctly polarized — but the probability of the counterfeiter to
obtain this can be made arbitrarily small.



Introduction to
base states:
spin and the
Stern-Gerlach
experiment

The total amount of deflection is a function of
* The total amount and distribution of electric charge on the ball.

* The orientation and rate of spin. As the rate of spin increases, so does the deflection. As
the axis of the spin becomes more vertical, that amount of deflection also increases.

If the beam from the electron gun is directed to the magnets, as shown to the right, the
beam is split into two parts. One half of the electrons in the beam are deflected up, the
other half were deflected down. The amount of deflection up or down is exactly the same
magnitude. Whether an individual electron is deflected up or down appears to be random.
Stern and Gerlach did a version of this experiment in 1922.

This is very mysterious. It seems that the "spin" of electrons comes in only two states. If
we assume, correctly, that the rate of spin, total charge, and charge distribution of all
electrons is the same, then evidently the magnitude of the angle the spin axis makes with
the horizontal is the same for all electrons. For some electrons, the spin axis is what we
are calling "spin up", for others "spin down".

You should beware of the term "spin." If one uses the "classical radius of the electron"
and the known total angular momentum of the electron, it is easy to calculate that a point
on the equator of the electron is moving at about 137 times the speed of light! Thus,
although we will continue to use the word "spin" it is really a shorthand for "intrinsic
angular momentum.* It has no classical counterpart.



Building a Spin Filter

spin up spin down
B A B Ay

L T T

[

electron

gun
U
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The blocking mechanism is really a
“filter” — allows only one spin type to
g0 through.




Shorthand notation for “spin up” filter. On the average, it allows half
the electrons through. We can rotate the filter. Still, on the average, it
allows half the electrons through.

S A N

None of those which

All those which passed the passed the first will pass
first will pass the second. the second (nothing passes
both of them).

i il

Half of those which passed

. One quarter will pass.
the first will pass the (aj

second: in general, it’scos”

To realize that something strange is going on,
think about a filter with both paths unblocke
being here:




Correlation measurements in a radioactive substance
that emits a pair of electrons in each decay:

If the right electron passes, then its left hand companion does not

pass its filter, and vice-versa. We say that each radioactive decay

has a total spin of zero: if one electron is spin up its companion is
spin down.

WA
Ca

Again, one-half of the right hand electrons pass through their
filter and one-half of the left hand electrons pass through their
filter. But this time if a particular right hand electron passes its
filter, then its companion left hand electron always passes its
filter. Similarly, if the right hand electron does not pass its filter,
its companion electron doesn't pass through its filter either.

I

One-half of the right hand electrons emerge from their filter.
One-half of the left hand electrons emerge from their filter.

If a particular right hand electron passes its filter, one-half of
the time its companion left hand electron will emerge from its
filter, one-half of the time it will not.



It turns out that in the “world of Stern-Gerlach
apparatuses” (SGA), the states U and D (denoting
spin up and down) form something that resembles
a basis in linear algebra. What does this mean?
For example:

e [f an electron 1s 1n one of these base states (B),
we can predict the probability 1t goes through any
SGA, regardless of 1ts previous history.

 Every state and every transition amplitude can
be describe as a mixture of these states:
=Mzl {(xld)= 2 (x|i)ilé)
ieB ieB
* Since the base states are complete (1.e. they span
all states), we must have that the sum of
probabilities of a state to be in any of the base

e islor Sl ) = 3| )l) =

ieB ieB

But the probability of a state to go to itself mus
be 1, so according to ¥ , we must have

(x| 2)=2x|i)ilx)=1=V (x|4)=(d| 1)

ieB




Just like in linear algebra, we have many sets of
base states; e.g. the outputs of SGAs which are
rotated 1n various angles, each time leaving only
one beam unblocked. And just as in linear algebra,
we can switch from description in B, = {i}to a
description in B, = {j}, if we know < J ‘ ig for all
i,j. For example, for spin 2, and for rotation
around the longitudinal axis, the transition matrix

wf8) wlt]
C““@ “’S@/




Operators and base states

Suppose we do something to a particle — for
example, make 1t go through a mess of SGAs.
Let’s call this mess A an operator.

 [f we have such an operator, we may ask
questions such as: given two states £» @ , what is
the amplitude for = 4 — ¥, which will be
denoted < 4 ‘A‘ ¢> We get another familiar result
from linear algebra (remember that it makes more
sense 1f you read from left to right):

(x|416) = 22| /)i |4i)i|9)

l

Where i,j range over base states.

 Other “linear algebra laws” follow — the
composition of operators 1s the matrix product of
their individual matrices, we have the usual laws
for transforming between bases, etc.

» The matrix product representation encapsulates
a rather strange result — composition of operators
(like position and momentum) 1s not necessarily
commutative, as opposed to classical physics.
This has profound consequences.



Dependence of Amplitude on Time: The
Hamiltonian

How does the amplitude change with time?

For a particle in a state of definite energy E,,
the amplitude 1s independent of position and 1s
given by ge"Fo/M* (intuition: it’s like a wave,
and 1t has zero uncertainty in momentum, hence
infinite uncertainty in position).

Note that any probability question for such a
particle 1s independent of time; hence such a
particle 1s said to be 1n a stationary state.

In order to have probabilities which change in

time, the particle has to have more than one ,
. —i(E,/h)t —i(E, /)t

energy state: note that ae M g e

depends on the time .
The amplitude of a particle in uniform motion

is ge h)(Ef‘p'x),where E 1s the particle’s total
energy.



Interlude: Jumping Over a Potential Barrier

(a) -
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S AN N NN /// //// \\\
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Suppose that a particle with a certain energy
somehow goes over a potential barrier which 1s
larger than its energy (this 1s, of course, impossible
in classical physics). Its energy has to be negative,
and since E = p*>/2m, its momentum has to be
imaginary. Since the amplitude behaves like

ae”ME-P*) we may expect it to look like e ™

Incredibly enough, this is true. It explains, for
example, particles getting into places which are
forbidden by classical physics. More on this later.



A Little More on Bras and Kets

e Recall that if 7 ranges over base states, then

(218)= 2x|i)i|¢)

e Inspired l;y this, we write ‘¢> = Z‘ i><i ‘ ¢>
» And further: |= Z‘l><l | |

<i‘ is a bra and ‘li> is a ket (these notations are

valid not only for base states).

e If ‘¢> = Z‘i>Cl. and ‘}(> = ZWDZ-, then
(2] =50 and (2])= S i

* So 1t’s just like an 1nner product. These notions

extend naturally to an infinite number pf base
states, with the L, structure(f,g) =] /" g(plus

some functions which are not in the classical L, ).

e For an operator 4 we have A= Z‘l><l ‘A‘ j ><J

. L,J
* [t’s common 1n QM to denote the state vector
by anything which 1dentifies it. For example, a

v)

state with a definite momentum p will be denoted

by ‘ p>, etc.



How does the amplitude change under an
apparatus, or operator? Passage of time 1s also an
operator; denote by U(¢,,t,) the change which takes
place between time ¢, and ¢,. By that we mean

that 1f a system 1is at state @ at time t,, then its
amplitude to be at state X in time 7, 1s

<Z‘U(12Jl)‘ ¢> So, it’s enough to know
<i‘U(tle)‘ j> for base states i, J.

Since U(t,,t,) =U(¢,,t,)U(t,,t,), it’s enough to
know U(t + At,t). Denote as before C (1) = <i ‘ w(t)>,
and U, = <i‘U | j>, All this yields

C(t+At)=) U, (t+At,1)C (1).
J
Letting Az — 0, guess that U, . =6, , + K, At

For reasons to be explained, this 1s written as

j
Uy (4 At 1) =5, = H, (DA

so C,(t+A1) =Y [, - %Hi, AC (1)
J



C(t+A)—C(t) i
, ) CNYH C (¢
At h; G0

and

n DSy o
i =

H 1s called the Hamiltonian. It could also have been
called the energy matrix: look at C,(f) =e” (Eo/mt
the equation we saw for the amplitude for a particle
at rest, with energy £/ . Then we have

ac(?)
dt

ih

— EOCl(t) — H1,1C1(t) — H1,1 — Eo

This is why H represents energy, and why the —i/7
factor was inserted before. In classical mechanics,
the function giving the total energy of the system 1s
called the Hamiltonian, hence the name here.



Interlude: the Hamiltonian is Hermitian

Recall that the adjoint of a matrix 4 1s defined by
[A"],, = A;; and that 4 is Hermitian if 4" = 4.

dC(1)
dt

__—iHt (forget 7 for the moment,
‘C(t)> - € ‘C(O)> it’s only a constant).

= HC(t),we can write the solution as

Since i

iH ™"t
e

so (C(1)|=(C(0)

multiplying yields
1=(C(1)|C(2)) = (C(0)

¢ e = ([ +iH t+..)(] —iHt +...) =
[+it(H = H)+o(t%)

So, we must have that " = H.

Some useful facts: A Hermitian matrix has only real eigenvalues, and
the eigenvectors corresponding to different eigenvalues are orthogonal.
Also, if H is Hermitian, e_’H (and therefore e_’H’

1s unitary. So, the evolution of a state is actually a rotation.

6iH+t€_th‘ C(O)>




A Two-State Example: the Ammonia Molecule

ih% =E,C,— AC,,ih
Cl (t) = ﬁe_(i/h)(Eo—A)l‘ + ée—(i/h)(E0+A)t

2

The molecule can flip,
and every state 1s a
combination of the “up”
and “down’ states:

w)=1w) +2)2lv) =

1)C, +|2)C,

The question — what 1s the
Hamiltonian? Based on
symmetry considerations:

dc,
dt

=FE,C,—AC, =

a _ b _.
C2 (t) — " (i/h)(Ey—A)t Ze (i/h)(Ey+A)t

2



* What do these solutions mean? It’s always useful
to look for states with one frequency (or a definite
energy). These occur 1n two cases: if H = 0 the
energy is E, — 4, and the amplitudes to be in |1)
and |2) are the same. If a = 0 ,the energy is £, + 4,
and the amplitudes to be in|1) and |2) have
opposite signs (but the probabilities are equal!).

* Suppose we know that when ¢ =0 the state is |1).
This implies

C(0)=1,C,(0)=0=a=b=1=

[ (i/h) At —(i/h) At "\
(i e +e (i At
C (1) = e M5! = ¢ /MES cos(—j
> i <
(i/h) At —(i/h) At
—(i 6 - 8 . —(i . At
C, (1) = e M = je UME! gin| ==
. 2 ) n

So ‘Cz (t)‘2 = sin’(At/h). Hence, if we know that
at t = ( the state 1s “up”, we also know that at

7Th

t = —— the state 1s “down” (!!).



Interlude: Symmetry and Conservation

(a) /e, A hydrogen 1on can be
DY //p/// «» in one of the two states
Zz4 //// ‘1> and ‘2>
f
2> °p //‘ /2 The operator P 1s
//% defined by a reflection
" with the property

|
| ,
/57
P> e %v/ Pl1)=[2), P|2)=[1)
//// Assume that the

o physics of the 1on 1s

515> %Z 7, | .. Symmetric with respect
/ . to P. What does this

| mean? If we reflect by

P, let the system evolve
for some time, and reflect again, 1t will be just like
letting the system evolve and then reflecting. If we
denote, as before, the operation of “waiting” by U, it
means that P and U commute: PU =UP. In general,
an operator Q will be said to have a symmetry if 1t
commutes with U.



—iHt

Recall that / =€ " . So O commutes with U
1ff O commutes with A (remember that U 1s a
sum of powers of H).

Suppose there’s a state ‘l//> such that ‘W '> =Q‘ W >
is physically the same state as |y); so, it differs
from ‘l//> only by a phase factor. For example,
look at the two states

1) = 1)+2)

=H

1) :M: P\I)=|I), P\II)=—|I)

J2

so, the phase change is 0 for ‘] > and 7T for ‘I] >

» Another example: look at an RHC polarized
photon, and rotate it by an angle O about the z-
axis. Then its state 1s multiplied by e’

* [t’s straightforward to see that if the symmetry
operation of Q on a state ‘l//o> multiplies ‘Wo> by a
phase factor e’a, then this is true forever:

Olw,) =€’ |w,) = QU 0)|w,)) = U(t,0)(O|w,)) =

U(1,0)(e°|w,)) = €°U(t,0)(|w,) = Olw,) = €°|w,)
But this 1s conservation!




Parity
Look at the operator P(x, y,z) = (—x,—y,—2).

Since P* = [, it is immediate that if P|y)=e"|y),

then e =1 or €° =—1.

e P 1s called the parity operator and the two cases
above correspond to states having even or odd parity.
For the hydrogen ion, |7) has even parity, | II ) has odd
parity, and |1) has no definite parity.

« [t turns out that parity is not always conserved; it 1s
violated by £ decay.

« If S decay is not involved, it turns out that any state with
definite energy which 1s not degenerate (meaning that there are
no other definite energy states that have the same energy) must
have either even or odd parity. As a matter of fact, let QO be any
symmetry operator, and let ‘lﬂ > be a non-degenerate state with
energy E. So H‘lﬂ> = E‘l//>, and

H(Q|lw))=0H |y)=QE|y)=EQ|w))

So, ¢ ‘ l//> is a state with definite energy £, but we assumed that‘ l//>
is the only such state. So we must have Q‘ W> =" w>, but as
we saw before, if O = P, then € =1 or —1.




The conservation laws in QM

*Various conservation laws can be expressed in QM as
multiplication by a certain phase factor which depends on
time, location etc. with a constant which equals the conserved
quantity. Note: since there are states without a definite
momentum for example, we cannot always talk about
“conservation of momentum™ as in classical physics (the most
we can do for such states 1s hope that the average momentum
1s conserved). Some examples:

*Let D _(a) denote translation by a, and assume that
there’s a special state ‘ WO> such that [J_ (a)‘ gy0> =e gy0>.

Then /7 corresponds to the classical momentum. Similarly,
there may be special states ‘I,VO > such that after the passage of
time 7, the state turns into e_lm| v, > Then @h
corresponds to the classical energy.

ika

If you find this perplexing, check what happens to the wave equation

e'™ ) when x — x+a or t— t+ (and look again
at the equations for a photon’s momentum and energy).

« If R.(¢) denotes rotation by ¢ around the z-axis, and

R, (¢)‘Wo> = elm‘ Wo>, mh is the angular momentum for ‘Wo>-
It turns out that for an RHC/LHC photon this 1s equivalent to the
classical notion of angular momentum, with values & 7. For linearly
polarized light, there’s equal amplitude to be in RHC or LHC, so a
single photon doesn’t have a definite angular momentum, and that’s
why (classically) a beam of linearly polarized light has zero angular
momentum.



Infinitesimal Transformations

As 1n Lie group theory, it 1s customary in QM to study transformations
with an infinitesimal displacement. For example, let D,(7) = U(t + 7,1).
—iHi

l//(t)> = eh‘ W(O)>, so for a small At

As we saw before,

‘W(At» = U(At,O)e_lhAt‘ W(O)> ~ (1 = LHAt

j\ w(0)) =

D (Af)=1- %(AI)H.

But we know that for a state of definite energy £ the passage of time

multiplies the state by eTIOAN 1 _iont = H = oh = photon's energy.
So, it makes sense to refer to H as the energy operator (more on this

later).

* Similarly, for a small displacement D_(Ax), we may assume that

the state changes linearly in Ax : Dx(Ax)‘ W> = (1 + % prxj‘ l//>

but D (AX)|y) = " |y) ~ (1 +ikAx)y ) = p, = hik

for a definite momentum state; so, call P, the momentum operator.

Note that (i/%) p_ behaves like d /dx should, so we can guess
d

_W>. That turns out to be true (more later).

That p. =—ih

X
« Similarly, we can define the angular momentum operator .J , by
im l
RAABIY) =) =(1+5.7.06 ) = Tlv) =l
And it immediately follows that J , seems like Xp , — yp ..




Part II: the Continuous
(Infinite-Dimensional)
Case: the Wave Function



The Wave Function and the Axiomatic
Foundations of QM

- So far, we have dealt with a finite number of base
states. That is, a system could be described by a
finite linear combination of probability amplitudes.

* This does not always suffice. Think for example
about the location of a particle along the x-axis.
There 1s a continuum of possible locations, and
they cannot be expressed as a finite linear
combination of anything.

e Same holds for momentum.

* This led to the definition of the wave function.
For a particle in a one-dimensional world, 1t 1s a
continuous function which defines the amplitude to
be, for example, at any location x.

* Next, we present the axioms of QM for what a
wave function 1s and how 1t behaves over time.
They are given side-by-side with the classical
physics axioms, to emphasize both the similarity
and difference between the two.



Classical

QM

The state of a particle at time ¢ 1s
given by its position x(#)and
momentum p(?).

The state of a particle at time ¢
is given by a vector (function)
in Hilbert space, ‘W (¢ )>

Every dynamical variable is a
function of x and p.

X and P are Hermitian. /

The x of classical mechanics is
replaced by the operator X,
defined by X| f(x)) = |xf (x)),
and p is replaced by the
operator P defined by

P| f(x))=—ih %>.

A measurement of a dynamical
variable Q(x, p) vyields a
uniquely defined result, and the
state 1s unchanged by the
measurements.

If a particle 1s 1n the state ‘ 174 >, a
measurement of the variable

Q) yields an eigenvalue @ of

the operator Q(X,P with 3
probability Pr(w) ocka) v)

and the state changes from |y >
to‘a)> (‘W> collapses to a)> ).

9

The system changes with time
according to Hamilton’s equations,
where H is the classical
Hamiltonian (total energy):

‘l//(t )> changes according to
Schrodinger’s equation:

i | (1) = Hlw o)

where H 1s the quantum
Hamiltonian, created by
substituting x > X, p > P

In the classical Hamiltonian.




Points for Discussion:

®  What is the wave function? Inner product: <W ‘ ¢> = IW ¢

What are the X and P operators, and what are their
eigenvectors and eigenvalues? Relation to Fourier transform!

1 Ipx

{X: ‘x>=5(x'—x),x}, P: ‘P>=—€7,p

N 27h

The meaning of the collapse of the state vector for the X and
P operators. What happens if an eigenstate is measured?
Reminder: two-slit experiment with measurement. Question:
how can a photon cause the wave function of a battleship to
collapse? Reminder: Stren-Gerlach experiment.

The Schrodinger equation for a free particle as the limit of a
finite dimensional state: where does the derivative come
from? (Later).

Complications:
1. What does the classical xp go to: XP or PX? Answer: average.
2. Whatif () is degenerate? Answer: Pr(w) oc <W‘ P, |1//>,
where Pa) is the projection on the subspace of vectors with
eigenvalue @.
3. The eigenvalue spectrum of €2 is continuous. Answer: replace all

sums by integrals, and “probability” by “probability d%nsity”.
Example: Q= X: Pr(a <position<b) = [y (x) dx

So we should have I ‘y/( x)‘zdx =1 (normalization). a

—00



Expectation and Uncertainty

* We saw that the measurement process in QM is
probabilistic. Yet, we can ask what the average result of
measuring () in the state ‘w> is: following the usual
definition of expectation, it equals

@)= Zelfolyf = Zololyylo)= (v Zo ool v

where o, a)> range over the eigenvalues/eigenvectors of Q.
Since Q) is Hermitian, its (normalized) eigenvectors are
orthonormal. It’s easy to see that O can be resolved by

(hint: verify that both sides are equal when

Q= Z 0] ‘ C()><C() operating on every ‘a)> , and use the fact

p that ‘a)>} span the entire space).

So, the expectation is <Q> = <w ‘Q‘ W>- This is nice, since we
don’t need to find Q's eigenvalues and eigenvectors in order
to compute the expectation.

» The average has a meaning only when computed over an
ensemble of identical particles. It cannot be computed for a
single particle, because the first measurement changes it.

* For an eigenstate, the expectation 1s equal to the
corresponding eigenvalue. Thus, the Energy/Position
/Momentum measurement of a state with definite EPM yields
the “correct” and unique EPM result.



The uncertainty for €2 in a state ‘W > is also defined just
like the classical variance:

(AQ) = §Pr<w)(co (@) = [wl@- <Q>)2\W>V

Example — the Gaussian centered at @ with width A:
_
()

e N Pr(x)dx = 1 ~(x-a)’/

‘l//(x)>= We

The average of the position 1s

(X)=(w[X y) = [v ) (x)dx = a
which is hardly surprisi;lz. As for the uncertainty:
0y =y~ )=l ()

| X w)-2X)w | X v+ (X) = (w| X y)- (X)
o ~ J %,—J a,—‘
is just(X) expectation of a this is @’

const. is the const.

So we have to compute

| I 2/ 02 25 22 A
Y2 _ o () [2A y2p (-0 /2A dy =2 4 42
wixlv) () [o 2

and finally, AX = A (also hardly surprising).

V2



What about the momentum operator P?

Pl f(x)) = —if ﬂ> = (P) = —ih [y"yidx = 0

dx

00 hZ h
APY =1 [y dx = = AP = ——
(AP) LAY 24
as can be directly 1 2 /02
verified by substituting — ‘W (X)> = RNA g /2
and integrating. (7TA2) )

« [t is instructive to see how ‘I,V (x )> looks in momentum space.
Since the orthonormal basis corresponding to momentum space is

given by ‘ p> = (27h) 2 e"" | then ‘w(x)> is represented in
momentum space by 1

e Az 4 2p2 22
. * . —ipa/h _—p“AN/2h
(ply)= [pwde=|—5| ™ e

v 7th
So, the narrower the position distribution (small A), the broader
the momentum distribution. This not only agrees with the
physics discussed before, it is also no surprise to anyone who
studied the Fourier transform! Note: AP.AX =# / 2

~
uncertainty principle



- This happens because P and X don’t commute,
and don’t have common eigenvectors
(“e1genkets’). Since only the eigenkets of an
operator are unaffected by a measurement of the
operator, we cannot have a system for which we
know both the position and momentum.

* [f two operators commute, there 1s a basis of
common eigenkets, and the order of the
measurements doesn’t make a difference.

* The commutator of two operators 1s defined as

[Q,A]= QA - AQ

* [t 1s straightforward to see that [X : P] =ih



Interlude: Proof of Heisenberg’s Uncertainty Theorem

We want to obtain a lower bound on

(AX)* (AP)” =y (X = ()] |w)(w [(P—(P)] |w)

The trick is to reduce this to an expression depending on

|X,P|= XP-PX =ih

define A= X —(X), B=P—(P)= AB—BA= XP—-PX

Kv Since A, B are Hermitian

W 4w ) |Blw) = (v |4y By |By)
From the Cauchy-Schwartz inequality, this is larger than

(Ay|By) =|w|aBly)

Now comes the trick. Denote

C:AB;BA,D:AB;BA:AB:CJrD

So we should bound

So we should bound ‘<W ‘C T D‘ W>‘2



vl D P lvIch ) vtpi =
(wiCiw ) +(w| D) +
(W|Clw YD) +v|Clw) (w|Dly)

i wiclw) =

But C = —, andsince ¥/ is normalized,

To get the inequality, we will throw away

(w|Dly)[,

which 1s of course positive, and prove that

(w|Cly Xw |D|w) +(w|Clw) (v |D|y)=0l

o J/

Call this G
Ignoring the constant factor of 2, this last expression equals

G= <w ‘AB — BA‘ w><w ‘AB + BA‘ w>* +
<W ‘AB — BA gy>*<w ‘AB + BA‘ 1//>
Now we have to remember that V/ , : <z// |Q| l//>* = <¢// |Q+| (//>
Andthat A" = A,B" = B, andthatV, o : (QA)" = A"QY"

And 1t immediately follows that G is indeed 0. Thus the proof is
complete, and after taking roots: ( ! Y) ( AP) > /2




e [s the minimum attained? We can assume <X > =0.
The Cauchy-Schwartz inequality 1s not strict only if
the two vectors are linearly dependent, so we must

have

(P=(P))y)=cX|y) =y’ =

=y

But to minimize, we must also have

(v |(P~(P))x + X(P~(P))y) =0

but

(P=(P)Jw)=cX|y).(y[(P~(P))=c'(y|x =
w|(P=(P)x +x(P—(P))w)=(c+c Julx?ly)=0
So ¢ must be pure imaginary, ¢ = ‘c‘i and so (after

correcting by shifting with (x >) we get

vl

That 1s, a Gaussian with a phase shift proportional
to the momentum saturates the uncertainty.

<]

Le—{x))
27

e



Interlude: Finite-Dimensional Example: the effect of
measurement (Shankar Ex. 4.2.1)

Consider the following operators on 3

1_010_ 1 0 0
L=—[10 1[,L=[0 0 0
x\/i

010/ |00 -1

®* What are the possible values obtained if LZ 1s measured?

Answer. the LZ eigenvalues/normalized eigenvectors are

- / 3 - N\ O 3
I 0 0 So the possible results when LZ
S, 0 [4,420,] 1 $,< —1,| 0|} 1s measured are 0,1,-1.

0 1

g J g J 4 J

* In the state in which L_ =1, what are <Lx>, <Li>, AL ?

Answer: if L_ =1, the state must be (1,0,0)1. According to what
we proved before:

<LX> - (I,O,O)LX(I,O,O)t =0 Note: we should take

<Li> — (I,0,0)Li (1,(),())t — 1/2 conjugate transpose,
but everything here’s

AL = (B)~(L) =1/¥2




* Find the eigenvalues and normalized eigenkets of Lx in the LZ
basis.

Answer: the L_ basis is the standard one. An immediate
computation yields that the Lx eigenvalues/normalized
eigenvectors are

- /_1\\ - ( 1 \\ - ( 1 \\
1 9% \/5 >><_1>l _\/5 e

0,—| 0 |p,<1
k L) RN ) I ER R )

A2
« If a particle is in the state with L =—1, and Lx 1S measured,
what are the possible outcomes and their probabilities?

Answer: if L= —1, the state must be ‘ 174 > =(0,0,1)". According
to the axioms, the possible outcomes are the Lx eigenvalues,
with probabilities equal to the square of the inner product of |/
with the corresponding eigenket. A straightforward calculation yields
that we get 0 with probability 1/2, 1 with probability 1/4,and —1
with probability 1/4 .

: l. : 2
« Consider the state‘ l//> = (1/2,1/2,1/&) in the LZ basis. If LZ
1s measured in this state and the result 1s 1, what is the state after the

measurement? If LZ is then measured, what are the possible
outcomes and respective probabilities?

Answer:

1

_ So, there’s a degenerate eigenvalue, 1, with an
0 O eigenket subspacelV = {(a,0,b)},anda0
0 0 eigenvalue with an eigenket (0,1,0). If 1 was
0 1]

L=

measured, the result is the (normalized) projection

of ‘l//> on ¥V, which equals (l/ﬁ)(l,O,ﬁ)t.

0
0



Next, LZ 1s measured. The possible results, and their probabilities,
are: 0 1is measured with probability 0, 1 is measured with
probability 1/3, and -1 is measured with probability 2/3.

2 :
NOTE: the measurement of LZ does not determine the subsequent
measurements of LZ!

* A particle is in a state for which the probabilities are

Pr(L =1)=1/4,Pr(L. =0)=1/2,Pr(L =—1)=1/4.
note that the most general state with this property 1s
io, 0% 0%

V)= L=t Sl =0+ L =)

does this mean that one can choose arbitrary values of 51 , 52 , 53
without affecting the physical state?

Answer. no. The physical state is immune only to global phase
shifts: ‘w> and e > are physically equivalent in the sense that
they generate the same probability distribution for any observable.
However, if for example 51 = 52 = 53 = (), then ‘gy> =L = 1>,

and if 0, =0, =0 and 0, =, then ‘W>: L. =—1>.




A Note on the Position, Momentum,
and Energy Operators

» We saw that for a state of definite position (delta function)
the operator X indeed returns the position, and that for a state
of definite momentum (a pure wave, ei(kx —ot) )

the operator P indeed returns the momentum.

« What about the other states? The most we can ask for 1s
that the average of X (P) will be what we consider intuitively
to be the average position (momentum). That is indeed the
case.

 Let ‘W > be a state. The probability density to be at the
position x is ‘w(x)‘ =y (x)w(x), so the average position

is defined by jxw (X)w(x)dx, but the average of the X

operator 1s defined by

(X) ={w|X]w)=(v|Xy)

(w|xy) =[x )y (x)dx

And they are indeed equal.

Note: if the integration limits are unspecified, they are assumed

to be —00 to 0O,



What about the momentum? Remember that the momentum
operator 1s defined by

and that its inx
P‘ l//> — _if dy eigenkets, with ‘ > _ 1 en
dx eigenvalues p, are 2 h

defined by
So the probability for the state {/ to be with momentum p is

(plw) =(p|w)v|p)

plply)\w|p)dp
I

We want to prove that this equals the average of the

operator P, which is

(P) =y [Plw) = Cim) [y y s

]I

So the average momentum 1is

—ipx

To prove that /=11, note that < p ‘ W> \/7 J-e w(x)dx

Which is just I,V’S Fourier transform (up to the h factor).
Now, remember that (up to constants which we won’t bother
with here), the product of the Fourier transform with p is the
transform of the derivative; this reduces p< p ‘ /4 > in / to
the transform of the derivative. Lastly, remember that the
Fourier transform 1s unitary, so the inner product of the
transforms equals the inner product of the respective
functions. This immediately reduces / to /1.



In very much the same way, the Hamiltonian / is the energy
operator, and (H)=(w|H |y) isthe system’s average energy.

éghﬂx+a)e—(x+af/2A2

« Example: Gaussian ‘ W>
wave packet

2 \/4
()
A straightforward calculation yields
 Average position = <W ‘X‘ l,V> = Ix W*wdx =—d

* Average momentum = <W‘P‘W —lh jl// wdx =kh

hZ

» Average energy = <W |H | "4 > —2— /4 l// "dx =
(for a free particle)
ko’ h’
+ 2
2m  4mA

* Question: what happens to the average energy when A — 0,
and why? It looks odd that the mass m 1s in the denominator —
can you explain it?



Schrodinger’s Equation

L d L d n’
ih— |y ()= Hly () = ih— |y (1)) =~

2m

82W
ox”

For a free particle (H:P2/2m)

- Tells us how a state changes over time, hence 1s
very important. Where does 1t come from? There are
various heuristics to justify the equation; for
example, suppose a free electron 1s moving through
a crystal, in which the atoms are close to each other:

2
® ®
C

Let C; be the amplitude to be at atom i at time ¢.
Now look again at the equations for the ammonia
molecule. Here, we have three states (if we assume
that, as a very short time passes — remember, we’re
looking at the time derivative — the change in C,
depends only onitandon C,,C,). So we can
guess the following equation (up to constants):



d;j = E,C,— AC, — AC,

ih

Now, use the well-known approximation for
the second derivative at x:

i< LE=O) 2 @)+ )

And thus the right-hand side equals, up to
constants, the second derivative of the wave
function by x.

- The simplest (and very common) case for a non-free
particle has the Hamiltonian

W

2

+V(x
2m dx ()

Where V' is some potential.

« It is impossible to prove Schrodinger’s
equation. It does not follow from the
axioms.



Solving Schrodinger’s Equation

m%\w(r» = Hly (1)), ihly) = H]y)

» This 1s a differential equation, which resembles equations
in classical physics.

» The goal is to find the propagator U (t ) which satisfies
w (1) =U(0)w(0)).

 As often happens, a good direction to proceed 1s to first
find the (normalized) eigenkets and eigenvalues of the
Hermitian operator H.

* Since H 1s the energy operator, we will often denote the
eigenkets/eigenvalues with the letter E:

H|E)=E|E)

* Suppose we have these eigenkets/eigenvalues. Since they
are orthonormal and span the space, then for every state

()= LIEXE|v(0) = 2| E)a ()



* Plugging this last form into the equation yields

lhaE(t) = EaE(t) g aE(t) =a, (O)e—iEt/h

* So, <E‘W(t)> — aE(t) =a, (O)e—iEt/h

* And
1 (0) = X e 0|E) = Y a, 00 ) -
> (ElwO)e ™| ) = S (El)] £)e " -

E

|:;‘E><E ‘e—iEt/h:|w(O) — U(f) — ;‘EXE‘ e—z’Er/h

« So we have a closed-form expression for the propagator. In
the infinite dimensional case, the sum is replaced by an
integral.

* The so-called normal modes, ‘ E(t )> = ‘ E >€_1Et/ " ,
are also called stationary modes, because they change only
by a phase factor, hence have the same probabilities to be in
a certain state regardless of the time. They correspond to
systems which start off in an eigenket of H (definite energy
state).



» Another expression for the propagator is given by
—iHt/h
U(t)=e ™

But it is not always manageable. Note that it implies that {/ (t )
1S a unitary operator.

 Schrodinger’s equation on the line 1s usually solved in the
X-basis.

» Note that {J(?) is an operator. By ‘l//(t)> = U(t)‘ l//(0)>

o0
we mean that  w(x,1) = j U(x,t;x',0) w(x,0) dx’
—® prop;fgator initial cgnditions

—iHt/h

where U(x,t;x',0) = Z<X‘E><E
E
Or, 1n the infinite dimensional case,

x’>e

U(x,t;x',0) = I<x‘E><E‘x’>e_iEt/th
E

* How does one derive such equations? It’s straightforward

from U (t) = Z‘E><E‘ e . multiply by <x‘ on
E

the left and by ‘ X '> on the right.



 The propagator as the evolution of simple states: let’s
look at the equation

w(x, z)_jU(xtx 0) w(x',0) dx’

propagator initial condltlons

And take (x',0) to be a state with definite position, that is,
a delta function at a. Then

w(x,t) = j U(x,t;x',0)8(x' — a)dx' = U(x,t;a,0)

taking x = b yields

U(b,t;a,0) = The amplitude to be in b, at time £, when at
t = (0 the state is a delta function at a.

« And in general, U (x,; x',0) is the factor weighing the
contribution of the amplitude to be in x' at time O to the
amplitude to be in x at time ¢.



Solving Schrodinger’s Equation
for a Free Particle

« [f there’s no potential, the equation is relatively simple:

"y P’
ihly)=Hly)=——|y)

« [s it trivial? Not at all; even for relatively simple initial
states, the development of the wave function over time
may be surprisingly complicated.

* To solve the equation, first find the eigenkets of H:
P2
HE)=—/|E)=E\E
£)=L"|£)= £|E)

 The kets ‘ p>, , which are eigenstates of P, suggest
themselves. Remember that

1 ipx

= e, Plp)=
p)= = p)=r|p)




and so
P2 2
Ap)=|p)=Elp)= p=+\2mE

Hence for every E there are two corresponding eigenstates:
‘E,+> = ‘p = \/ZmE>,

* Physically, this means that a particle with energy £ can be
moving to the left or right. But in QM, the following state —
which has no meaning in classical mechanics — also exists:

‘E>:a‘pzm>+ﬁ‘p=—m>

E,—>:‘p:— 2mE>

Note that this is a single particle
which can be caught moving either
left or right!



 The next step is to compute the propagator. In the
position eigenkets it equals

o0

1 px/h_—ipx' [k _—ip*t/2mh
U(x, 1:2,0) = 5 ePhgipIh gt/ dp

—00

U(x,t;x',0) = j<x ‘ E><E ‘ x’>e‘iEt/th
E
1
m jg eim(x—x’)2/2ht
2 mthit

The integral evaluates to (



and so for an initial state ¥/ ()C ',O), the state at time ¢ 1s

1 9O
2 m(x—x")? [2ht
W(x’ t) _ ( m . j J‘elm(x x) / w(xr,o)dxr
2 whit
—00

« What happens if ¢t — 0? We get the integral
of a function multiplied by things like cos(Ax>),
where 4 is very large:

‘I_

0.5

'0.5‘

2

Plot of ¢ * multiplied by cos(Ax?). If we
integrate, only the value at 0 remains.



Interlude: The Free Particle Propagator
in the Momentum (Fourier) Domain

* For a free particle, Schrodinger’s equation is

l,hd_w: h’ dzw:d_w: ih d’y

dt 2m dx’ dt  2m dx’

« Switching to the Fourier domain yields

d¥(u,t T
(I/l, ) — l Mz\lj(u, t)
dt 2m
* Which 1s solved by 5
ihtu

W (u,t) oc /1€ 2" W(u,0)

 This observation highlights the “convolution
nature” of the free particle propagator, and the
manner 1n which it blurs spatially, and sharpens in
the frequency (momentum) domain, as time goes
on. The convolution kernels are like those 1n the
previous slide.



Interlude: The Density Matrix

« Expresses the expectation as a linear function of the
operator being measured.

 Allows to include “usual” uncertainty about the state.

* Closely related to Boltzmann distribution and quantum
statistical mechanics.

Let |u, ) be an orthonormal basis. The probability of finding
by (t)) in the state c,(t), wherely (1))=> ¢, (u, ). If
Ais an operator, and A, )=Y A, n
(4) = (O Ay (0)=3 4, (1), (O=Tr(p(2) 4,
where p()=y (6))(y (1) is the density matrix.

un>is

u >, then

Note: p(7) 1s a positive operator, and Tr( p(t))chn (t)c, (¢)=l.

Also, p°=p, and p*=p (p is Hermitian).

Note: p(¢) does not have an arbitrary phase factor, hence it
captures the physically relevant properties.

From the Schroedinger equation, it follows immediately that

pO=—{H p(1)].
ih



 Reminder — what is the probability to obtain a
value ¢, when measuring A4 (at time 7)?

Answer: Let P, be the projection on the subspace
of eigenvectors with eigenvalue a, . It is immediate
that the probability to obtain a, 1s

(W IB, |y (1))=Tr(pP, )

* Incorporating “classical” uncertainty:

suppose the starting conditions of a physical
system are not exactly known, and that it has
probability p, to be in state ‘wk> (p, =0, Z p,.=l).
Then, the density matrix can be naturally ¢
extended by defining

p:Zk:pk ‘Wk ><Wk‘

And linearity immediately proves that the
expected value of an operator A is Tr( pA).



* Some further properties:

e O is Hermitian.
. Tr(p)=l. ,
. = Zk:pk‘l//kxwk‘j :kzl:pkpl<Wk‘Wl>‘Wk><l/jl

and since {u, }is an orthonormal basis, Tr(p*)=

Z<“n ,02 u, >:Zpkpl <l//k‘WZ ><un W ><l//1 u, >:

nk,l

Zpkpl <l//k‘l//l ><l//l‘l//k >:Zpkpl ‘<Wk‘l//l >‘2 <
k.l 7

5

Z p, p,=1, with equality holding only 1f all
k.l

of the y's are identical (i.e. a "pure state").

* The meaning of O, is the probability to
obtain ‘un> in a measurement. Itis termed
“population”, while ©,, are termed
“coherence”.

 If we’re working in the basis of eigenstates
of the Hamiltonian H, then from the
equation for the development of O, , over
time, it follows immediately that

P (t)=exp(;(Ep -E, )tjpnpm).



* Relation to quantum statistical mechanics: in
thermodynamic equilibrium, it turns out that

1 H
—exp| — — : ’
P Z P( ij , where k is Boltzmann’s

constant and 7 the temperature. Z is chosen so
to normalize the trace to 1 (it is the partition
function). If En> is the basis of A’s eigenstates,
1
p nn :_<un

then
ex A u >—iex _L,
7 P % =77 % )

and n#p=p, =0
(Boltzmann's distribution).




Path Integrals: Feynman’s
Formulation of QM

U(x, t: x’,O) o ZeiS[x(t)]/h

Where the summation ranges over all paths connecting ( x’,0)
to (x,?), and Sis the classical action (the integral over x ()
of the kinetic minus potential energy).

 What does this mean?

* The classical path is the one with the smallest action. In
Feynman’s formulation, the propagator is the sum of al/
paths, each weighted by the exponent of i times the action
over /. What happens for objects with a large mass, for
example, is that due to the 7 in the denominator, the
contributions around any path but the classical one are in
very different phases and therefore cancel out.

 This formulation is equivalent to the one we had shown, but
highlights the connection to classical physics. Also, in some
cases (but not usually) it is easier to use it to calculate the
propagator.



 Proof of the path integral formulation: look at the
propagator with a fixed potential V. Proceeding
much like as in the free particle case, this time | p)
is an eigenstate with energy p*/2m+V, so the
propagatoris

U= [|p)p|e  EPNIhg, -

t/h

—i[p2/2m+V
dp =

[lpiirle

o —i[pz/ZmJt/h

™" [Ip)ple dp =

1
> : : 2
m 2 _—iVt/h im(x—Xx' /2ht
2 mhit

since the integral is exactly the one for the free particle
propagator. Now, if the elapsed time 1s very small, Az
(this 1s the justification for assuming a fixed potential),
and v(x) stands for speed in the interval between x and

x’, this equals



1

;

2 VAN B iy (x)(AD) 20
7ihi(At)

Using the postulates in Part I, we compute the

amplitude of getting from (x",0) to (x,?) as the

sum of the amplitudes of all different paths

(think of more and more screens with more

and

1S t]

| more slits). For every path, the amplitude

he product of amplitudes to go over its sub -

patl

W¢C

hs. In the limit the sub - paths go to zero, and

get the product of the above, following the

postulate about the amplitude of eventsin

SucC

cession. so the powers in the exponents add

4

o [ veo = st

0

which completes the proof *. It turns out that

this formulation 1s equivalent to Schrodinger's.

*up

to a scale factor - see following.



* Derivation of the free particle propagator via

path integrals:

w(x,T)= j U(x,T:x' ,0)w(x',0)dx’

_ - _ . -
T ISl |, % W
j Ze w(x,0)dx = j Ze
—oo| x(0)=x' —og| x(0)=x'
x(T)=x | x(T)=x |

_ e P

e m [x(t) x} dt
2h . T / /
_[ Z e w(x',0)dx
—oo| x(0)=0
x(T)=0 ]
using the fact that the transformation x(¢) — x(¢) + x" + ; { maps
the loops starting and ending at 0 to the paths from x' to x
.T 2
) % ! i (t)+2( j (t)+( J dt
J- Z e L integrates 1ndependent a w( x' O)dx’
01=0 to 0,since  of z, hence ’
—o0) igT))ZO x(0) = x(T) integrates to
(x—x)

- T _

_ e -
j 2 (1)dt mi(x—x')*
Ze e 2"y (x',0)dx’
x(0)=0 —og

_X(T):O ]\ \ J
b g Compare to slide 96

Propagator from 0 to 0

w(x',0)dx' =



Path Integral Normalization Factor

» The question arises as to how to normalize the
summation over all paths.

» Approximate each path by a piecewise linear
function:

A
Xy=b ¢ o
xl+1 ®
xi L ] /
X
Xg=0a ¢ 0//
@ o L
ta 4 ti ti+l ZLb



Denote ¢ =¢,,, —t,,s0 Ne =1, —t, =T.
The free particle propagator is then

(A 1s a normalizing factor)

00 00 00 l N X m , _
Algglg_j _j _J- exp(h jZlej_lzx dtjdxl dx, | =
st JJo oo o

X, =X

which follows immediately by replacing x with ———
g

The Gaussian integral evaluates to
1 —N—_l N-1
AN_E m 2 ﬂTeﬁ( N—%)?
2hei
comapring this with the free particle propagator, it must
equal

N
2

L)
(’” je%T Y s A:( m j |
27hT ’ Drdiie

It 1s customary to write the path integral as

1

llm 1 J‘J‘ Tel/h [b.al dxl dx2 ”.de—l ,B :(2721218)2
B B B m




Equivalence to Schrodinger’s Equation

For an infinitesimal time interval &, the path

integral propagator U (x, &; x',0) is approximately

( m. jz exp{{m(x -x')" EV(X +x' ’Oﬂ/h}
2rhie 2¢& 2

where the approximations are standard to the first order in

. Note that there is no external normalizing factor, since

there is no midpoint to integrate over.So, w(x,&) should be

1
m )2 ¢ imn’ is n
ex exp| ——V| x+-—=,0 x+n,0)d
(Mzigj JOO p( 2th p{ 7 ( 2 H‘”( 10)di

2

mmn
2&h

where 77 = x"— x. When > 17, the exponent oscillates

1

25h7zj2

very rapidly, so we'll concentrate on the region ‘77‘ < (

This means that if we're working to first order in ¢, we

should work to second order in 7.



The integral to compute for (x, £) 1s

00 . 9) .
j exp[lm 7 ]eXp{—% V(x + Q,Oﬂt//(x +1,0)dn

2&h 2

Expanding to first order in &

0 2 52
v(x+n,0)=yw(x,0)+7n Y f
Ox 2 Ox

—00

exp{— % V(x + g ,Oﬂ =1- % 7(x,0) (we neglect

terms or order 7¢, since they're O(£¥*) ). The integral

1S ( e j2 Texp( im)’ j{w(x,O) — % V(x,O)l//(x,O) +

2mhie 2&h

oy 1n’ Oy
T 2

ox 2 Ox

This is a Gaussian integral in 7. Eventually we get

—ig{—hz 0*

n }d 17 (again, ¢ etc. terms are dropped).

) o 90 —
Wy (x,&)—w(x,0) o —w

which indeed agrees with Schrodinger's equation

+ V(x,O)}u(x,O)

prediction.



Calculating the Path Integral

Usually,it's impossible. For potentials of the form

V = a+bx +cx” + dx + exx, the propagator can be
computed by expanding around the classical path.
Write the path x(¢) as x_,(¢) + y(¢). Since x(¢) and
x ,(t) agree at the endpoints, y(0) = y(T)=0. So

0

U(x,1;x,0) = | exp{% Slx, 0+ y(t)]}D[y(t)]

0
When expanding §, the linear terms vanish, since x_, (¢)

. i
1s an extremum. Also, exp(% de factors out. So, the

integral equals exp(% de X

| GXPB | G my* (1) = ey’ (1) - ey(t)y’(t)jdt}my(r)]

J/

Dependsimly onT

Note that the probabilistic information about the wave
function can still be extracted, since for a given T’ we

know the function up to a scale factor.



How to compute

| exp{; | G my? (1) =y’ (1) - ey(t)y‘(t)jdt}D[y(t)]?

0 0

For example, for the harmonic oscillator it equals

| exp{; [ lo- afﬁ(r)]dr DIy(1)] (where y(0) = y(T)

o0

=0). Represent y(¢) as Za sin n;ztj Z a y,.ltis easy to

2
see that ﬂ)’/z (H)—w’y (t)]dt Z a {ﬂ " a)ZT} Going to
0 n=l

this representation, and forgetting for the moment about the

Jacobian and other constants, the integral 1s the infinite

. . 0 . 2T
product of the Gaussian integrals I exp(;la {7[ n o ‘.

2T 2

—00

o [ 22,2 )
or (forgetting i, 7, ...) H[ . a)zT} —
n=1

1

%0 in? 0’T? 2 - 0 0>T? ‘; -
Gy C SR G

sin(wT’) | 2 . o
( )} . Normalization 1s possible since we know

K(T){

ol

the limit as @ — 0 (it's the free particle propagator).



Perturbation Theory and Feynman Diagrams

lKLTmKD:?em{%iﬁng}Jqﬂﬂﬂm}hﬂ]

x',0 0

expand the exponent to write the integrand as

. T . . T T

rem ., l rerm .,
exp| — | —x"dt |——exp| — | —x"dt ||V (x)dt +...
Integrating over all paths, the first summand is just the free

particle propagator. To calculate the second summand, look

at the discrete approximation (ignoring & etc.) :

o0

J...Texp{?—; [(x1 —x,) +.+(xy —le)z]}x

[V(xo) +..+ V(xN)] dx,..dx,
To compute the summand with V' (x ), note that in the limit, if we

assume bounded variation, then since the time between any two

successive x; goes to zero, x;,, —x; — 0 as well, and we can drop
the terms with expl =[x, —x)? +(x .., —x,)* |} which
w p T X; =X, X;,, —X;)" | which goes

to 1. We're left with the product of free particle propagators from 0

toz, and from ¢ ; to T. When this consideration i1s extended to all

summands, we have two variables to integrate over : the time 7 and

the location at that time, denote it y. So, the integral equals
T o
UI(X,T;X’,O) = J- 'fUo(x,T;y,T)V(y)UO(y,z';x',O)dde'
0 —0

where U, 1s the free particle propagator.



The physical meaning 1s : the particle propagates
freely from (x',0)to (y, 7), is then acted upon
(scattered) by the potential, and then propagates
freely to(x, 7). In the same manner, the third
summand corresponds to a particle scattered twice

by the potential (represented by a quadruple integral),
etc.U, (U,) (a"first (second) order perturbation") 1s

represented by the following Feynman diagram:

(X,T) (X,T)
r (V5,7,) V
(¥,7)
4 (V7)) | 4
(xr,o) (X',O)



The second order perturbation equals

2% (— %) exp{% 1 % X dt}ﬁ Vix(s), S]ds}ﬁ Vix(s", S’]dS’:|

which equals
i 2T w01y o

(_%j ?[ j_[ JUo(xaT;yzafz)V()Q)Uo(yza725)/1971)1/()’1)

UO (yla Tl;x’,O)dyldTIdyszZ

Note that the 1/2! factor (and, in general, the 1/n! factor)

vanished, because the integral is carried over the set

-0 (0 —o

7, <7,.It1s customary to assume that 7, < 7, =
U(?,7,;?,7,) =0, which allows to replace 7, in the
quadruple integral above by 7', and the same for higher
orders.

In General
T

Uk (xa Ta x',O) — j IUO (xa Ta ya T)V(y)Uk—l (ya 7, x’,O)dydT
0 —o0

and it 1s easy to deduce from the expansion of the exponent
the integral equation: U(x,T;x',0)=U (x,T;x",0)—

. T o
l !
gj J Uy(x, T; v, 7 W (WU (y,7;x',0)dydr
0 —oo



A Path Integral Formulation for the
Density Matrix

Noting the similarity between the quantum mechanics
propagator and the density matrix

U (x5, ):ZeXp(%Ek (1,1, )j<x2 ‘Ek ><Ek‘x1 >
P(x,,%, ):Zexp(—ﬂEk )<x2 ‘Ek ><Ek‘x1 >

One sees that the procedure for evaluating a path
integral for the propagator can be used to evaluate
a path integral expression for the density matrix:

p(x,.,)=[exp IT[mxz(uHV(x(u))}du (1)
2 hil 2

0
where the integration 1s over all "paths' such that

x(B)=x,, x(0)=x,.




Evolution of a Gaussian Packet

If the 1nitial state 1s a Gaussian wave function

ipax'/h  —x2/2A°
epo /e /

w(x',0) = (7Z 2 )1/4

then a direct integration yields

—(x=pyt/m)? . O
‘lﬂ(x,t> — [ﬂ1/2 (A+ih_t)F JzAg(lJihtt/m)Az)} e{;(x—gniﬂ

mA

with the probability density

1 _[(X—(P?f/m]z
. A +1° 8 [ m* A
Prien) = \/;(Az + hztz/mzA2 )1/2 )

» The mean position at time ¢is Pl / m (like the classical
case).

 The uncertainty in position grows from A/ \/5 at time 0
1

A nt )2
to —| 1+ at time ¢.

«/5 m-A’




Position uncertainty =

1

A - e\ ht
\/5 m>A* \/EmA

for large ¢

This can be viewed as ¢ times the initial uncertainty
in the velocity.

* Note also that the uncertainty in position grows
very slowly — especially for a heavy particle.

* Note that there is a non-zero probability for the
particle to “go backwards”, that 1s, be captured at the
opposite direction in which it 1s “generally moving”.



» The Gaussian packet has an “average” velocity, associated
with the motion of its center. This is the so-called “group
velocity”.

* Let a (stationary) packet be defined by
y(x,0) = ] g(k)e™dk = [|g () ¥

where a(k) is the phase of & (k). Assume that \g (k )‘ has a
strong peak at kO , then the integral can be approximated by

T gyl (@ o) k—ky)a (ko) +heo) gy

ko—Ak

This wave packet has a peak at the location in which the
phases of the exponentials change the slowest, since then they
interfere the least. This occurs for the x at which the derivative

of the phase by & is zero, that is, X, = — Ot’(ko )

* [f the packet 1s moving, we have

w0 = ol @R+ 4

So the packet’s center is at X, (f) = = 0!’(/(0) + Ct)'(ko )t

and its “group velocity” is a)'(ko )



Operator Power Series for the Propagator

« We saw that the propagator for a free particle can be
expressed as

gy _ e (1Y 4T > 1(iht )" d”" |y (x,0

n=0 n=
» Sometimes, this can be used to compute ‘l//(x, t> :

An apparent counterexample

. L
o) =) MES
0 otherwise

It appears as 1f the spread of the wave function 1s not growing
over time, because all the derivative are nonzero only at the
interval |x| < L/2. How is this possible?

The operator power series doesn’t
converge (at the boundaries).



Look more carefully at

L& (i) d7w(x,0)
)= 3 S S

n=0 2m

You can try and sum a few of the first terms,
and obtain a reasonable approximation, if the
higher derivative don’t diverge and 1f 7 1s
small enough.

* But one has to be cautious: look at a particle
moving under the influence of a force f. The
Hamiltonian 1s then (assuming we fix all
constants to obtain a simple form):
n

d’ d’
H=—+fK=>H"WW)=|—+ x| (¥

dx2 > dx2 ‘ >

/

The calculation of this operator 1s
tricky because the operators of
second derivative and multiplication
by x do not commute!




Solving Schrodinger’s Equation

for a Particle in a Box

» For a particle under the influence of a potential J(x),

the states of definite

(P—z + V(x)j\ W)=

2m

energy satisfy

2m(E -V (x))
)

Ely)=y")=-

* Next, we solve it for a particle bounded by an infinite
potential (“walls”) on both sides:

Vix)=-

(

0 <=
2

/

o0 otherwise

\

17 111

_L)2 L2



e In regions [ and /11,

2m(E -V (x))

)= )= ) =Vl T o e

* So the solutions are

) = A" 4 Be V"

* In region /11, for example, the Ae‘/Vx part is not

physically allowed, as it diverges to infinity. Only the Be o
part is allowed, but as V — oo, the solution 1s zero. Same
holds for region /.

* So the solution can be non-zero only in region //. The
equation there 1s

/4 2mE "
') =~ ) =|y")=—kly) =

‘gy> = A cos(kx) + B sin(kx)
+ Boundary conditions: w(L/2) =w(— L/2) =0.




e [t immediately follows that the (normalized) solutions are

( 1
2 )2 nx
— | cos| —— n=13,5..
L L
v,)=1""
2\ . (nnx
— | sin| — n=24,0...
\L L
« There is no solution corresponding to 7 = 0, since it
equals 0. > 5 s
. . h™m'n
» The energy (£) corresponding to ‘Wn> 1S En — .
2mL

First (green) and second (red) states: left=amplitude, right=probability.

- There is no state with definite energy (!



- A state with energy 0 would violate the uncertainty
principle:

- The particle is bound between — L/2 and L/ 2,50
the position uncertainty is bounded by L/2.

2
AXSé,AXAPZE:APZE:(AP)zzh—z
2 2 L [

- We must have <P> = (0, else the particle will drift
away to infinity, but that’s impossible, as 1t 1s bound
in the box. But

2
(AP} = (P—(P)) =(P)" >
« What about the average energy? We know that

R .

While the lowest energy level is obtained when n =1
and it equals A%7z° / 2ml’ (the ground state
energy). The uncertainty principle can sometimes

be applied to find a rough estimate of the ground
state energy.



Example Question (Shankar, 5.2.1):

* A particle 1s in the ground state in a box of length
L. Suddenly the box expands to twice its size.
What 1s the probability to find the particle in the

ground state of the new box?

1

2
- Answer: the g = (gj cos(@j small box
two ground 4 L 1 L
state are 1)\2 X
=|—| cos| — big box
> (Lj (2Lj :

And the probability to find & 1n &, is

(L2 \?
. 8
jglgzdx = (—
-1 ) RY/4

SHOW MAPLE FILE HERE

2
j ~0.72

N

J



Development in time of probability

O

amplitude, at ¢ = 0 the state 1s (% +, )/ V2

(ordering 1s raster)

2R
oo
N
e



Quantization of Energy

* We saw that the energy levels of the particle 1n a
box are quantized.

* A particle which is bound by a potential from
escaping to infinity 1s said to be in a bound state.

Formally, Iim w(x) = 0.

X—>*oo
e It turns out that the energy levels of a bound

particle are always quantized.
 Why? Look again at Schrodinger’s Equation:

~2m(E -V (x))
)

)=

» Assume that V' (x) is everywhere bounded. It
follows that both v and ' are continuous.
Assume also that there’s a bounded region (a
“well”) in which the particle’s energy is larger than
the (fixed) potential, but that outside the well the
potential 1s greater than the energy:



‘l//”> _ _ 2m(E B V(.X)) ‘l//>

hZ
1 I
i

V>FE V> E
\w”>:c,\w>,cl >0 V<k “/j”>zcm“//>’cm>o
Solution is sum of ") =—¢; |w).c; >0 Solution is sum of
rising and Solution ; ] rising apd
decreasing ol 10nd1s Sum o decreasing
exponentials «__ sines and cosines exponentials

~_ __—

But one of them has to be zero
because the rising exponentials go to
infinity as ‘x‘ —> 00,

* So we’re left with one parameter (degree of freedom) for each
of regions / and /I, and two d.o.f for /1. We have four constraints
— the continuity of the function and its derivatives at each of the
borders (just like splines). It appears that we can solve for every
E; but note that there 1s a redundancy for multiplying by a scalar,
hence we really have 3 d.o.f and four constraints — so there will
be a solution only for “special” cases. This 1s why the energy
levels for a bound state are quantized. This argument can be
extended to any finite potential. If the potential is infinite
(particle in a box) we have to enforce only the continuity of the
function, not the derivative.



Finite Potential Well

* Like particle in a box, but the walls are lowered
to a finite height: we’ll assume the energy to be £,
which is smaller than V.

X=—a xX=a
! i I
N AN O f = [ ED
h B
2mE
k, = ‘/ 2 0
(region I: Ae™*
* The solution . . x
has the form sregion I/ : Be S Ce ™
region 11 : De "

 As noted, enforcing continuity of the function and
its derivative yields four equations in 4,5,C,D, but
these can be solved only up to a scale factor, hence
the system 1s overdetermined and can be solved only
for special values of energy. The resulting equations
are transcendental and don’t have a closed-form
solution.



The Probability Current

- For particles, or classical flux, the current 1s the
amount of something crossing, say, a unit area
during unit time.

* In QM, 1t makes sense to talk about the
probability current. If many particles are present,
it will be equivalent to the classical definition.

 The probability current is defined for a one-
dimensional particle as the amount of probability
crossing over: how did the probability to find the
particle to the right of X, change between time ¢,
and 7, + At?

X0 X0




- The probability change i1s

| Pr(x., + Atydx — | Pr(x, ,)dx =

I[Pr(x, t, + At)— Pr(x,t,) kdx = At

o0

jéPr(x,to) "

X0

Ot

« Assume that there’s a function J such that

ok o
ot Ox

Then the probability change is JAf, and J 1is
therefore the probability current.

- A straightforward application of Schrodinger’s

Equation yields




b Probability

nzz{  State at . ~~ current atf = 3
2| =2

0,18
] State at

/3

014
012
0.1
0,081
0.06
0,041

0.02

e Initial state: Gaussian packet centered at 0,
moving to the right at unit speed.

* Why 1s the current negative at certain points?

* Because the packet 1s moving to the right, but 1s
also expanding! So there’s an area in which the
probability to the left of x 1s increasing.



* For the right moving wave packet

. 2
o P '
h(px 2mt] B *(px—Et)

Ae = Ae”

 The probability current 1s
2
J =4 £
m

* Intuitively, this 1s true because p / m 1s the
speed of the packet, and the packet 1s uniform,
so the current depends only on the speed.

* [t can also be immediately verified that
current for two such wave packets moving at
the opposite directions 1s

7 =(|df - |8 )2

Where A,B are the coefficients of the right and left
moving packets.



Introduction to Scattering

When a classical particle hits a potential barrier,
it either passes it (if its energy is higher than the
barrier’s energy), or 1s reflected (if its energy is
lower). The situation in QM 1s rather different.

- Start by considering a step barrier

incoming
WANY - t=0
x=0
transmitted )
: reflected I ¥
VARL t>>0

An incoming packet hits the barrier and
disintegrates into a left and right going packets.



Straightforward Solution

* Find the basis of the normalized eigenstates of
the step potential Hamiltonian.

* Project the 1nitial wave function on that basis.

 Propagate each of the basis functions in time
(with the corresponding coefficient).

 As the time tends to infinity, identify the right
and left moving components.

It turns out that, under certain
assumptions, a much simpler method can
be used — which 1s rooted 1n classical
optics, and 1n the wave-particle duality.



* The problem can be solved in principle for any
packet, but it 1s impossible to obtain a closed-form
expression for the solution.

» Often, one 1s interested in cases 1n which the
iIncoming wave 1s very wide, and therefore has a
sharp peak 1n momentum space.

* In that case, it is possible to derive the ratio of the
reflected and transmitted parts with relative ease by
essentially reducing it to a stationary problem,
dependent only on the energy.

e The main trick 1s to look at a/l the components —
incoming, reflected, and transmitted — as coexisting,
and to measure the ratio of their probability currents.
The justification 1s: 1f the incoming wave is very
wide, 1t 1s impossible to tell when 1t hits the barrier.

» We’ll assume that k,, is the wave number of the
incoming packet, hence its energy and momentum are

energy = Eo — hkg / 2m And its stationary state

momentum = 7k, behaves like eikox.



* The reflected part has the same wave number (and
frequency, of course) as the incoming wave. The transmitted
part has a wave number Kk, which must satisfy

2mV,

E,~V,=hkl[2m =k, = |k — .

* So, we have the following situation:

v

Ceiklx

x=0
* We can find 4,B,C up to a scale factor because the function
and 1ts derivatives are continuous at O:

B ky—k C 2k,
A ky+k~ A k +k

* The currents associated with incoming, reflected, and

transmitted are ‘A‘zhko/m, B‘zhko m, C‘2hk1/m.
2
So, the [k, | [E,-7, B
o _ _ R=""—"=1-T
babilit = = 2
1;2: abilities ‘A‘zko ‘A‘z E, y

for transmitted for reflected



Tunneling

* What happens it J, > E, ?

AN

energy = £,

v, “the forbidden zone”
1]

x=0

* The solution to Schrodinger’s Equation in the
forbidden zone 1s

2m(E, -V,
p" + m 2 )W 0=
— 2m(V, — F
yoce kzx,kz :\/ & ;12 L
If k, = \/szo /n?, |region[: Ae™™ + Be ™
the solutions are regi on I] - Co
(B ki+k, 32 »
Where< A4 kl_
2k Cl
A ki—k, +k2




* [t 1s immediate to see that the probability
current going into the right half 1s zero; yet —
some particles manage to escape into it.

 How can this happen? It seems to violate
energy conservation!

* From the uncertainty principle, conservation of
energy 1s violated only if we can measure this
violation. The position uncertainty for the particle
in the forbidden zone 1s very small (a decreasing
exponential), hence the uncertainty in momentum
1s large enough — and 1t doesn’t allow the
measuring process to determine that energy
conservation was violated.

 So, a particle can break into the forbidden zone
(although 1t cannot go too far into it). If the potential
drops again to zero, the particle can escape through
the barrier and then it 1s free (like some particles
escaping from a nucleus).



=0 t = HA¢ t = BA!

t = 7At t = 9At t=11At

t = 12At t = 14At t = 204t

A A

A 1D particle hitting a step with a potential higher
than the particle’s energy. Note short penetration
into the forbidden zone.




Tunneling: a 2D particle hitting a barrier. The
probability amplitude is depicted.




Potential Barrier

Incoming Vo > E,
(energy = £,)
‘ 11
%
AN 11
X=-a X=a

eInl, =A™ +Be ™ k, = \/ 2mE, [h’

eInll, w=Ce""+De™, k = \/2m(VO — EO)/isz2
eInlll, w=Ee™

 As before, enforcing the function and its
derivative to be continuous at x = +a yields four
equations, which can be solved up to a scale
factor, and then

2

|
cosh’(2k,a) + a” sinh®(2k,a)

r-if
A

_ LB_ZEO
JAE,(V, - E,)

a



Scattering off a
potential barrier.
Horizontal axis
is E/V,,
vertical axis 1s
T. Scales are
chosen so that

2mVya® =9’

(following
Eisberg &
Resnick, p.
202). Lower 1s
detail of upper;
note that 7'1s
equal to 1 at
certain energies
(strange,
because we can
have more

transmission at a ']

lower energy!).

1_

0.6

]
0.995
0.99
0.985
0.98

0975

b2



Xmaple code for potential
barrier, tunneling

V,>FE

assume(a,positive); assume(k1,real); assume(k2,real);
psil:=A*exp(I*k1*x)+B*exp(-I*k1*x); # (-infinity,-a/2) k1=sqrt(2*E*m/h"2)
psi2:=C*exp(k2*x)+DD*exp(-k2*x); # (-a/2,a/2) k2=sqrt(2*(V0-E)*m/h"2)
psi3:=F*exp(I*k1*x); # (a/2,infinity)

# now force continuity and first derivative continuity

eql:=subs(x=-a/2,psil-psi2);
eq2:=subs(x=-a/2,diff(psil,x)-diff(psi2,x));
eq3:=subs(x=a/2,psi2-psi3);
eq4:=subs(x=a/2,diff(psi2,x)-diff(psi3,x));
sol:=solve({eql,eq2,eq3,eq4},{F,C,B,DD});
Fsol:=subs(sol,F)/A; numF:=numer(Fsol);
helpl:=expand(simplify(numF*conjugate(numkF)));
denomF:=denom(Fsol);
help2:=expand(simplify(denomF*conjugate(denomkF)));

T:=help1/help2;

T1:=subs({kl=sqrt(2*m*E/h"2),k2=sqrt(2*m*(V0-E)/h"2)},T);
# Following Eisberg & Resnick p. 202
T2:=simplify(subs(h=sqrt(2*m*V0*a"2/9),T1));
T3:=simplify(subs(E=V0*r,T2));

plotl:=plot({T3},r=0..1,thickness=3,axes=boxed,axesfont= TIMES,BOLD,16],n
umpoints=1000):



Vo <E

HHHHIHHEHHAHHHEHHAHAAH A end VO>E, start E>VO

assume(a,positive); assume(k1,real); assume(k2,real);
psil:=A*exp(I*k1*x)+B*exp(-I*k1*x); # (-infinity,-a/2) k1=sqrt(2*E*m/h"2)
psi2:=C*exp(I*k2*x)+DD*exp(-I*k2*x); # (-a/2,a/2) k2=sqrt(2*(E-V0)*m/h"2)
psi3:=F*exp(I*k1*x); # (a/2,infinity)

# now force continuity and first derivative continuity

eql:=subs(x=-a/2,psil-psi2);
eq2:=subs(x=-a/2,diff(psil,x)-diff(psi2,x));
eq3:=subs(x=a/2,psi2-psi3);
eq4:=subs(x=a/2,diff(psi2,x)-diff(psi3,x));
sol:=solve({eql,eq2,eq3,eq4},{F,C,B,DD});
Fsol:=subs(sol,F)/A; numF:=numer(Fsol);
denomF:=denom(Fsol);

T:=simplify(abs(numF/denomF)"2);

T1:=subs({k1=sqrt(2*E*m/h"2),k2=sqrt(2*(E-V0)*m/h"2)},T);
#following Eisenberg&Resnick p. 202
T2:=simplify(subs(h=sqrt(2*m*V0*a*2/9),T1));
T3:=simplify(subs(E=V0*r,T2));

plot2:=plot({T3},r=1..10,thickness=3,axes=boxed,axesfont= TIMES,BOLD, 16],
numpoints=1000):

with(plots):

display({plot1,plot2});

plot(T3,r=2..10,thickness=3,axes=boxed,axesfont=[ TIMES,BOLD, 16],numpoints
=200);



A Delta Function Potential

- Assume the same situation as before, but instead
of a step potential we have a “Delta function”
potential — that 1s, a very narrow infinite wall.

k
Ael o Potential = Cl§()€)

Be_ikox Ceikox

x=0

* Note that the wave number on the right of the
barrier 1s the same as on the left, because there is no
region in which 1s loses energy.

* As before, there are two equations: the function
has to be continuous at 0 (hence 4A+B=C). The first
derivative equation is a bit more tricky, because
Schrodinger’s Equation 1s



"

2m(E, =V
o 2m(E, V)

h2

2mE, 2mao(x)
o h2 l// T h2

l/j:

» What happens to ¥ at x = 0? Since it is the
integral of ", which contains a product of the

Delta function, it jumps by 2maC / h*  when
crossing the barrier from left to right. So, the

equation for W' 1S
2maC
h2
* Solving this together with A+B=C yields

ik(C—A+B)=

2 2 2
B

R=— = 2n;a249T:1_R
Al m a” +kjh

* As the particle 1s heavier, and 1ts wave number
smaller, 1t will tend more to behave classically (that
is, reflect).

4



Arbitrary Barrier

» Express as the limit of rectangular barriers of
infinitesimal width, and calculate the limit of the
product of the corresponding transmission
coefficients.



Some results on Degeneracy

» Recall that an eigenvalue @) 1s degenerate 1f there
are two linearly independent states with eigenvalue @).

Theorem: there 1s no degeneracy in one dimensional
bounded states.

Proof: assume
h’ h’

——y +Vy, =y, ,——w) +Vy, = Ay,
2m 2m

Multiply by ¥> and ¥, and subtract to get

iy, -y, =0= (Wl’l//z _Wll/jé) =0=
W\, — W\, = const., take x — oo to get const. =0
3o V1 _ ¥
v, V¥,

COnst.

= log(y,) =log(y,) + const. > y, =™y,

But a difference in scale factor means that the states
represent the same physics. Il



Theorem: If parity 1s conserved (that 1s, the
Hamiltonian commutes with the parity
operator), then every non-degenerate state of
definite energy has definite parity.

Proof: Let O be the parity operator.

Hy)=E|y)= H(0ly))=0(H|y))=
OElw))=EQw) = Oly)=ely)

non-degeneracy

but O° =1= €'’ = £1, so there's definite parity.




There can be degeneracy in two dimensional
systems — such as a particle in a 2D box:

* The states of definite energy are products of the 1D
states for x and y, and their energy is the sum of
energies of the corresponding 1D states.

* So, if we know for example that the energy i1s
10h°7°

2ml

but instead it can be any normalized linear

combination of

‘l//1’3> = %cos(%j cos(%zyj, or

‘ W3,1> = %COS(:STMJ COS(%)

That 1s, the state has to be of the form

then the state 1s not uniquely determined,

af +‘,B‘2 =1

05‘@”1,3>+,B“//3,1>9



The Harmonic Oscillator

* Very important — models the behavior of a
system around an equilibrium point, even for
many particles (as follows by diagonalizing the
Hamiltonian).

 The Hamiltonian is the same one as in classical
mechanics, with the usual substitution p - P,x = X :

2 2 2
H:P +ma)X
2m 2

e Since X and P are Hermitian, it follows that H
cannot have negative eigenvalues.

 To find the definite energy states, we must solve

d’v 2m mao’x’
+ E — =0
x> I’ ( 2 )W



 Define constants and a variable change
1

b:(ijﬂgzi,x:by
mw ho

- To obtain "+ (2 -y =0

 To solve it, look at the asymptotic behaviors:
7
2

yoo=yu'—yyr0=y = Aye

2
»
*But Ay"e? isruled out from physical
considerations.

» At the other end
yo>0=2p"+2ey =2 0=

VS Acos(«/gy) + Bsin(@y) =
A+cy+0(y°),c = B2¢



A

2

« Next, guess a solution w(y)=u(y)e *

Where

u(y) = A+ cy + (higher powers)

y—0
u(y) — y" + (lower powers)

y—>0

u' —2yu'+2e-Du=0

* Guess further u(y)= ZCny”

n=0
* And obtain C, , = (Zk _;)1(; z‘i) ; k_) %
+ + o

* This 1n 1tself would not be very bad, but it’s

trivial to verify that #()’) behaves like e”
when y — o0,  which implies that

v

w(y) = e, butthat is physically untenable.

y—0

k



 Fortunately, there’s a way out: look at the recursion

2k+1-2¢
Ck+2 = Ck
(k+2)k+1)

This has to stop somewhere in order to prevent the
solution from diverging, so we must have

~ 2k+1
2

g k=0172...

* So, energy quantization somehow came (again)
into the picture. The solution for energy E 1s

1

1
mao 4 mo \2 | 22
X)= H||l— | x|e "
Vi (¥) me%myj ”(:hj

1 .
Where £ =| n+ = B Hern.nte, flOt
2 Hamiltonian!




* The H’s are the Hermite polynomials. The first are

H,(y)=1 H(y)=2y H,(y)=-2(1-2y%)

2 4
H,(y)= —12(y —§y3j H,(y)= 12(1 —4y° +§y4j

A few examples.
The upright arrows
mark the classical /¢ [T\
turning point for an |
oscillator with the
given energy; note
that, much like as
with the potential
barrier, the oscillator
enters the classically
forbidden zone with $1¥uty)|
non-zero probability. 'q |
Note also that as the 11 I ,
energy increases, the ;
behavior starts to N { L
resemble the j AT ‘ &

t | AN

classical behavior. e I NN S ey

Vo (y)




Interlude: Finding the Oscillator’s Ground
State from the Uncertainty Principle

2 2 2
H:P +ma)X
2m 2

 Let’s search for the minimal energy state, that s,
the normalize ‘I,V > which minimizes <l// ‘H ‘ W> ;

IR S PSRN S Y
WH|y) =~y |Ply)+ 5 ma™{y | Xy)

Recall that <l)y‘X2‘w> = (AX)2 + <X>2 (just as
with ordinary average and variance), and the same for
P. Since we want a minimum, take < X > — < P> =0,
and then

(W[Hlw) === (AP} + mo*(ax Y

We know that




And therefore

7’ 1
W|Hly)>

8m(AX)2 + > mao’ (AX)2

The minimum is obtained when

h . ho
(AX) =——, for which <H> =——
2m 2

* We proved that the minimum is obtained for a
Gaussian; since AX = AP = 0, the Gaussian is
centered at 0 and has no phase (momentum) shift,
which after normalizing equals

I 2
Z _ mox
2

maw

(x)=|—| €
W in (X) g

* Due to the non-degeneracy of one dimensional
bounded states, /.. must indeed be the ground
state (there’s only one state with the minimal energy
equal to 1ts eigenvalue). Thus, to quote Shankar, we
have found the ground state by “systematically
hunting in Hilbert space”.



« Example question: a potential barrier 1s added, so
that the potential for x > 0isco. What 1s the ground
state energy?

« Answer: no even solutions are possible, since
they are non-zero at x = 0. So the ground state

energy is (3/2)hw.



Analysis of the Oscillator with the
“Raising” and “Lowering” Operators

* An important and particularly attractive technique
due to Dirac for solving the oscillator in the energy

basis.

* In order to solve

HlE)=( 2+ el

2m 2

 Define the two operators




* [t readily follows that their commutator 1s
[a,cf ] =aa’ —a" a=1

* And they “nearly factor” H (“nearly” because
X, P do not commute):

H = (a*a +1/2)ha), so define H = EL a’a +l

hao 2
71e) = ele)

e The action of ¢” and a on the eigenvectors of H
1s very simple, because

o [et’

[a H] [a H]
)= ol ). ) = ot - [aH])\e
(aH—a) >:(5—1)(a‘ >
1a* g>=(5+1)(a+‘g>)

Similarly,



* So, operating with a, a" lowers and raises the eigenvalues
of H. But since H (and therefore H) are positive definite, the
operation by a has to stop somewhere:

= a‘go>= go>:O:>
[Fr-1/2)e,)= 0= Ale,)= 1] &,)

* Due to the non-degeneracy of one dimensional bounded
states, every such “decreasing sequence’ has to end with the
same ‘80 >, denote it ‘O>

 Label the successive operations ofa” on‘ 6‘0>by ‘n>

It follows that a|n) =~/ |n—1),a"|n) =n+1|n+1), because:|n)is (a* )'|0)
normalized. Since H ‘ O> = (1/ 2){ O> and every a " raises by 1, we have
H|n)=(n+1/2)n). 1a|n) = (af[ - a) n)=(n- 1/2)(a‘ n>)and since H is

non - degenerate and H ‘ n-— 1> =(n—1/ 2)‘ n-— 1> there's a constant C such that

a‘ n> = C‘ n— 1>. Take adjoints to obtain <n ‘a+ = <n —I‘C*, and multiply to get
(nla*a|n) = ‘C‘z. But(n|a*a|n)=(n|H -1/2|n)=(n+1/2)-1/2=n.

so. b=

* So, the representations of a,a”,H in the ‘n>
basis are very simple, and so are those of X and P:

X:(hf(a+a+>,p:i(m§hf(a+_a)

2mm




Example question:
 What are <X >,<X 2> 1n the state ‘n>‘7

1
« Up to a constant ¢ = (h/Zma))E, X=a+a .
Ignoring ¢ for the moment,

<X>=<n‘a+a+‘n>=<n‘a‘n>+<n‘a+‘n>=0+0=0

(x*)= (o +a"Fln) = nlaln) + (nfla” Flm)+

<n ‘a+a‘ n> + <n ‘aa+‘n> =0+0+ <n ‘a+a‘ n> + <n ‘aa+‘n>

Since @,a” lower and raise |n) and since (n|m)=6

Now, use the identities
a‘n>=x/ﬂn—1>,a+ n>=\/n+1 ‘n-|—1>

To obtain (after multiplying by ¢*)

<Xz>:(n+%jnf_w




Passage from the Energy Basis to
the Coordinate Basis

1 1

a= mno X+z 1 2P<:>
2h 2mh

1
(m—wjszr( L jz d denote y = (maw/h)" x

2me ) dx

soa=2" y+i ,a+:2_ y—i
dy dy

* To find the ground state in the coordinate basis:

a‘w0> =0= (y + dij‘%> = () => the ground state is
Y

5 1

y max
2 mo Y o
‘WO> — A()e — e (after normalization)

2

h

And the other eigenstates can be derived (up to a
normalizing factor) by

v -fe)= 2o o



Coherent States

» Seek the “classical limit” of the oscillator,
1.e. states with a relatively small uncertainty
In energy etc.

* Time development of classical oscillator:

(0)=(1/m)p(t), p(t)=—ma’x(t)
Define &(t)=4x(1), p(1)=(1/n)p(2)
xX(1)=ap(t), p(t)=—wx(t).

Define a(t)z(l/ V2 lfc(t)ﬂ'f?(t)]
a(t)=—iwa(t)=a(t)=a(0)e™"”
x(1)= 1/ J2 Iaoe_i "o e’ ]
p0)=l-i/V2 Jere ™ ~aie |
The energy (for all¢) = ha)‘ao

‘2



 There 1s a lot of similarity between these
relations and the average behavior of the
quantum oscillator:

)A(:,BX:(I/\/EXCH—M )

P=(1/np )P:(—i /2 Xa—cf )
H:ha)(a+a+l/2)

XO=/v2 [ (@) +{a) (0)e™ ]
Po)=l-i/ N2 [ (@ )0)e ™ ~(a) (0)e™ ]
This 1s almost 1dentical to the classical
oscillator equations, with <a> , blaying
the role of «,. We therefore ask that
<l//(0)‘a‘l//(0)>:a0. For the energy to
behave similarly, we should have
<H>=ha) a+a>(0)=ha)‘ao‘2 -- but
(H)=ho|l/2+a, ‘2 ] Assume then

that |ez, ‘2 >>1/2.



* This analysis suggests to require

(w (0)aly (0))=a,, (w(0)}a"aly (0))=la, |
The simplest way to enforce this s to

require a‘w(0)>:a0 ‘w(0)>.

+
a d

How do the eigenvectors of a look like?
Let a‘a>:a‘a>, denote ‘a>:ch (a)‘n>.

So a‘a>=ch (a)a‘n>zzcn (na)\/; ‘n—1>:

ach () aci/%a)

n>:>cn ()= =

¢, (a):MCO ()

And after normalization:

e "% ),



[t follows that:

1 1
(1), b ef +3 |, (1), e o+l |

Andso AH :hw‘a‘: Af, <<1.

(H),
Since X ,P are expressible in terms of a,a ", it
1s straightforward to derive:

<X >a =, /&Re(a), <P>a =/ 2maoh Im(x)
maw

AX = L,AP(X: m—m:AXaAPa:E
2mae 2 2

Time evolution:

) n
_ ) a _;
o) / Z 0 zEnt/h‘n>:
o A 7!

—iwt/2

) —iaot Y
Liwt/2 _aol* /2 a,e —iE t/h
e e Z e
o A/n!

So, the state remains an eigenvector of a. This also means

n)=e" "\, >

that AX AP don't change. The wave function 1s a "small’
a  «

Gaussian which moves back and forth.



The Operator D(«) and the Wave Function v, (x)

Define D(a):e“a+_“ ¢, D(«a)is unitary.
Since [acf ,a*a]:—‘a

formula for two operators which commute with
2
|

2, 1t follows from Galuber's

o

their commutator that D(a)=e "' e™ e

0 ,ande““+0 ol n), SO
)

Jn!

D(e)0)=e 14" S Z )\ lor). which allows to
Jn!

e—a*a ‘O>=

calculate the wave function i, (x):<x‘a>=<x‘D(a)‘O>.
The result s

1/4 - 72
e (22 o {50 2

7t



Field Quantization

* For two coupled oscillators, new variables can
be defined which decouple them. This can also
be done for an infinite chain of oscillators, a
continuous string, and the electromagnetic field.

* The Hamiltonian for a pair of coupled
oscillators equals

1

2 2
1
2p;n+§’;+2ma)2 (xl_a)2+5ma)2(x2+a)2+/1ma)2 (x1_x2 )2

where 4 controls the strength of the coupling.

* Defining new variables and new masses

X, (t):xl (t)'lz'xz (t)’xR (t):xl (t);xz (t)’luG “dmu, :%

decouples the resulting differential equations,
and the Hamiltonian can be written as
2 2 ] ?
Po | Pr bl O XA — Ly | X p— 2a +mw’a’ ale
2p, 2p, 2 2 1+4 1 1+4.4
(t)zpl (t);pz (t)’a)G:

where p (t)=p, (£)+p,(1),p, w,

@,=w\1+41




* The quantum mechanics case proceeds similarly:
new observables are defined by

X, +X P—-P
=——5F=R+P, X=X~ X, Bi="—

X
¢ 2 2

* From the commutation relations of the original
observables

LX,,P | X,,P, kit (and the other commutators = 0)

It follows that the same relations hold for the new
observables. It also follows that the Hamiltonian

PP 1, » 1 2 2 2
+——+—mw (Xl—a) +—mao (X2+a) +Amw (Xl—Xz)
2m 2m 2 2

equals

P 1 3 i

o +—,uGa)éXé+P—R+l,uRa)§(XR— 2a j +mw’a’ ad
2p. 2 24, 2 1+41 1+41

J o /

i, Hy
Note that this is true only because of the

commutation relations between the new
observables.




A basis for the system’s wave functions 1s given by
the tensor product of the corresponding
eigenvectors of H,and H,, which are given by
the respective raising and lowering operators:

o= l U0 l )
X P
\/7_ n ’ \/ﬂGa)Gh ’
P U B 7 O I , 2a
W h N el Wy,
L R —

the eigenvectors of H_ are given by

G> ,with an eigenvalue of
1 - .
(m—ajh @, and similarly for i’ >

The eigenvectors of the system are given by

1

V.., >= W(aé )n (a; )p ‘l//0,0> ,with an energy of

(n+ljha)(;+(p—l—ljha) S .
2 2 1+4 4




* In the (0,0) state, both the average and the distance
between the two masses are Gaussians around zero.

* In the (1,0) state, the average’s distribution has two
peaks away from zero, and the distance 1s a Gaussian
around zero.

* In the (0,1) state, the average’s distribution 1s a
Gaussian around zero, and the distance’s distribution
has two peaks away from zero.

* In the (1,1) state, the distributions of both the
average and the distance have two peaks away from
Zero. .
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Continuous String

2 2
( 12 82 — % 2ju(x,t)zo, v=\/E
v ot:  Ox U \ Ja

L 2
Potential energy = r I ( ou (x,t)j dx

2\ Ox
L 2
Kinetic energy = ad j ( au(x,t)j dx
29\ Ot

. . . 2 .
Fourier expansion with f, (x)= 251 (k%j:

u(e)=Y g, (0) £, (X)=q, (1).d, (¢) determine

the state of the string at time ¢.



* In Fourier domain, the equations are

. k
decoupled: g, (H)+wlq, (1)=0, o, ETW

 It’s straightforward to see that the
Lagrangian equals ngZ[q —wlq; ]
k=1

* The momentum conjugate to g, 1s

oL .
Pr=—=H],
oq,

e The Hamiltonian 1s H =§Z P +'u0)/§ q/f
k=1

.. . 1 U
Denoting ¢,=f,4,, P,=——D: [ﬂkE k}
pih

. 1 SO
yields H :Zaha)k g;+ p,f]




A schematic proof that g, p,=4, are
canonical (most constants ignored, L=27):

Lagrangian=L= ﬂ(@u (x,t)/0t) —(Ou(x,t)/ox) }z’x,

and the momentum conjugate to u(x) is 0L/ du=i.
Fourier expansion with f, (x)zsin(kx)

U(EN=Y 0, (0 f, (K= (e= 4, (0 £, (), 50

g~ [u(x.)f, (D)dx.py= [i(x ) f, (x)dx.

Commutation relations: {g, ,q, =

dq, 0q, dq, 0q,
ou(x)ou(x) ou(x)ou(x)

dx=0, same for {p_,p, }

1Y

ou(x) ou(x) ?u (x)J ?u (x)J

0 0

|10 £ () dx=5,,



» Now, quantize by promoting ¢, ,p, to

Operators Qk ,IA’k satisfying [le ,IA’kz ]=i5klk2.

(note: as for one particle, the classic variables di49; are time-
dependent, but the operators are not).

1 A
* Denote 1, Zah Wy (Q;? +Pk2 ) It has

eigenstates and eigenvalues

H, ‘nk >=(nk +%)h @, .

» Since the H, commute, a general state can
be defined by n1>‘n2 ...‘nk>, with energy

Zn @, above the ground state.
k
As before, define creation and annihilation

operators: a, =(1/ V2 XQk +iP, )
a, =(1/ J2 XQk ~iP, )



ak‘nl...nk...>=ﬁ‘nl...nk—l...>

ay \ny...ny..)=\n +lln,..n +1..)

nl"'nk"'>:(illﬁ)| (fkﬁ)' ‘O>
1 K

The observable u(x.t) 1s promoted to an

operator U (x):Z 1, (x)Q, =
%;%kfk (x)(ak +a, ) (:Bk z\/%)

And 1t 1s not hard to show that <U (x)>(t)
satisfies the classical equation.



* What is the ground state ‘O>? Its £’th Fourier
coefficient 1s an oscillator with frequency
proportional to 4, at its ground state —1.e. a
Gaussian with variance ~1/k. So a sample of
the ground state 1s a function with slowly
decreasing Fourier coefficients. This decrease
reflects the coupling in the spatial domain,
and the samples are not random noise, but
have some measure of smoothness associated
with them.

* The ground state 1s a fractal of dimension 2.

* An excited state 1s the superposition of
sinusoids with the ground state.



Quantization of the EM Field

Maxwells Equations:

VE=47zp V-B=0 VJ:_%Z
A

1 0B VXB=4—7TJ+18E

c Ot c cot

Potentials : VxA=B, E=—V ¢— 10A

c Ot

Gauge transform: A'=A-VA, ¢':¢+18_A

c Ot
Coulomb gauge: V-A=0, (¢p=01f p=0, J=0)
Lorentz gauge: V-A=— l%:
c Ot

VxE =—

_4d

C

*g=—47np Y=

1 0°
¢’ o’

ZEvz




Force on a charged particle: q(E +V><Bj

Energy of the EM field: —H _ﬂE +B ]d

- Experimental motivation for
quantizing the EM field: spontaneous
decay of hydrogen atoms when no
field 1s present.

. Recipe for quantization: find canonical

coordinates Ai and momenta Il ] such that

I1 l.:@L/ 8211-, 4,11 j}zgij’ and promote

them to operators with similar commtation
relations.



 The EM Lagrangian is

L:é j [le2-B2frr=

2

éﬂf_ LOA gl —|wxalf Wr

c Ot

and indeed it yields Maxwell’s equations when
varied with respect to the potentials.

* But since ¢ does not appear in L, ¢ has no
conjugate momentum.

* Since we’re working in free space (no
charges/currents), this problem can be alleviated
by working in Coulomb gauge with ¢=0.

* The Lagrangian is then simpler, but it doesn’t
yield the equation V.E=( any more. This
condition now has to be enforced.

 This will result in one less degree of freedom for
the vector potential A.



* The coordinates are A ; (I’) , and the

—E j (r)

conjugate momenta are Hl.(r): 1
JC

 Alas, they are not canonical. We’d like to have

{A;(r),I1 j (r’)}=5l-j5 (r—r1")

but taking the divergence with respect to »
yields zero on the left-hand side, but not the right-
hand side.

* The way out of this is to parameterize A by
independent variables, so that V-A=0 will hold.
As In some cases in classical mechanics, this is
easier to do in the Fourier domain, in which the
condition is algebraic and not differential, and in
which the coordinates can be decoupled.



- Since A(r) and TI(r) are real, there 1s
a complex vector function a(k) satisfying:

A(r)= j a(k)e™ +a*(k)e ™ [’k

I1(r)= jk[a(k)e’kr—a*(k)e"kr]d k

dric

* The existence of a(k) 1s guaranteed by
the redundancy 1n the Fourier transforms
of the real functions A and | ] : for a real

/. F(=k)=F"(k).

» The choice of a(k) is guided by the
following 1dentities for the oscillator:

X:(Lj”zw),p:i(m;hj”(aua)

2maw



- The conditions V-A=V:I1=0 are
expressed in the Fourier domain by

k-{a(k)+a*(-k) Ek-{a(k)—a*(-k) F0=k-a(k)=0

which suggests to expand a(k) in a basis
orthogonal to k.

 Define for every k an orthonormal basis

¢(k1),s(k2),(k3), such that 5(1(3)”1(.
* For every k expand a(k) as follows:

a(k):i(02/47z2a))1/2a(k/l)g(k/l) (w=kc)

This yields

47w

5 \2
A(r)sz( < ] la(kA)e(k)e™ +ax(kA)s(kA)e™ ik

12
H(r):;j1 6:;4 j [a(kl)é‘(kl)eik-r _ar(kA)e(kD)e ™ }7,31(



- Before imposing transversality

/\.

Ai (r),Aj (r’))>={1_[l. (r),Hj (r’)}:O,

.

/\.

Ai (r),Hj (r )f:gij& (r-r")

.

And 1t follows that
{a(kA),a(k'A)}={a*(kA),a*(k'A)}=0,
la(kA),a*(k'A)}=—-i8,,6° (k-k)

Outline of proof :1gnoring all constants,

a(kA) = H A()e ™ 'd’r+ j [I(r)e ™d’ r]- (k)
a*(kA)= [— i j A(n)e™'d’r + j [I(r)e™'d’ r]- g(kA)
Now continue as usual, with the derivatives by

A (1), IT,(x,) given by e XM (k) , ete.



e Next, discard a(k3) which must be
zero due to the transversality.

e The EM Hamiltonian is

= L[ + B
fIfie
4

and 1t equals
2
> [wax(kA)a(kA)d k
A=1

» Guided by the oscillator equations, define

q(kD)=———faka)+ax(kd)]

(w)

1/2
p(kﬂ)——z(zj la(kA)—ax(kA)]

it can be verified that they satisfy the
canonical Poisson bracket relations.




- It immediately follows that

H = %Z [P )+ 0*q* kD) K

so the field 1s a sum of a continuous
family of oscillators, two at each
frequency.

 Next, promote p(kA), g(kA)to operators
P(kA),0(kA) satisfying the canonical

commutation relations
[P(kA),0(k'A)|=ihs 0% (k-k')

and define raising and lowering operators

1/2 1/2
a(kl):(%j Q(kl)+i(ﬁj P(kA)

Q.

1/2 1/2
a+(k/1)=(%j Q(kl)—i(ﬁj P(kA)

which satisty
la(kA),a* (K'A)|= 5,07 (k-K)



A and [T are also promoted to operators:

NN
A(r):z_[[ he j la(kA)e(kD)e™ +a™ (kA)e(kA)e ™ [k

470w

1/2
H(r):;"%( 622) y j [a (kD)e(k)e™ —a* (kA)e(kA)e ™ ]7’3 k

To find the Hamiltonian, symmetrize a * a

by (1/2)(aa % (g * a) to obtain

2

H=) j a+(1</1)a(1<zb)+l hod k

* In the ground state, ALL the oscillators
are in their ground state, so for all k, A

a(kA)|0) = 0.

* Formally, the energy of the ground state

(““vacuum’) 1s Eo = Zj(l/Z)*za)d?’k _ 99
A



e [t can be verified from the definition of H
and from the commutation relations that

H(a* (kA))0) haa* (kA)0)=(rkc)a* (k2)|0)

(this is computed “above” £, ).

* The momentum operator of the field can
be computed by promoting the classical EM

momentum 1 (E >< B)d3r to
4

P=3[la’ (kd)a(kd)|nkd 'k

And 1t can be verified that the momentum

of a+(k/1)‘ O> = ‘k/1> is 7ik. Since

E* =p°c® +m’c" it follows that |kA) is
a massless particle — the photon. Its wave
function 1s

‘kﬂ,> S g(kﬂ)eik.r

(27)"




 The state of the field 1s given by the
number of photons at each k, A, that is, by
successive application of creation operators
(Fock state):

akA) alod)” g
ymt !
n, photons with wave number £, and

polarization A, and linear combinations
of such states.

* Expected value and variance of vacuum
electric field in location r:

(0]E(1)|0) =0, but (0|E*(r)|0) = o0

» Why? It’s enough to prove for I1(r):



* For simplicity’s sake, write
() ~ [£"2[a)e™ ~a’ (e ™ 'k
So (0[T1(r)|0) =
(0][ k"2 la(k)e™ ~a” (kK)e ™ 'K/ 0)
but for all k: a(k)[0)=0,(0]a*(k)=0.
Now to the variance:
(0] [[ K2k (atk )e™ " —a* (k, e ™)
[atk, )™~ (k)¢ ™" 'K,k |0)=
(O[[[ Kk ?e ™" a(k )a” (k,)d k,d K, |0)=

(0| [[ k2K 0" (k, a(k, ) + 8 (k, —k,)]
a’3k1d3k2‘0>:
<O‘ j kd’ kl‘ O>=O(k§j for a frequency cutoff %, .



The Classical Limit

* We should hope that, as mass and energy scales
increase to “everyday scale”, QM laws should
converge to Newtonian mechanics laws. Look for
example at the harmonic oscillator when the energy
increases — it resembles the behavior of a
“Newtonian” oscillator.

* [t makes sense, in this regard, to look at the
average, or expectation, of position and momentum.
Therefore let us look at how the average changes
over time: let (2 be a function of X and P. Then

£(Q) =2 (v[alv)-

WiQy)+ {yQw) + (v [Qy)

e Assuming () has no explicit time dependence, () = 0.
We then obtain, using Schrodinger’s Equation

%<Q>:(_hlj<[ﬂ H)) CZ) {w,H}

Ehrenfest’s theorem Remember!



* For example

0= o=

m

2m

e {2522
dt dx oX

» which look just like Hamilton’s equations. Alas,
we cannot argue that the latter hold for average
quantities, since in general

<8H> ) o(H )

op/| " o(P)

P2
(assuming H=—+V(X )j

, ctc.

 However, 1t’s still a good approximation.



Rotational Invariance
and Angular Momentum

Motivation: Central Potential (Atoms)

2D Translations

e Translations in 2D are given by

P —>—ihi,P —>—ihi
ox Oy

and linear combinations of these. Much like 1n the
1D case, translation by a vector a 1s given by

___—ia-P/h Dz :
T'(a)=e ,P=P1+P ]



In1D: Ply)=-in®Y L -1
dx dx h
U, () =y(x—a)=

2

W(X)—aw’(x)+%w"(X)—m=

2 2
{]—ad ad —---}W:

9

_|_
de 2 dx?
d —iaP
_a_
1% dx =@ h

One can also see this via infinitesimal translations :

(dUa jw — lim Ua+g (W) o Ua (W) _
da

e—0 E

p Y —a=e)—y(x-a) __dy(x-a) :(_iu
£0 g dx dx

a{—d} —iaP
so.- LU :—an:Uaze ) _e h

da ° dx



 Let a 2D rotation be described by

(xj (COS(%) —sin(g, )](xj

d

Y sin(@,)  cos(¢y) \ Y

 The operator that rotates the 2D vectors i1s
denoted by R(¢Ok), and the corresponding

Hilbert space operator is denoted U [R(¢Ok)].

For an infinitesimal rotation,

UlR@J0)=1 -2 UlR(@l0]=e
L. =XP -YP, = _in2
inp(;).lart a¢

 Physical interpretation: if [LZ ,H ] =0, i7is
rotationally invariant, and experiments will yield
the same results in the coordinates are rotated.
Also, there is a common basis for A and LZ :



L_'s Eigenvalues

Lo, (p.9)
)= th— =Ly (p.9) >

v, (0,9)=R( p)e™ " (R has to be normalizable w.r.t j pdp)
0

L

z

L)=1

z

LZ LZ

W2> = <l//2 W1>*a implies
w(p,0)=w(p,21)= ™" =1=1_ =mh,m=0,£1,£2...

Imposing Hermiticity, <l//1

m 1s called the magnetic quantum number. Why can we

impose Hermicity? It's a postulate.

* There are still an infinite number of degrees of
freedom for choosing R(p). This is solved by
demanding that the eigenvectors of L_ are also the
eigenvectors of, say, a rotationally invariant
Hamiltonian. Physically, this means that the state
is determined not only by its angular momentum,
but also by its energy.

Define ®,,(¢)=(27) "> [J D, (D, (P)dp= 5j



Examples (Shankar p. 315):

* A particle’s wave function 1s

w(p.)=Ade " ¥ cos’(p).

Prove that

P(. =0)= %,P(lz =2h) = P(l. = —2h) = é

Solution : to calculate P(/, = mh), the p partis only

a normalizing factor.So, up to normalization,

) 2 v m=0
Pl =mh)=|[y" (0. )@, (pdg| ={7’/4 m=+2
0 0  otherwise

* A particle’s wave function 1s

v(p.g)=de (f cos(¢) + Sin(¢)j-

Prove that P(I. =Hh) = P(l. = —h) = %

Solution: the same as above — note that

i ° 2 const. m=x=l
I(A cos(@) +sin(P))D@ (p)dg| = {

g 0 otherwise




Rotationally Invariant Problems

Assume that V' (p,¢9) =V (p). Then the eigenvalue

equation for A 1s (u denotes the mass):

{"" (aﬁl o, 1L a2J+V<p>}wE<p,¢>=EwE<p,¢>

2ul\op” pop p° 09

* Note that in this case H commutes with L

since L is represented by 0/0¢, and we must
have

V@Z) 24

which will hold 1f V' 1s a function of p only.

* We seek common eigenvectors of A and LZ of
the form (separation of variables):

Wy, =R (p)P, (¢) = The radial equation :

—h*(d* 1 d m
+ — +V R = ER




Angular Momentum in 3D
Three (Hermitian) generators: L, = YP, — ZP,,
L,=ZP —XP,L, = XP —YP, whichsatisty:
L..L |=inL,,|L,.L |=inL, L., L,]=inL,
or Lx L =ihlL or

3
[Ll. L, ] = ihz Eq Ly > €, =antisymmetric tensor.
k=1

 The total angular momentum operator (squared)

is defined by
P=r+0+0 =01 |=|L =121 |=0

The square root of L’ is regarded as the total
angular momentum of the system. The goal
1s to characterize a “pure” state by its
(definite) total angular momentum, energy,
and magnetic quantum number (the last being
the angular momentum around the z-axis).



Finite Rotations in 3D

 Rotations are represented by

0 = Hé, @ = rotation angle,

N

@ = rotation axis (unit vector)

e Turns out that U[R(Q)] = e_ieé'L/h

—i0-L
= e /h

Proof: when a vector r is rotated by an infinitesimal angleée,
it moves to I+ M) X1 (because the addition to the vector is
perpendicular both to the vector and the rotation axis). So, the
infinitesimal change induced by U[R(9)] is

w(r)—>t//(r+56><r):w(r)+(56><r)-Vw

Putting aside h ] for the moment, we should show that thls
change in i/ (I’) is also induced by | 4 (00)(L - (9)

vector product term is
6 6 @_|and the change induced by’ +(56)(L- 0)
solr o o |S(OOO@.L +O,L +6.L )y

v, Vv, Vv, Toprove thatthe two changes are
equal, compare e.g. the coefficients

of éZ (and remember that L. = XP —YP,).




If H 1sinvariant under rotation (U[R]H = HU[R)]),
then, since L _, L,L, are represented by infinitesimal
rotations, [H,L,]=0,and so [H,L*] = 0. Hence, all
the three components of L, and the total angular

momentum, are conserved.

However, one cannot find a base which diagnolaizes
H,L.,L,,L_since the L, don't commute. But [L, L 1=0,

so one usually tries to simultaneously diagonalize H,L*, L. .

Common Eigenvalues for L and L,

Following the paradigm used for the oscillator to

|aB) = Blap)
Here, too, there are lowering and raising operators :

L. =L, +iL, =[L L. ]=+hL, Note|L,,I’]=0.
L.(L.|ap))=(L.L.+nhL, |aB)=(B+n)L.|ap)).
(L] af)) = a(L,|aB)).L,|aB) = C.(a, B) a, f + 1)
Andsimilarly L_|af) =C_(a, )| a, f 1)

So, given ‘ af >, the action of L, on it creates ‘ a,f+ kh>

common eigenvectors Lz‘ af > = a‘ af >, L

This has to end somewhere, since for a given total angular momentum

(), the angular momentum around z (£) has to be bounded.



(af|l* —L2|af) = (aB|L. + L} |afs),but L. + L
is positive definite (since L, L, are Hermitian), so

) that

we must have & > 4. So there's an |3

max

cannot be raised : L,

o max> =0. Applying L_to
both sides and using L_L, = L’ — L? —hL_, we get

& = Pmax (BPmax + 1), similarly o = 'Brnin ('Bmin +1)

Itfollowsthat . =—/fmax.Since we got from

‘ a,b’min> to ‘ a,b’max> in k steps of size 71, we must have

oo =" k=012 =1 & [ A1)
2 2

2
k _ B .

5= is called the angular momentum of the state.

Unlike 1n classical mechanics, it's smaller than the total

angular momentum.



Angular k
Momentum 5 'B max 04 ‘aﬂ >

0 0 0 0,0)

o B

2h2,h>
1 ol ()2 240)
2h2,—h>
3/2

But we proved that [ . can only have integer

multiplies of 7?7 LXLA: th

» Answer: here we only used the commutation rules,
not the operators’ specific shapes.




- There are particles whose wave function 1s
more complicated (non-scalar). For these
particles, there are rotation-like operators J
which satisfy the commutation rules

IxJ=ihl]

* For example:

v(x,y,z) =y (x,y, 21+ (X, ¥,2) ]+ (X, y,2)k

 Rotations of such a function involve rotating
both the components and the coordinates: under
an infinitesimal rotation EZk,

Wx _)Wx(x_l_ygz’y_xgz)_ngy(x+ygz9y_xgz) :W),c

v, ey . (x+tye,y—xe )ty (x+ye,y—x& )=y,

W, (Il O g L, O] ig |0 —in||V,
v | |0 1| a0 L | alin 0|y,
J. =LP"®IP+IV®SY =L _+5_.5. =e.g. spin.

['® = 2x2identity matrix w.r.t the vector components,

[ =identity operator w.r.t x, y.



 Just as before:
1 3

27 . Y 271 . . 1.2
J‘]m>—](]+1)h ‘]m>,] 0,2,1 =

|jm)=mh| jm), m= j, j-1,..0,..— j
,J | jm)=C.(j,m)| j,mE])
(J,=J, +is)

J.|jm)=C.(j,m)

j,m+1> =

adjoint

<jm‘J_ :Cj(j,m)<j,m+1‘:>

C.(jom)|" =(jm|J_J,| jm)=(jm|J* -
j(j+Dh* —m’h® —mh’

| jm) =

1

Jm) =l F m) £+ ] fm 21
Since J = £ ;J J, = £ 2.J it 1s straightforward
I

to write their matrices in the | jm> basis as well. These

matrices are block diagonal in the fixed j blocks. This

—i0-J/7

makes the calculation of e more feasible :



Finite Rotations

* In order to compute the transformation induced by
finite (as opposed to infinitesimal) rotations, one

has to calculate _; 5 N
h i0-J

UR®)|=e " =e 7

* The calculation 1s facilitated by the fact that the
matrices for J,,J ,,J. are all block diagonal in
the constant j blocks.

» Also, since the eigenvalues of 6 -J (in the
constant-j block) are

—j,—j+1,...j,then(J-é+j1)---(J-é—j1)=0

(since obviously its action on any vector is 0).

* This allows to express (9 J )2 as a hnear
combination of | (9 J 9 J )2 (h
y have a

the powers 1n the exponentlal usuall

simple periodic behavior which allows to write it
down as simple functions of 6 (see also
discussion here on Stern-Gerlach apparatuses).



The Matrices of Angular Momentum Operators

Spin half  Spin one

jm 1 1) (1 1
JN 00 (53] [3-3) 00 (0 ()
(0,0) 0 0 0 0 0 0
11 )
(5,5) 0 |(3/4)n 0 0 0 0
a4 |
=5 © 0 (3/4’ 0 0 0
(1,1) 0 0 0 2n* 0 0
(1,0) 0 0 2n° 0
(L-1) | 0 0 0 0 0 2n
Jm 1 1Y (1 1
im\_| ©0) (5,5j (5,—5j (L)) (1L0) (1-1)
0,00 | © 0 0 0 0 O
11
(E’Ej 0 |(1/2)n 0 0 0 0
J, G—%} 0 0 -2k o 0 0
(1,1) 0 0 0 o0 0
(1,0) 0 0 0 0o 0 0
(1L-1) | o 0 0 0 0 —n




Spin half  Spin one
jm 11 11
Jm (0,0) [E’Ej (59—5j L) (o) (1-1)
00 | 0 0 0 0 0 0
(l,lj 0 0 12 0 0 0
272
G—%} 0 | n2 0 0 0 0
J, L) | o 0 0 0 N2 0
Lo) | o 0 0 [n/N2 0o n/\2
1L-1) | o 0 0 0 #n2 0
o (3] 32 @ a0 e
0,0) |0 0 0 0 0 0
G%} 0 0  —in/2| 0 0 0
11
——| 1o [|in>2 0 0 0 0
J,[373)
1) o 0 0 0 -in/N2 0
1Lo) |o 0 0 |im/N2 o0 —in/2
1,-1) |o 0 0 0 /2 0




Angular Momentum Functions in the Coordinate Basis

Start with the "topmost" state ‘II >, satisfying LJZI > =0.

In the coordinate basis, L, = +hie™ 9 +i cot(«9)i
- 00 oLl

(note that the 7 part 1s left out, and the ¢ part is taken care
of by multiplying with exp(i/¢@) ).

This allows to find ‘ll >, and the others can be found by
successive operations with L_ . As before, we separate the
r part, and search for eigenfunctions with definite total

angular and z — momentum, Y,"(8,¢) (spherical harmonics).

They are orthonormal under the inner product

1 27

[dQ = [d(cos©))dy.

-10

Ifw(r,0,0)= i ZZ: C"(r)Y,"(0,¢), where

C'(r) = [(1(6.9)) w(r.6,4)dQ, then

Pr(L? = I(1+1)h%, L, = mh) = [|C}" ()| rdr
0

That is, C;" (r) 1s the amplitude to find the particle

at radius » and with momentum(s) /, m.



Yy =(47)"”
Y =F(3/87)" sin(@)e™”
Y = (3/47)"* cos(6)
Y2 = (15/327)"* sin*(8)e™*"
Y, =F(15/87)"* sin(@) cos(B)e
Y? = (5/167)" (3 cos”(8) — 1)
I

Y"(0,4) = <—1>{(2;(1;(+1 ,;;”f)’}z ¢ P" (cos(0))

dl+m

P'(x)=——(0-x 2
(x) = 20 '( ) dx'™"

« Example question (Shankar, 12.5.13): a
particle’s state 1s proportional to (x+y+2z)e
Prove that Pr(/. =0)=2/3,Pr(l, =h)=Pr(l, =—h) = 1/ 6.

(x* —1)

—ar

 Answer: It’s immediate to see that

z= 2;»\PY0 —r‘/4—” Y -Y!) —ri‘/%”(yl—lwf)

So all that’s left 1s to compare the coefficients of
YIO,YI_I,YI1 inx+y+2z.



Pl
Note that as m grows,
there 1s more of the
momentum 1in the z
direction, and the
probability to have large z
Yol 2 12 values decreases.




Solution of Rotationally Invariant Problems

Note: L is mass (to avoid confusion with m).

It V(r,0,9)=V(r),the Schr'ddinger equation becomes

—h*( 10 28 1 in(0 )_
6r 6r r s1n(¢9)69

1 0°
Fsin’ (9) 09 )+V(r)}/fE (r0.9)=Ev . (r0,9)

Since 1n this case [H ,L]=O, seek simultaneous eigenkets
of H,L,L.y y,,(r0.$)=Ry,, ()" (0.4). Asin 2D,
get a radial equation:

w10 ,0 /(141 i
{2ﬂLr al" or r? :|+V(r)} El EREI (IlO Wl)

T
RE,:@:{‘{ 2 by LD }}UEIZO

r dr’ h’ 21’

which is equivalent to

h* d* [(I+1)h*
—+V(r)+ (=) Up,=D,()U,=EU
2udr’ 2 ur’



Imposing Hermiticity of D; with regard to

UEI»O(}:U:(DIUz}’ =EU;(D1U1 )ﬂ”’]‘:

o . ) integration
0 by parts

" 0
«dU,  dU,
Ul ——U2— =0
dr dr 0

Next, address the normalization of U g; ,R gy : to integrate R p;

o0 o0
one must take J. r2 R dr= J. U _ dr.For this to be normalizable,
5 El 5 El

we must have either U f; — %O (bound state) or U ; — %e

(unbound state). In both cases, the upper limit in

Q0
«dUy dUj . L
Uy—Uy—— vanishes and the Hermiticity depends on
dr dr

0

w« dU du, d U duy

whether | U, -U, (0)=0. This 1s satisfied 1f
dr dr

U ¢
U g5 gre=const . If cis not zero, Roc—oc—

r r



Diverges at the origin, which is impossible since

c . s .
— does not satisfy Schrodinger's equation at the
r

origin, as V>(1/r) = —475° (r).So, we must have
Uy ——=—0.

General Properties of UEZ

 The goal 1s to further study the asymptotic behavior
of U, as rtends to zero or infinity, depending on
the potential.

Asr — 0, and assuming that () 1s less

singular than »*, then the equation is

dominated by the so - called centrifugal
[([+]1)

2
r

barrier : U, = U, (E becomes

inconsequential in the limit).



Guessing a solution U, = r yields

{r’ ! (regular)

U, =
T (irregular, ruled out following previous analysis)

e Intuitively — as before, as the angular momentum
increases, the particle avoids the origin more and
more.

* Next, let us study the behavior at infinity.
Assume that the potential does not dominate the
behavior at infinity; a condition which will be
justified later 1s

rV(r) > ()

y—>0

d’U,  2uE

> p2 O E

For large , the equation becomes y
v

(! does not influence the behavior at infinity).
There are then two cases:

E > 0:Particle may escape to infinity, we expect
U .. to oscillate at infinity.

E < 0:The region » — oo is classicaly forbidden,

we expect U, to exponentially decrease as r» — oo.



Assume E > 0. The solutions are
U, = Ae™ + Be™ f = (2,LLE/h2)1/2
Let us now write U, = f(r)e™™", and check

whether f — const.asr — . To do that,

plug the above form into

(5 — 2l

< a’2 2,21 E—V(r)—l(l+1)2h U, =0
dar” nt | 2pr” |

To obtain at infinity

7+ Qik) - 2“;(”) £=0

Assuming the second derivative1s small :

Y 2L L yyar
ok

f(r)=1()exp| ¥ (ij [y yar




If 7V (r) ——=-—0, the integral tends to

2
e

a constantasr —»> . Butif e.g.V(r)=——,
r

as 1n the Coulomb potential , then

10)=Fesp| & [lgj jan

kh’

i 2
U, (r) o exp| + i(kr i ln(r)j

So, the potential influences the particle

no matter how far 1t 1s from the origin.



For the case £ < 0, the results carry over with
the change k — ik, kK = (Zy E‘/h )1/2
Up,——>Ae "™ +Be" ,and B =0 as usual.
As before, this 1s true only if 7V (r) — 0.

In the coulomb case (Hydrogen atom) we expect

as before

2

U, < exp(i ’LK: - ln(r)j€+kr =7

For E <0, the energy eigenkets are normalizable to

+ ,uez//{fzzJ

tkr

e

unity. The operator D, (7) is non - degenerate (see
proof 1n the discussion on degeracy), hence

U ,,v are orthogonal for different £, and so
R, (r)Y," (8, ¢) are orthogonal for different {E [ m}

This means that the energy, the total angular

momentum, and the z —axis angular momentum

fully determine a state.



The Free Particle in Spherical Coordinates

Asbefore: start withy,, =R, (7)Y (0,9)
DeﬁneU -, asbeforeandsincel/’ =0 weget

; f
A Dy g g 2HE

dr i I
- _
pr - D)

This resembles the harmonic oscillator
so define lowering and raising operators

d = d +l+1,dl _d 4l (dd*)U

dp p dp p
d; (dzdz+ )Uz =d, U, d, d=d,,d,,=
dyd;, (d; U))=d; U=d, U= U,
So d;’ is a raising operator. We need
to start withU,: U;'(p)=sin(p) or

U (p)=cos(p).




Taking ¢, to be unity, and re - introducing R,, 1t's

casy to prove that

[
R =(-p) (l aﬂj R, , which generates solutions
p Op
.
R'=j =(- p)l[lij [sm(p )] (spherical Bessel)
p op P
[
RP=j =(- p)l(lij (_COS('O )j (Neumann)
p op P

So, free particle solutions which are regular in the

entire space are given by

hk’
WElm (7'96)9 ¢) — jl (kr)Ylm (‘99 ¢)9 E — 2,Ll

« Example (Shankar 12.6.8): Find the energy levels
of a particle 1n a sphere of radius 7, , given /=0.

* Solution: for /=0, we must have sin(p) =0 at
the boundary, hence

2 212 . 2
kVO=n7Z'Z>En=n 7 h (smcekzz ’qu

2y h’

(note that the quantization is finer as the radius increases)



Relation to Cartesian Coordinates Solution

. . 1 ip-r/h
In Cartesian coordinates, X,9,z2)=—=6€ ,
p2 h2k2
E = = . If the particle 1s going up the z —axis with
2u  2u

1 ikr cos(6)
(27)Y? €

possible to express it as a sum of the eigenstates computed in

momentum p, . (7,0,9) = ,SO 1t must be

spherical coordinates :

o ]
g7 ?) = Z Z C" j,(kr)Y" (6, 9).But only ¢ = 0 1is relevant,

=0 m=-I

as the left - hand side doesn't depend on ¢ (physically, a

particle going up the z —axis has no angular momentum in

that direction). Since ¥’ (8) = (22_'_ :
T

1/2
j P (cos(0)), then

ikr cos N ' zas
o eos(9) _ Z Cz]z (kr)Pl (cos(6)), C; = C,o( o
/=0

1/2
j .It can be

shown that C, =i’ (2] +1), so that

e =" i' (21 +1) j,(kr)P,(cos(0))
[=0



The Isotropic Oscillator

PP+P'+P 1

H=—"""""% 4 uo?(X*+Y*+ 7
21 2

Ub ym
l)”Elm rEl Y (H ¢) —

(9 — 1
<d—+2—él E—lya)zrz—l(hr? U, =0
dr | 2 2ure |
1

r—)oo:>Uze_y/,y (ﬂha)j r
So assume U(y) = v(y)e” ? =
Vi =2 + 2/1—1—1(1-21) v=0,/’t=£

i Yo haw

Incorporating the previous analysis about the

behavior near the origin, guess that

v(y)=y"Y Cy"
n=0



Substituting this into the equation yields
a recursion relation between C, and C,_,,

which implies that A=n-+/ —%. However,

it's easy to verify that the coefficient of y’ is
C,, which has to be zero (since all 1s zero),
hence there are only even powers in the
expansion. The case n=0 1s ruled out because
we start with C,, and therefore the quantized
energy levels are

n:2(k+1):>E:(2k+l+%jh w,k=0,1,2...

(one could guess that the ground state energy 1s
(3/2)hw by separation of variables, and since
GSE for a 1D oscillator is (1/2)h. But this
solution ties the state directly to the angular

momentum).



The principle quantum number 1s defined
by n=2k+[, and it determines the energy,
E=(n+3/2)ho. At each n, the allowed
[ values are [=n—2k=n.n—2n—4...10r0.
The first e1genstates are
n=0 /=0 m=0
n=l [=1 m=%x1,0
n=2 [=0(k=1),2(k=0) m=0;+£2,£1,0
=0 %
n=3 [=1(k=1),3(k=0) m=x10;£3,+2,+1,0
I=1 /=3
The degeneracy in / will be explained later. It
1s a result of symmetriesin the Hamiltonian.




The Hydrogen Atom

» Assume in the meanwhile that the proton’s mass is
infinitely larger than the electron’s, so only the
electron’s wave function 1s sought. The potential 1s
induced by the attraction between the proton and
electron, and the equation has the form

5 2

d 22}1( e Z(l+12) U ,,=0, and as usual
dr® K L ro 2mr

Ug(7)

WElm (raea¢):REl (r)Ylm (09¢): ” Ylm (89¢)

It was proved before that under such a potential,
then up to a polynomial factor, at infinity we have

U, (r)=e "'} where W=—E is the binding
energy (which 1t would take to liberate the electron),
and as r—0 we have U, (r)=r"".

Define p=(2m W /h )I rU,, (r)=e”v,.Considering

the behavior at 0, assume v,,=p"" ZC _p". This yields

(as opposed to the other cases), a successive recursion




d*v dv

relation for the equation —-2—
dp’ dp
2
{e A l(ltl)}v =0,4A= (2m/h W)l/2
P P
C,.. — —e€A+2(k+1+1)

C, (k+I1+2)(k+I1+D)—1(I+1)’
as usual the series has to terminate and we get

the energy quantization levels defined by

. 4
E=W=—r—""  k=012.1=012.
2h (k+1+1)

In terms of the principle quantum number,

n =k +1[+1, the allowed energies are

—me"
2h°n
n—1,n—2...0,and for each of those there are the

E = —. At each n the allowed [ values are

appropriate 2/ +1 z —axis angular momentum values.
So, for a given n which specifies an energy level, the

total degeneracyi1s 2(n—1)+1+2(n—-2)+1+...= n_2



The series terminates at k = n— [ — 2, and there's

a p'*' factor outside. So the solutions are polynomials

of degreen—1:R (p)~e L’ (2p), where the
latter are the associated Laguerre polynomials :

1 =e*(ar/ax Yo xn) 1 = (1) (a* i i

—Cr

1
e .

Whenr > o, R, = 7"

Define a, = h*/me” .

1

1 2 —rla
Wioo = Tle
7
1
1 2 r
_ - e—r/2a0
W50.0 (327m3j ( ao]

1

1 )2
Waio :E j "o cos(&)

2m; | a,

1

1 2 r .
— _7"/2610 . +i0
o = e sin(@)e
Wz,l,_l (32 3 ] Clo ( )




Forl=n-Ly,,., <e " r"'Y"(0,)
Therefore, the probability to be 1n a spherical

shell of radius 7 and thickness dr is oc e 2/"% p->"

This is a maximum when r = n’a,, hence q, is
the average distance of the electron from the

nucleus in the ground state.

In general [3n —I(l+ 1)]
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Multi-Electron Atoms

* Due to the Pauli exclusion principle, two
electrons cannot occupy the same state 1f their
parameters (energy + angular momentum + z-axis
momentum + spin) are 1dentical.

« Hence, first the lowest energy level, n =1, is
filled: Hydrogen and Helium.There are two n =1,
electrons there (two spins). Then, for n =2, the
degeneracy 1s 4, multiplied by two spins given 8,
and this accounts for the following 8 elements
(Lithium to Neon). For n =3, first the [ =()

are filled (two electrons: there’sa 2/+1=1
degeneracy, multiplied by two spins). Same for
[=1, for which there are six electrons (3 “/ levels™
multiplied by two spins). By then we are at
2+8+8=18 (Argon). However, the next electron
(in Potassium) does not choose n=3&/=2, but

n=4&I1=0. WHY?



 The answer lies 1n the interaction of the
electron’s charges with each other (which
we have neglected). The n=4&/=0 1s farther
away from the nucleus then the n=3&/[=2
electron (see equation for average distance).
So, 1t 1s partially screened from the

Coulomb potential by the charge of the other
electrons.



Spin
 Spin has no analogue 1n classical physics.

* An electron 1s prepared 1n a state of zero linear
momentum (1.€. space-independent) state. Since all
the angular momentum operators involve
derivatives w.r.t x,,z, we expect that its angular
momentum(s) will all be zero. However, upon
measurement along, say, the z-axis, the results of
measuring L_ are +7/2.

* So, the electron has some kind of “intrinsic”
angular momentum. Same holds for other particles.

* The wave function of a particle with spin has a
few components, and the spin operators linearly
mix these components — as opposed to the orbital
momentum operators, which mix the coordinates.

* The number of components 1s determined by the
number of values which the “intrinsic”” angular
momentum can attain. The wave function 1s then
just a direct product unifying the “ordinary’” wave
function with these different “intrinsic” values.



The generalized rotation operator is then J =L + S,
where L 1s orbital angular momentum and S the spin
operator. Under an infinitesimal rotation around the

z —axis, the wave function changes according to

] ( —iho/36 ... 0 | Vv, |

v, | 0 .. —iho/08 v,

where S 1s also an » x n matrix.

v)=|1-0)

Now the number of components has to be recovered, as

w), J, =L +8,

well as the form of the operators S, S, §_.Since the

number of possible results for measurement of S 1s 2,

we assume the dimension 1s 2. We also assume that J

satisfies the commutation relations [J isd ] = ihz i s
k

and since L and S commute, these relations are also
satistied for §, S, ..



The commutation rules determine the S operators,
just as they did 1n the general analysisin the
general discussion on angular momentum:

0 1 0 —i 1 0
s =" L R g
o1 o™ 2l o[ 2o -

So the electron is described by a two-component
wave function:

9 9Z 1 O
D o L )
0 1

v_(x,9,2))
This 1s called a spinor. It has two complex components.

For the case of zero momentum, since the momentum

operator P yields zero, we can deduce that i/, >,z//_> are
independent of x,y,z.

1 0
The total spin is given by S*’=S7+S y2 +S? :%hz {O | }

and so it yields a value of (3/4)i” on any state. Unlike the

total orbital angular momentum, the total spin cannot be
changed and 1t 1s intrinsic to the particle. The electron
spin is defined as 1/2.



Hereafter the notation ‘ v, (x,y, z)> will

combine the spin and position amplitudes,

and the normalization condition is therefore

J-”( w.| +‘W_\2)dxdydz =1.

Assume for the moment that the orbital wave

function evolvesindependently from the spin.
We can then limit the discussion to a 2D Hilbert

,S.) = |s,mh) =[5, m),

where s is the total spin (1/2 in our case), and m

space,

the spin along the z — axis. A basis is given by

1 1 1 Remember that we’re
> ) - 0 assuming that

w(x,y,2,5 1) =y(x,y,2,1) (1)

11 0 where y(?) is a two
>:|_ __> —> { } component spinor
S_ basis

S basis

2 2 1 independent of the
and a general state by position.
11 1 1
=0 — s + —,——
‘Z> 2 2> ﬁ 2 2>S b351s|: :|




Define S=(S .S, ,S. =S i+S, j+S.k

If fz,ir> are the eigenstates of #n-S, for a
unit vector 7, <fz,ir Sﬁ,i>:i(h/ Z)ﬁ (can

be proved by direct computation) and
these states are said to have spin up/down
the 7 direction. Denote (ﬁx 1, ):
(sin(@)cos(¢).sin(8)sin(¢p),cos(8)), then
nS=n.S +n,S +n.S =

nl cos(@) e ™’sin()| .
— ,with
2| &?sin(@)  —cos(d)

eigenvectors (and eigenvalues +7/2 ):

) | e™?cos(8/2)
A up)=i +)= o (6/2)
- e'”7sin(6/2)
AR
i down)i )4 ¢ Sin@/2)
- e'"?cos(0/2)




- Note that knowing (S) determines the
state. Actually, instead of specifying a state
by a and 3, we can specify a unit vector #
such that the state 1s an eigenstate of 7-S
with eigenvalue 7/2.

«The most direct way to see this 1s the following:
let there be two complex numbers «, 5 such

that ‘a‘z +‘ )i ‘2 =1. We can multiply by a phase
factor (physically meaningless) and assume

that their angles are opposite: a=p,e ™,

B=p,e”. Since p’+p; =1, we can take
0,=c0s(0),p,=s1n(F), and (up to the division

by a factor of 2) this 1s the general form of the
eigenvectors of 7n-S.

Note: this indicates that any state can be prepared
by a Stern-Gerlach appartus, with its axis at the
corresponding polar angle. This is because we're
measuring the angular momentum at that direction.




The form of the spin operators leads to the
definition of the Pauli matrices o, S=(%/2)o

0 1 0 —i 1 0
Gx: ,G — . 9622
1 o 7 |i O 0 -1

« They anti - commute with each other.

 They satisty 0.0, =io_, and cyclic
permutations which can be immediately
derived:|o,, Gj]= (21’)2 1O » [GZ., GJ.L =210,
k

« They are traceless.

« Their squares equal the 1dentity, and more

generally (ﬁ : 0)2 = I :since each such matrix
7 -S has eigenvalues + (7/2), it follows that

h ] h [ The eigenvectors span the
A A space, and if the operator is
(n ' S + j(n ' S — j — O zero on them then it’s zero on

2 2 all the space.

so(-SY = (12/4) = (-6} = 1.
o If we add the identity /, we get an orthonormal
basis under the inner product (1/2)Tr(A4B).



Since (72-S)’ = 1, it's relatively easy to
calculate the powers of 7-S, which helps in
calculating the propagator and the rotation

operator. For the latter, recall that

U[R(H)]: e—iO-S/h _ e—iO-G/Z _

eXp —i(gjé-o = cos(gj] —isin(gjé’-c
2 | 2 2

(follows immediately by equating coefficients).



Spin Dynamics (How Spin Behaves
in a Magnetic Field)

T

/%

 The torque induced by the magnetic field B on
the current carrying loop is to align its normal
with the field. The torque is given by T = L X B,

[-A
Where L = ——C€ | 1s the magnetic moment,
C

A the loop area, and © | a unit vector

perpendicular to the loop’s plane. See slides 27-8
in electrodynamics file.

 The interaction energy between the loop and B

is given by — (/- B (so that the gradient of this
expression 1s the force acting on the loop).



Carry the preceding analysis with the loop replaced

by a particle of mass m and charge g, moving at speed

vin a circle of radius ». The "current" 1s then

=15
2

which is the product of the current and the area :

qvwzz( q

2mr  C 2mc

gyromagnetic
ratio )/

, and the magnetic moment has a magnitude

U= j [, [ = mvr = the magnitude of

angular momentum. Since p and 1 are parallel,u =y - 1.

The effect of T here1s not to align u with B; instead, it

results in a precession of w around B.




The equation of

. B
motionis T =— =
dt
uxB = y(1xB) J1+Al

= Al=y(1xB)4t
= Al = yIBsin(0) At
But Al 1s perpendicular
toland B (1t's

proportional to their

Explanations:

vector product), so the | The
tip of the vector | movesbyan  particle
: rotates
angle (relative to B) of around 1
_A] ,
Ag = . = (—yB)At, 2. Tis tm:que
[ sin(60) (two slides
, earlier).
SO 1t precesses at a frequency
Oy ==PB | o the magnetic and anguloy moments.




» What 1s the equivalent of these ideas in QM?

e The Hamiltonian of a particle of mass m and
charge g in a magnetic field 1s

2
(P_QA/C)2 :‘P‘ q (P.A+A.PFQZ‘A
2m 2m  2mc 2mc

‘2

H—=

2

J

interaction Hamiltonian

where A 1s the vector potential satisfying
VxA=B. Taking A=(B/2)(-yi+xj)=
VxA=B=Bk. Dropping the quadratic

term in H , the interaction part turns out to be

H _=-— 1 L-B=—p-B, where pisa
2mc

conjectured magnetic moment operator, and
the analogy 1s adopted from the classical case
in which the interaction Hamiltonian 1s given
by the same expression.

So we take u= (i
2mc



* The spin magnetic moment 1s assumed to
be of the same shape:

H. =—u-Boco-B

Int

The related constant turns out to satisfy (as
justified both by experiment and theory):
H=—)8-B, y=—(e/mc)

which 1s twice the orbital case.

The evolution of the electron state ‘w(0)> 1S

_in/h ‘W(O)>:

ei” (SB)/n ‘l//(())>, but the e‘ie's/ L operator
rotates by 0 — just like we proved for J, which

shares the same properties as S (slides207-8)—
so the effect on the electron is to rotate the state

by an angle 0(z)=—»B. So, <S>precesses around
B at a frequency ©,=—)B.

given as usual by ‘w(t)> =€



For example, consider B to be along the

z—axis, B=Bk.So U (¢)=€

oo, |2

inS_B/h

5

and since o, 1s diagonal the exponent equals

U(1)=

0

starts 1n ‘w(0)>=

then ‘W(t)>=

ol /2 0

.If an electron

—iw,t/2

_cos(_é’/ 2)€_i¢/ 2

 sin(0/2)e’?*
cos(6/ 2)€_i(¢_w0t)/ :

€

A+ )—

sin(0/2)e" )2

For example, if 1t starts with spin along the x—
axis, 1t will change to spin along y, etc:

(0=7/2,9=0)>(0=7/2.p=r/2)>..

eigenstate of Sy eigenstate of S,

Which is precession around the z-axis.



Energy Levels of an Electron in a Magnetic Field

 As noted before, 1f the Hamiltonian separates
into a spin and orbital parts, we have twice the
number of orbital states — each one will now have
a +(1/2) spin.

* Now assume there’s a magnetic field B=Bk
present. For the hydrogen atom, the coupling of
the proton to B can be ignored because i1ts mass to
charge ratio 1s much higher than the electron’s.
For the electron, the combined Hamiltonian 1s

—ebB —ebB
H = HCoulomb _( jLz _( JSZ

2mc mc

(remember that the coupling coefficient of the

spin 1s twice as large). Since H commutes with
H

the same states as before : ‘ nlmms> (m, 1s the spin).

L_,L’,and S_,itis diagonalized by

Coulomb?

However, the eigenvalues are different :

H|nlmm,) = {_RY + eBh (m+ 2ms)}‘ nlmm,)

2
n 2mc



H|nlmm,) = {_RY + eBh (m+ 2ms)}‘ nimm,)

2
n 2mc

This results in the reduction of the 2n” degenracy.

For example, the first level (n =1), which had a

degenracy level of 2, now has two levels; m =0,

but m_ = +(1/2), and therefore the energy levels are
eBh

now E,_ =-R + Ey (so no degeneracy). The

n = 2 level, which was eightfold degenerate, now

splits into five levels: the only degeneracy remains

in states in which m + 2m_ are equal :

2(m=1,m_=1/2)
1(m=0,m,=1/2,1=0,1)

E_,=—R ¢ |0(m=Lm,==1/2orm=-1,m, =1/2)
—1(m=0,m,=-1/2,1=0,)

—2(m=-1,m =-1/2)

(c B eth
Y 2me

This splitting 1s named the Zeeman effect.




The Stern-Gerlach Experiment Revisited

 As 1n classical electrodynamics, an inhomogenous

magnetic field creates a force on a dipole, which 1s
OB

z

given by
0z

direction). So particles with positive spin will go
upwards, and those with negative spin downwards.
By blocking one of the paths, we can ensure that the
particle leaving the apparatus will have a definite
and known spin 1n the z-direction (1.e. we know that
it is an eigenstate of §_, and we know the
eigenvalue). This results 1n a space quantization of
the emerging particles (they’re not continuously
scattered, but emerge only at distinct points
corresponding to the different spins; spin half will
concentrate at two points etc). Note, especially, that
not only the total spin is quantized, but the spin at
every axis as well.

k (assuming the field is in the z-




» Suppose we have a sequence of SG apparatuses.
We may ask what percentage of those leaving
apparatus i will leave apparatus i+ (see slides 48-
51). We can now solve this problem rigorously,
since the equations for the behavior of spin under
rotation of the axis have been derived.

m;
b s e s
me ] e @ L ]

1 0
 The electron is in a mixed spin state (a(oj ’ 'B(J}

Due to the heavy proton, the behavior 1s semi-classical, so the
spin up part induces an upwards moving wave-packet, and
similarly for the spin down part. So the wave packet has really
two components — upwards and downwards. The blocking 1s
like a measurement, and 1t forces the spin into a single state; 1f
the lower beam 1s blocked, we get “pure” spin up.



Examples

 Spin half particles are moving along the y-axis (see
drawing) enter two collinear SGAs, the first with its
field along the z-axis and the second’s field is along
the x-axis (i.e. it is the first, rotated by 7/2). What
portion of those leaving the first will exit the second,
if the lower beams in the two SGAs are blocked?

» Answer: we can think of the particles leaving the
first being rotated by /2 and then entering an SGA
identical to the first. The equation for rotation of spin
half particles was developed before (slide 210):

U[R(@)]z e—i@-S/h _ e—i9~(5/2 _

exp| —1i ¢ 6.6 |=cos ¢ I, —isin(gjé-o
- \2) 2 2

In our case

6 =(0,1,0),0 = 7/2 = U[R(0)] =[ Note: al

calculations

| . 1 1 -1 are carried
ﬁ(lz_lay):ﬁtl 1 j out in the

S Z basis




* Since the lower path of the first SGA is blocked,

those emerging from it are in a state (O

1
], and after

1 (1
U[R(6)] acts on them they become —( j

J2 U1

The probability for them to exit the second SGA
(which after the rotation also has its field pointing
up the z-axis), equals their probability to yield 1
when their z-spin 1s measured, 1.e. the square of the

projection of the state vector on the eigenvector of

1
S > with eigenvalue 1, but this eigenvector is ol

so the probability is clearly 1/2.

* Now, assume that another SGA 1s placed after
the second, which transmits only spin down along
the z-axis. How many of those entering 1t will exit?
We know that those leaving the second have a spin
up along x, so their state vector 1s the eigenvector

1 (1
of S . with eigenvalue 1, which equals ﬁ(lj



The probability of this particle going through a z-
spin down SGA is clearly 1/2, and so 1/4 of those
leaving the first will exit the third.

 Note that if the middle SGA has both beams
unblocked (i.e. all those entering it leave it), then
no particle which leaves the first will exit the third
(they leave the first with spin up and all are
therefore blocked by the third). So, the blocking in
the middle one increases the percentage of those
leaving the third.

« Other way to compute: to see what happens with
the particle after 1t leaves the first (and 1s in a (190)1
state 1n the z-basis) upon entering the rotated

SGA: simplest way to understand it 1s to rotate the
entire system by — 77/2, since then we’re back with
an SGA with 1its field along z, calculate there, and
rotate back by 7/2.



SGA’s Acting on Spin One Particles

* The computation proceeds very much like for
spin half. Suppose that the first SGA passes only
z-spin up particles, and the second one 1s rotated
around the y-axis by an angle §. What percentage
of those exiting the first will leave the second?

« Answer: as before, we compute what such a
rotation does to the particle’s state. Just like for
spin half, the rotation operator 1s defined by

U[R(@)] _ e—iG'S/h

To compute the exponents of spin one operators,
note that, since the eigenvalues are 0,27 then

(A-S+hI)A-S)(A-S—hI)=0= (7-S)’ =(7-S)

The Pauli matrices are defined just like for spin
half, but here we shall denote S = 7ic (not 7i/2).

for example, /O —i 0 \
1 . 0 . See
O, =—/—| 1 —1 slides
y
N6 SN I =
J

0




Soin our case, 8 = (0,60,0), and U[R(0)]|=

Y —i00
e OSh_e Ty —1,~ifo, — L6 +
2! g
i%é"%y +4l!6?40'§... (remember: o, =0 )

Collecting terms: 7, + [cos(é’) — 1]0' i —isin(f)o, =
1+ cos(6) _sin(d) 1—cos(0) |

2 V2 2

sin(8) _sin(0)
7 cos(60) 7
l—cos(d) sin(d) 1+cos(6)
.2 V2 2

So, since we started with a particle with z —spin

| . B
up, | o |, it transforms to (1 +cos(0) , sin(0) | 1 COSW)]
: 2 V2 2

and 1ts probability tobe in z —spin up 1s

(1 +cos(0)
2

SGA.

2
) , and that portion will exit the second



Addition of Angular Momenta

* Question: how does a system with two spin half
particles appear (in terms of spin) when viewed as a
single object?

 Such systems are naturally described in QM by the
direct (tensor) product. For example, the system
with two spin half particles 1s the vector space of
dimension 4 spanned by |++),|+-),|-+),|--)

S|, acts as usual on the first component and 1s equal to the identity

on the second component, etc.

Define SZ — Slz T Szz' and the matrix of S2 — (Sl + Sz) )

Then the matrix of S, s ,
o .. (S,+S,)= S/ +S5+25,S, is
in this product basis 1s —
T L A o2t
1 0 O 0 500 0 0 A
ly 2y
0O 0 O 0 0 1 I 0 5,5,
h .
0 0 0 0 As can be
0 1 1 O | verified by
directly
0 0 0 —1 computing the
- - 0 0 0 2 | tensor product.




However, the following basis diagonalizes
S%,S..S/ (=S}, +S;,+S.).S; :
S:1,m21>: ‘+-|—>

s=1Lm=0): 272(+-)+|-+))
s=lm=-1): |--)

s=0m=0): 27(+)|--)

Note that s, m stand for the total spin and total

spin in the z —axis. Thus, s =11n ‘+ +> because
when S* operates on it, it multiplies the state by

2h”.But according to the formalism developed
for general angular momentum operators, the

total momentum operator has eigenstates with

eigenvalue of /(I +1)A°, so here clearly the total

@ 1s1.



So the system of two spin half states is spanned by :
‘Szl,m=1>, S=1,m=O>, S=1,m=—1>, S=O,m=O>.

 This means that the tensor product of two spin-
half particles behaves like the direct sum of a spin
one and spin zero particle — since each state can be
viewed as a linear combination of the three spin one
states (/=1,m=1,0,-1) and the spin zero state
(I=m=0) (careful — the spin one particles requires
three, not one, scalars to describe its state!).

1 _ 1
* Formally, we write 5 & 5 =10

e And in general, for two particles of spin J; and J, :

3 ® =0+ i)®0 +/,-1)®.. 0, - j,)

As follows by counting arguments and from
considering the upper and lower bounds for the total
spin. It remains to calculate the coefficients of the
basis transformation. All this carries over to systems
with more than two particles, e.g.

272 2 2 2 2




The Hyperfine Interaction in Hydrogen

* In addition to the Coulomb interaction, there’s an
interaction Hamiltonian of the form H,, = ASS,
between the proton and electron, due to their
magnetic moment. It splits the ground state to two

levels: E, =—R +Ah’/4, —R —34h*[4

Proof : compute the matrix of ) =) ) =)

Sl'szzslx'szx+sly'szy+slz°szz /1 0 0 O\
So up to constants 1t 1S 0 -1 2 0
c.®o +o, Qo +0. .0, =
Y g 0O 2 -120
0o 0 0 1,

which has eigenvalues and eigenvectors

/()\ (1) (0) (0\

1 0 0 1
1, 1, 1, -3,
1 0 0 —1

o) o) (1) (0
e T I e T 5

/ ——_————

Trilglets Singlet




A Very Short Introduction to Scattering

 Assume that a plane wave exp(ikz) hits a potential
centered around the origin, and which decreases faster
than 1/7 (so the potential has no effect at infinity).

« Asymptotically (r—)oo) the scattered wave will behave
like a free particle. The solutions are known to be of the
form

Z( Alsin(kr—lﬂ/2)+Blcos(kr—lﬂ/Z) lem 0.0)

kr kr

[,m

for the wave to be purely outgoing, this must equal

exp(ikr) f(0,9), and the total wave 1s therefore

exp(ikr)

r
exp(ikz) + f(6,9), that is, the sum of the incident

r
and reflected parts. This expression can be guessed from

physical considerations.

* The stationary states satisfy (up to a choice of
constants) [A+k2—U (f)]W(l’)=0 (k* is proportional to
the energy).

 The cross-section (amount of particles scattered per

. . 2
angle) 1s proportional to ‘ f(0, ¢)‘ . It also turns out that,
asymptotically, the scattered current is only radial.



The Integral Scattering Equation and Green’s Function

[A ) U(r)]w(r) =0= lA + k7 ]l//(l‘) =U(r)y (1)

* Try to solve with a Green function for the operator:
lA +k’ J G(r) = o(r). The idea : given an operator A4

and equation 4w (r) = U (r)y (1), find G(r) such that

AG(r) = O6(r), and then a solution also satisfies
y(r)=y,(r)+G(r)*U(r)y(r), where y,(r) is a solution

to the homogenous equation, Ay, (r)=0:

Ay (1) = Aly, (1) + G * Uy (1)] = AG@) *U () () =
o(r)*U(r)y(r) =U(r)w(r). The integral equation allows an
iterative solution in powers of U (r). Meaningful solutions
for the scattering problem are y, = exp(ikz) and

G, (r) (up to a constant) - exp(£ikr)/r), G, (r) is the outgoing
wave in which we're interested here.

The equation is therefore

exp(ikHr —1'

(1) = exp(ikz) - | LUew ey

Hr —1
Since the potential is spatially limited, and we're interested in
the behavior when » — o0, we can assume that in the

meaningful range of the integrand, » >> 7. It is easy to see that

then Hr — r'H ~r—(u,r’), where u is a unit vector in the direction

of r;in the denominator we can replace Hr — r’H with », which



yields the asymptotic approximation

v (1) ~ exp(ikz) — PR [ exp(—ikuryU (W ()d’r
r

which 1s indeed in the form exp(ikz) +
r

since » depends only on &, ¢.

* It 1s customary to use the following notations:
The incident wave vecto r, kK, 1s the vector of modulus

k which 1s directed along the the axis of the beam, so
exp(ikz) = exp(ik, -r). Similarly, the scattered wave
vector 1n the direction @,¢ 1s defined by k , = ku. The

scattering (or transferr ed) wave v ector 1n the
direction 0,¢91s K =k, —k..



The Born Approximation

w=exp(ik l.r)+jG+ (r—1"U (" (t)d’r'=

exp(ik l.r)+jG+ (r—1")U (rexp(ik,t)d’r'+

I IG+ (r—1")G, (-t U U (" ("d’r'd 1" +...
This 1s the Born expansion, which 1s useful if the

potential is small. Plugging w=exp(ik , 1)+
exp(ikr)

£(6.,4)into the first order Born expansion
r

and using .G+ (r—1r")U (rexp(ik  1")d r'~
exp(ikr) ¢

exp(—iku-r’) U(t"exp(ik,t")d’r’ =
exp(zkr)

exp( ik 1 )U (r"exp(ik 1r)d’r'=
6? ¢): jexp( —iK-r"\U(r"d’t’, which is the Born

approximation. It relates the Fourier transform of the
potential to the scattering amplitude. Higher order
expansion relate to "secondary scatterings" scattered
again from the potential, etc.



Some examples of the Born approximation (left — the
potential, right — dependence of f(€) on 6. This is 2D,
the incoming wave is at the x-direction).
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Partial Waves

« [f the potential 1s rotationally symmetric (central), the
scattered wave can be studied by separately analyzing its
components which have fixed angular momentum.

exp(ikz):ii l \/ 47(21+1) j,(kr)Y,’(0) (no ¢ dependence).

Similarly, we can write f (6’,k)=§:(2l +1)a, (k)P (008(6’))
[=0
1

P,(cos(é?)):( ‘;”J Y"(8) | a,(k) are called the 1¢h partial

sin(kr—17/2)

kr

wave amplitude. Since j,(kr)— , we get for the

free particle (no potential) exp(ikz) —

r—>00

—2(21 l\exp (kr)=exp (z(kr—l;z)) (cos(é?)); thus for each /
r

ik
there are incoming and outgoing waves of the same amplitude,

with a phase difference due to the centrifugal barrier. The two
waves induce opposite probability currents which cancel out
(since there should be no probability flow in the steady state).
If a potential is present, then at infinity the only difference
relative to the free particle can be in the phase; so denote

v, (I/‘)—)iA CXp(l(kl" Z7Z'/2+5) exp(z(kr—lﬂ/2+§ )) (COS(@))

r



Comparing with the free particle, the incoming wave must
2[+1

be the same, so 4,=

l//k(r)—)2—2(2l+l) exp(ikr)exp(2id, )—exp(—i(kr—Iz)

kris
PI(COS(Q))zeXp(ikz)—I—|:Z(2[ +1\€XP(221k5 )1
=0 I

P (cos(@)}
exp(ikr)

.Recalling how f(6,0) was defined,

exp(2i0,)-1
2ik

to attach a phase shift exp(2i0,) to the outgoing wave. The

cross section can be simply expressed as a function of the o;:

G=<47Z’/ k* )i(Zl +1)sin’(J,)

To find the phase shift, one imposes continuity between the
solution at infinity and the solution of the steady state at
the vicinity of the origin.

The main motivation to use partial wavesis when /,k, and
the range of the potential are such that only a small number
of a,(k) need to be considered, since for />/__ the particle
doesn't come closer to the origin more than /___/k, and if
this 1s larger than the extent of the potential such /'s don't
scatter (since the momentum s = £ and therefore the angular
momentum 1s roughly &7, where 7; 1s the particle's distance

from the origin).

r

a,(k)=

. The effect of the potential 1s therefore



Example: scattering of /=1 from a hard sphere
The potential 1s V' (r)=0 for r>r,, V' (r)=oc0 for r<z,.
The general method of solution 1s as follows: look at the
outgoing wave as r—o. It is of the form exp(ikz) (the
homogenous part) plus the solution of the radial equation
in u(r)=rR, , (seeslides of "Solution of Rotationally
Invariant Problems"). The equation 1s

2 2 2 2712
{ A ). +V(r)}uk,l (=" 0, 0)

Since u, () includes already the divison by 7 (see previous

slides on scattering), one only has to compute the phase
shift in u, , () relative to the free particle shift, [/ 2:

u,,(r) = Csin(kr—/ 7/2+0,). 0, is the desired shift.

2udr’ | 2ur

Let's compute the phase shift for the hard sphere and /=1.
Inside the sphere, the wave function 1s zero (since the
potential is infinite). In the outside, the radial equation

2
d Z;+22}u=k2u:

reduces to| —
dar- r

sin(kr)

kr

cos(kr)

kr

u(r)zC{ cos(kr)+a( +sin(kr)ﬂ which,

as r—0, should equal (up to a constant factor)
sin(kr—7/2+6,)=—cos(8, keos(kr)+sin(8, kin(kr), so
a=tan(o, ). Now it remains to enforce continuity at r=r;:



The wave function has to be zero there, so we must have

sin(kry) (kr )H{ cos(kr,)
kr,, 7,

sin(kr,)

a= hry , which in very low energies (k—0)

COSRTL) | in(Jer )
kr,

+sin( k7, )j:O:>

—cos(kr,)

is of the order (rok)3. Since for small angles &~tan(8), this
1s also the order of o, (k). Using asymptotic properties of
the spherical Bessel and Neumann functions (see slide 222)

it turns out that for every I, 5, (k)~(r, k"



