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Some Classical Mechanics

• Lagrangian formulation: particle wants to minimize 
the total of  the Lagrangian
where:
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• Why? 

• Given initial and final location/time

the path         classically taken minimizes 
(extremizes) the action
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• Via calculus of variations, this leads to the 
following equation, which holds in the classical 
path for every t:
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• Often, the following notations are used:

(momentum)         (force)         
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• In the continuous case, often                                 
and one minimizes 
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Stands for the coupling of 

“infinitely close particles”
(e.g. points of a string).
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• What is      in physical terms? Look at a particle 
moving under a simple potential:
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• So      is the TOTAL ENERGY (kinetic + potential).Η



• What are the Hamiltonian equations? As we saw
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Example: Free Fall
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• Note that we have to write the energy as a 
function of the momentum and the coordinates, 
as opposed to the coordinate and its time 
derivatives (the latter is appropriate for the 
Lagrangian formulation).

• The equations are (remember: 
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Which is indeed the free fall equation.
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Example: Harmonic Oscillator

• The point at which the spring is at zero potential 
energy will be taken to be                 The 
Hamiltonian is then 

.0=x









+







=

⇒−=⇒−=−=

⇒−=
∂
Η∂

+=Η

t
m
kBt

m
kAx

x
m
kxxmvmkx

p
q

kx
m

p

 sin cos

 

   ,
22

22

&&&&&

&

• A,B are determined by the initial conditions.



Example: Coupled Harmonic Oscillator
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• Let us discuss differential equations of the form
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Where:

• is a vector of functions.

• is Hermitian with negative eigenvalues
and eigenvectors  
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• After diagonalizing, the system is easy to solve. 
If we assume that the initial velocity is zero,
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• To return to x,
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Where we have taken the opportunity to 
introduce a common QM notation, Dirac’s
famous bra and ket:

• stand for column and row vectors.  

•              stand for           eigenvectors. 

• are solutions to the differential 
equations with one variable,                                     
where              are          eigenvalues. 

• is called the propagator and is of 
fundamental importance in QM.
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Example: Vibrating String

• Once we realize that the propagator formulation 
carries over to the infinite dimensional case, we can 
write down in a straightforward manner the 
solution to more general problems, such as the 
vibrating string:

L
• First, we have to write down the corresponding 
differential equation. Think of the string as being 
composed of many small springs, that is, the 
limiting case of many masses coupled by springs:
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Assume the 
spring constant k
to be equal to 1.
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but in the limit,                              is just the well-
known approximation to the second derivative, so –
ignoring constants – the spring equation is   
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• First, find the (normalize) eigenvectors/eigenvalues

of the operator            Since they’re restricted to be

zero at 0 and L, they are 
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• What are the equivalents of                               
As before, if we restrict the initial velocity to be 0,

the solutions are                          and – also as

before – the general solution can be written with 
a propagator:
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But in the limit the internal product is just an 
integral, so
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• Later, we will see that in QM, every single 
particle has a function – the probability 
amplitude – associated with it, and the main 
goal is to determine how it changes over 
time. It turns out that this function satisfies a 
first order (in time) differential equation (as 
opposed to our examples which had a 
second time derivative), called 
Schrödinger’s equation, and one seeks the 
propagator which – given the probability 
amplitude at          – computes it for every t:0=t
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Why all this?....



Poisson Brackets and Canonical Transformations

Let              be some function of the state variables 
p,q, where we assume no explicit dependence on t.
Then its change over time is given by    

),( qpω

{ }∑

∑

Η≡







∂
Η∂

∂
∂

−
∂
Η∂

∂
∂

=







∂
∂

+
∂
∂

=

i iiii

i
i

i
i

i

qppq

p
p

q
qdt

d

,ωωω

ωωω
&&

• For any two                            define the Poisson 
bracket by
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• We may want to define new variables

),( ),,( qpppqpqq →→

A straightforward calculation yields that if we 
want Hamilton’s equations to hold in the new 
coordinates, we must have

Such a transformation is called canonical.
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Examples:
• Rotation is a canonical transformation (check it).

• Important: the two body problem. Assume we have 
two bodies in space, with locations and masses 
given by                               Assume also that there’s 
a potential which depends only on their relative 
distance,                       We can then define a 
canonical transformation that reduces the analysis to 
that of two independent bodies:

• Thus the center of mass is a free particle, and the 
reduced mass moves under the potential V. One can 
then solve for them separately. One such system, for 
example, is the hydrogen atom.

• We will later show how one can guess such a 
transformation; it follows from the requirement that 
the Hamiltonian be diagonal in the new coordinates.
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The Electromagnetic Lagrangian

• The force acting on a charge q, moving at speed v, 
due to an electric field E and a magnetic field B, is
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The Electromagnetic Hamiltonian
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Max BornErwin
Schrödinger

Werner 
Heisenberg

Paul Dirac Richard Feynman

Max Planck Albert Einstein Niels Bohr

QM was developed in order to explain 
physical phenomena which were not 

consistent with classical physics.

Louis de Broglie



Part I: Physical Intuition 
and the  Finite-

Dimensional Case



Prelude: The Nature of Light
Light was thought to be made of particles, which 
move in a straight line. Later, light interference 
was discovered (Young, 1801), which led to the 
conclusion that light is a wave:

The mathematics behind this: a wave can be described by 
the equation                        Such a wave moves through 
space at a speed of              is the frequency,    the wave 
number. If another wave is    behind, their sum is 

which peaks/is zero when                                        
Denoting                 (the wavelength), there is a maximum 
if                which is hardly surprising – it means that if the 
lag between the two waves is a multiple of the wavelength, 
they contribute to each other (they are in phase).
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Wave interference: as opposed to the drawing, 
assume                  Then the lag between the two 
waves is

so, the maxima correspond to                    which 
implies that the distance between adjacent maxima 
is            (this can actually be used to measure the 
light’s wavelength).  

• Mathematically, if the (complex) wave functions 
are          then the energy arriving when slit i is 
open is          and the energy arriving when both are

open is  NOT                  but
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So far so good – but it turns out that the wave        
model fails to explain certain phenomena.



When you shine light upon certain metals, 
electrons are emitted (the photoelectric effect).

It turns out that

• The emitted electrons move with greater speed if the light 
has a higher frequency.

• No electron is emitted until the light passes a threshold 
frequency – no matter how strong the light is.

• The electrons are emitted too quickly.

All this contradicts the hypothesis about the wavelike nature 
of light.

• Einstein solved this problem (and was awarded the Nobel 
prize for that), by suggesting that light is composed of little 
“quanta”, which impact like “baseballs”, and not like waves. 
These were later termed photons, and it turned out that a 
photon with frequency       has an energy and momentum 
given by
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It also turns out that not only don’t the 
lightwaves behave like waves – also, 
particles don’t behave like particles.
Let’s go back to the two slit experiment. How will it 
look with particles (electrons)? We may assume it 
will look like

i.e., the number of electrons hitting any specific 
point on the wall when both slits are open, will be 
the sum of the numbers when only the 
first/second slit is open. 

But that doesn’t happen; the electrons also 
interfere. That is, at some points, LESS 

electrons hit when BOTH slits are open!! 
This happens even if the electrons are fired 

very slowly (one at a time).



There is no way to explain this – it just happens.

• Note: we can immediately realize that each 
electron cannot go through one slit. However, they 
don’t “break”, because when they arrive at the 
wall, the energy corresponds to a “whole” electron.

• Fortunately, the simple model that describes 
wave interference (             ) also explains particle 
interference. The problem is, of course, to compute 
the so-called “probability amplitudes”
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What happens if we try to watch the electrons? If 
we see them all, there’s no interference!

To be explained 
later. Intuitively, the 
measurement forces 
the particle to 
assume a definite 
position.



Some QM axioms:
• Probability is the squared absolute value of the 
amplitude.

• If there are several possibilities for an event to 
happen, the amplitudes for these possibilities are 
summed. So, to get the total probability, you first 
sum and then take absolute value squared – thus 
there is interference.

• When it is possible to decide what alternative was 
taken, you sum the probabilities (as usual – no 
interference).

• There is uncertainty; we cannot predict what will 
happen, even if we know everything in advance. This 
uncertainty is reflected, for example, in the inability to 
exactly describe both a particle’s position and 
momentum – the famous Heisenberg uncertainty 
principle. All we can do is provide probability 
distributions. But, as opposed to our standard 
understanding of what uncertainty is, here it’s much 
deeper; it’s not “I know the particle is somewhere, I just 
don’t know where” – the particle isn’t anywhere, so to 
say. And if we try to nail it down, we lose its 
momentum. There’s no way out of this.



It’s strange – but it works.

To quote Feynman…

“That’s how it is. If you 
don’t like it, go to a 

different universe, where 
the laws are simpler” – R.P 

Feynman, NZ, 1979.



The Heisenberg Uncertainty Principle

• Take the limiting case of a wave with amplitude 

It has exact momentum (      ) and 
energy (       ) but there’s no information on its 
location, because for every x the probability is 1.

• Real particles have amplitudes that are not 
uniform in space. They may look like a Gaussian, 
meaning that there’s a far higher probability to 
find the particle near the Gaussian’s center. But in 
order to get a Gaussian, you have to add many 
“pure waves”. Each “pure wave” has definite 
momentum – but when you mix them, the 
uncertainty in the momentum increases. The 
narrower the “position Gaussian”, the broader the 
“momentum Gaussian” (more later).
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Momentum certain, but zero 
knowledge on position

Position certain, but zero 
knowledge on momentum

x

Momentum 
uncertainty

Position 
uncertainty



Trying to measure both location and momentum

The smallest distance between two points in an object that 
will produce separated images is                               If a  
photon has energy          it possesses momentum           To 
be collected by the lens, the photon must be scattered 
through any angle between          to          So, the x-
component of the momentum may have any value 
between                         to                          Thus the 
uncertainty in the electron's momentum is                       
So, the product of the uncertainties is 
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Intuitively, we need a “powerful” photon (high frequency) to 
get good position measurements; but the higher the energy, 
the more it knocks off the electron, hence the momentum 
uncertainty becomes larger.



Interlude – the Resolution of a Microscope

The resolution of an 
optical microscope is 
defined as the shortest 
distance      between two 
points on a specimen that 
can still be distinguished 
by the observer or 
camera system as 
separate entities. When         
becomes close to     , it’s 
impossible to distinguish. 
That’s why electron 
microscopes are used 
(much smaller 
wavelength).

3

4

10  be  should
 peaks  between  Distance

0.01 ,1.0 ,10

=

===

ad

ad

λ

λ

4

4

102  be  should
 peaks  between  Distance

0.01 ,005.0 ,10

⋅=

===

ad

ad

λ

λ

4

4

10  be  should
 peaks  between  Distance

0.01 ,01.0 ,10

=

===

ad

ad

λ

λ

λa

a



θ
a
dλa

d

)sin(θd≈

In order to distinguish the objects, the two 
maxima should fall in the view area, so we 
must have
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Another experimental demonstration of the 
uncertainty principle – shooting a particle 
through a single slit (Fraunhofer diffraction):

slit width = W

θ

wavelength = λ

One can prove that                   
.Wλθ ≈

y

Before the particle (wave) hits the barrier, we can assume 
that its y-momentum is zero. After it passes the slit, we know 
its position with an accuracy of    ,but there’s an 
uncertainty in the y-momentum,                           (where p is 
the original momentum).  So,                              but QM tells 
us that                                        

• The narrower we make the slit, the more confident we are 
about the location; but then the diffraction pattern becomes 
wider, and we lose confidence in the momentum.

Wy ≈∆
Wppy λ≈∆
,λppy y ≈∆∆
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De Broglie Waves: The Wavy Nature of Particles

In the previous slide, we adapted to particles a result 
connecting the wavelength and momentum of a photon. This 
is based on De Broglie’s ingenious “hunch” in 1924: “if 
waves (light) behave also like particles, then particles should 
also behave like waves”. It turns out that a moving body 
behaves in certain ways as though it has a wavy nature. Its 
wavelength      is defined, just like

for a photon, by

If so, electrons for example must diffract. This was proved 
experimentally by Davisson and Germer in 1927: they shot 
electrons at a crystal made of layers. An electron is scattered 
from different layers, hence there’s a phase difference, hence 
there’s diffraction.

λ
.

mv
h

p
h
==λ

Note: larger objects (baseballs) also show interference, but    is so small 
that the interference pattern is practically impossible to create and observe.

λ



Application: the Radius of an Atom

• Let the “average radius” of the hydrogen atom be 
denoted by a.

• The momentum p should be, on the average,        
this implies that the average kinetic energy is

• The potential energy is               where e is the 
electron charge. Hence the total energy is 

• It’s easy now to find the a minimizing this 
expression, and it’s indeed pretty close to the true 
radius.

• Why then can’t we squash an atom, and why doesn’t the 
electron collapse onto the nucleus? Because then the 
uncertainty in the position will go to zero, and the uncertainty 
– and hence the average – of the momentum (and the energy) 
will go to infinity.
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More on Probability Amplitudes

Two slit experiment again:

Denote the amplitude that a particle from s will 
arrive at x by Dirac’s “bra and ket” notation:

We will later see that it’s just an inner product.

We know that the probability is the square of the 
amplitude. We also know that amplitudes add:

open 2slit open 1slit open slits both
sxsxsx +=

sxsx ≡ leaves particleat  arrives particle



Another law about amplitudes: the amplitude 
for a path is the product of the amplitudes to go 
part of the way and the rest of the way.

siixsx
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=
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,,
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• We will later address amplitudes with a time 
variable (e.g. what is the amplitude for a particle 
to be somewhere at a given time).

• Another amplitude rule – if two particles don’t 
interact, the amplitude for them to do two things 
is the product of the individual amplitudes.



Applying the amplitude rules to the two-slit 
experiment with a light source (trying to find 

what slit the electron went through)

s
x

If there’s no light, sxsxsx 221121 +=+= φφ

If there’s light, there are certain amplitudes for a photon to 
arrive at               if the electron went through 1 – call these 
amplitudes a(b). Applying the principles and some symmetry 
considerations:

)( 21 DD

4847648476 21 at  D  photon
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If we can detect the slit via which the electron went with total
certainty, then b=0 and the probability is                     hence no 
interference at all. If we try to decrease the photon energy, we
will have to increase its wavelength, hence b will grow and 
we’ll have more and more interference.

,2
2

2
1 φφ +

Question: how can a light source affect the 
interference of baseballs?



Another Example: Scattering from a Crystal

There are some crystals for which the scattering has 
both “classical” and interference components:

neutron 
source

crystal θ

θ

number of 
neutrons

Why does this happen?

neutron 
counter



• Sometimes the crystal nuclei have a property called 
“spin” (they may be “spin up” or “spin down” – more 
later). 

• Usually, the neutron is scattered without “leaving a 
mark” on the specific atom which scattered it. That case is 
like the two slit experiment without light, and we get 
interference. 

• But sometimes the neutron can “leave a mark” on the 
atom that it scattered from – by changing the latter’s spin 
(and also its own spin). That is equivalent to the two-slit 
experiment with light; in that case, we can distinguish 
what path the neutron took, and therefore we should add 
probabilities and not amplitudes (so no interference).

• In this crystal the neutron sometimes changes the nuclei 
spin and sometimes it doesn’t – hence we have a mixture 
of both distributions: interference and no interference. 
Note: it makes no difference whether we try or don’t 
try to find the atom from which the neutron scattered!

= +

spin changedresult Spin not changed



Bosons and Fermions
Let’s look at a scattering of two particles:

• If the amplitude for the left event is            then 
the probability of any particle arriving at the 
detector        is
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• But what if the particles are identical? Then we 
cannot differentiate between the left and right events, 
and we have to add amplitudes before taking the 
squared absolute value to find the probability.



•. Exchanging the particles does not change the 
physics (probabilities), but it may change the phase. 
Since exchanging again brings us back to the 
original system, the amplitude must either remain 
the same or be multiplied by       It turns out that 
there are two types of particles: for Bosons the 
amplitudes are the same, for Fermions they are 
inverse.

• So, for a scattering of two bosons, the probability 
of one of them arriving at        is 

• And for two Fermions it is

• So, two Fermions cannot scatter at an angle of 
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1

b

2

• Let’s look at a double scattering. We know that the

probability for this is 

• Assume that the particles are distinct. The probability for    
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• But if they are Bosons, we cannot differentiate which went 
where, so we have to add amplitudes and then square:

• This yields a probability two times bigger than for distinct 
particles. So: Bosons like to go to the same place, Fermions 
like to stay afar from each other. This is the Pauli exclusion 
principle, and without it atoms would have looked very 
different (electrons would stick together).

is

• If 1 approaches 2, we can denote 

.21 ,21 bbbaaa ====

so the probability for both particles to go to 1 approaches .2 22 ba

.2121 2222 abba +



Light Polarization
Waves can be characterized by being either:

• Transverse: the thing that is "waving" is 
perpendicular to the direction of motion of the 
wave (light waves).

• Longitudinal: the thing that is "waving" is in 
the direction of motion of the wave (sound 
waves).

Two possible polarizations of light waves. The 
arrows depict the oscillations of the 

electromagnetic wave. These will be called x and y
polarizations.

Z
Z



Polarizers:

Polarization by reflection.

There are apparatuses that allow only light as a 
certain polarization to go through (LCD, polaroid
sunglasses). 



• From the QM point of view, every single photon
has a mixture of the two polarizations associated 
with it, and we can only compute the probability 
that it goes through a certain polarizer.

• and          resp. refer to the state of a single 
photon in an x resp. y beam which is polarized in 
the classical sense.

• Filtering with a polarizer in angle     relative to  
x-y yields the state 

x y

θ
.)sin()cos(' yxx θθ +=

If we place a second polarizer at angle 0, then the 
probability that        goes through is              , which is 
in perfect accordance with classical physics – but 
here, it’s not that the wave energy is decreased by this 
factor, but that only               of the photons go 
through – and those which do, don’t lose any energy.

'x )(cos2 θ

)(cos2 θ



Thus – a classical, macro, continuous 
phenomena is explained by a (rather 

different) micro, discrete, QM phenomena. 

Light is (classically) said to be RHC polarized if 
its x and y components are equal but        out of 
phase (in this case, the field is not linear as before, 
but oscillates in a circle which lies in the plane 
perpendicular to the light’s direction).  The QM 
interpretation for a single photon is

Where does the i come from? We know that a       
phase shift, when repeated twice on        yields        
So, we can see why it is represented by a 
multiplication with i. 
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Interlude: Wiesner’s Quantum Money

• Bank has a list of bills; each has a serial number 
and 20 photons embedded in the bill, each with 
one of four possible polarizations:

• A would-be counterfeiter cannot copy the bill, 
since any attempt to measure the polarization 
will not only probably destroy the original 
polarization, but will also leave too many 
possibilities. For example, if a photon measured 
with a green polarizer gives zero (the photon 
doesn’t pass), it can be either a black, red, or 
blue photon. As with the electron, the 
measurement operation changes the state; this 
is why the method works.
• Note that the bank may say “yes” even if some photons are not 
correctly polarized – but the probability of the counterfeiter to 
obtain this can be made arbitrarily small.



The total amount of deflection is a function of

• The total amount and distribution of electric charge on the ball. 

• The orientation and rate of spin. As the rate of spin increases, so does the deflection. As 
the axis of the spin becomes more vertical, that amount of deflection also increases.

If the beam from the electron gun is directed to the magnets, as shown to the right, the 
beam is split into two parts. One half of the electrons in the beam are deflected up, the 
other half were deflected down. The amount of deflection up or down is exactly the same 
magnitude. Whether an individual electron is deflected up or down appears to be random. 
Stern and Gerlach did a version of this experiment in 1922.

This is very mysterious. It seems that the "spin" of electrons comes in only two states. If 
we assume, correctly, that the rate of spin, total charge, and charge distribution of all 
electrons is the same, then evidently the magnitude of the angle the spin axis makes with 
the horizontal is the same for all electrons. For some electrons, the spin axis is what we 
are calling "spin up", for others "spin down".

You should beware of the term "spin." If one uses the "classical radius of the electron" 
and the known total angular momentum of the electron, it is easy to calculate that a point 
on the equator of the electron is moving at about 137 times the speed of light! Thus, 
although we will continue to use the word "spin" it is really a shorthand for "intrinsic 
angular momentum.“ It has no classical counterpart.

Introduction to 
base states: 
spin and the 
Stern-Gerlach
experiment



Building a Spin Filter

The blocking mechanism is really a 
“filter” – allows only one spin type to 
go through.



Shorthand notation for “spin up” filter. On the average, it allows half 
the electrons through. We can rotate the filter. Still, on the average, it 

allows half the electrons through.

All those which passed the 
first will pass the second.

None of those which 
passed the first will pass 

the second (nothing passes 
both of them).

Half of those which passed 
the first will pass the 

second: in general, it’s           







2
cos2 α

One quarter will pass.

To realize that something strange is going on, 
think about a filter with both paths unblocked 
being here:



Correlation measurements in a radioactive substance 
that emits a pair of electrons in each decay:

If the right electron passes, then its left hand companion does not 
pass its filter, and vice-versa. We say that each radioactive decay 
has a total spin of zero: if one electron is spin up its companion is 

spin down.

Again, one-half of the right hand electrons pass through their 
filter and one-half of the left hand electrons pass through their 
filter. But this time if a particular right hand electron passes its 
filter, then its companion left hand electron always passes its 
filter. Similarly, if the right hand electron does not pass its filter, 
its companion electron doesn't pass through its filter either.

1. One-half of the right hand electrons emerge from their filter. 

2. One-half of the left hand electrons emerge from their filter. 

3. If a particular right hand electron passes its filter, one-half of 
the time its companion left hand electron will emerge from its 
filter, one-half of the time it will not. 



It turns out that in the “world of Stern-Gerlach
apparatuses” (SGA), the states U and D (denoting 
spin up and down) form something that resembles 
a basis in linear algebra. What does this mean? 
For example:

• If an electron is in one of these base states (B), 
we can predict the probability it goes through any 
SGA, regardless of its previous history. 

• Every state and every transition amplitude can 
be describe as a mixture of these states: 

• Since the base states are complete (i.e. they span 
all states), we must have that the sum of 
probabilities of a state to be in any of the base 
states is 1, or 

But the probability of a state to go to itself must 
be 1, so according to      , we must have
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Just like in linear algebra, we have many sets of 
base states; e.g. the outputs of SGAs which are 
rotated in various angles, each time leaving only 
one beam unblocked. And just as in linear algebra, 
we can switch from description in             to a 
description in                 if we know              for all 
i,j. For example, for spin ½, and for rotation 
around the longitudinal axis, the transition matrix 
is
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Operators and base states
Suppose we do something to a particle – for 
example, make it go through a mess of SGAs. 
Let’s call this mess A an operator.

• If we have such an operator, we may ask 
questions such as: given two states         ,  what is 
the amplitude for                         which will be 
denoted                   We get another familiar result 
from linear algebra (remember that it makes more 
sense if you read from left to right):

Where i,j range over base states.

• Other “linear algebra laws” follow – the 
composition of operators is the matrix product of 
their individual matrices, we have the usual laws 
for transforming between bases, etc.

• The matrix product representation encapsulates 
a rather strange result – composition of operators 
(like position and momentum) is not necessarily 
commutative, as opposed to classical physics. 
This has profound consequences.

φχ ,
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Dependence of Amplitude on Time: The 
Hamiltonian

• How does the amplitude change with time?

• For a particle in a state of definite energy           
the amplitude is independent of position and is 
given by                  (intuition: it’s like a wave, 
and it has zero uncertainty in momentum, hence 
infinite uncertainty in position). 

• Note that any probability question for such a 
particle is independent of time; hence such a 
particle is said to be in a stationary state.

• In order to have probabilities which change in 
time, the particle has to have more than one 
energy state: note that 

depends on the time t.

• The amplitude of a particle in uniform motion 

is                          where E is the particle’s total 
energy. 
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Interlude: Jumping Over a Potential Barrier

Suppose that a particle with a certain energy 
somehow goes over a potential barrier which is 
larger than its energy (this is, of course, impossible 
in classical physics). Its energy has to be negative, 
and since                   its momentum has to be 
imaginary. Since the amplitude behaves like  

,22 mpE =

,)()( xpEtiae ⋅−− h we may expect it to look like .xe α−

Incredibly enough, this is true. It explains, for 
example, particles getting into places which are 
forbidden by classical physics. More on this later.



A Little More on Bras and Kets
• Recall that if    ranges over base states, then

• Inspired by this, we write

• And further:   

• is a bra and        is a ket (these notations are 
valid not only for base states). 

• If                         and                          then

• So it’s just like an inner product. These notions 
extend naturally to an infinite number pf base 
states, with the       structure                   (plus 
some functions which are not in the classical     ). 

• For an operator A we have

• It’s common in QM to denote the state vector     
by anything which identifies it. For example, a 
state with a definite momentum p will be denoted 
by          etc.
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How does the amplitude change under an 
apparatus, or operator? Passage of time is also an 
operator; denote by               the change which takes 
place between time     and       By that we mean  
that if a system is at state      at time       then its 
amplitude to be  at state      in time       is 
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So, it’s enough to know

for base states 

Since                                               it’s enough to 
know                     Denote as before                       ).,( tttU ∆+ ,)()( titCi ψ=
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H is called the Hamiltonian. It could also have been 
called the energy matrix: look at                            
the equation we saw for the amplitude for a particle 
at rest, with energy       Then we have  
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hi−This is why H represents energy, and why the         
factor was inserted before. In classical mechanics, 
the function giving the total energy of the system is 
called the Hamiltonian, hence the name here.



Interlude: the Hamiltonian is Hermitian

Recall that the adjoint of a matrix A is defined by
∗+ = ijji AA ,,][ and that A is Hermitian if .AA =+

Since                               we can write the solution as),()( tHC
dt

tdCi =h

)0()( CetC iHt−= (forget      for the moment, 
it’s only a constant).

h
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Some useful facts: A Hermitian matrix has only real eigenvalues, and 
the eigenvectors corresponding to different eigenvalues are orthogonal. 
Also, if H is Hermitian,  )(   e  thereforand iHtiH ee −−

is unitary. So, the evolution of a state is actually a rotation.



A Two-State Example: the Ammonia Molecule

The molecule can flip, 
and every state is a 
combination of the “up”
and “down” states:
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The question – what is the 
Hamiltonian? Based on 
symmetry considerations:
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• What do these solutions mean? It’s always useful 
to look for states with one frequency (or a definite 
energy). These occur in two cases: if           the 
energy is               and the amplitudes to be in 
and are the same. If ,the energy is               
and the amplitudes to be in and have 
opposite signs (but the probabilities are equal!). 

• Suppose we know that when the state is        
This implies  
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So                                      Hence, if we know that 
at the state is “up”, we also know that at    
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Interlude: Symmetry and Conservation

A hydrogen ion can be 
in one of the two states 

The operator P is 
defined by a reflection 
with the property  

Assume that the 
physics of the ion is 
symmetric with respect 
to P. What does this 
mean? If we reflect by 
P, let the system evolve

.2 and 1

.1  2   ,2  1 == PP

for some time, and reflect again, it will be just like 
letting the system evolve and then reflecting. If we 
denote, as before, the operation of “waiting” by U, it 
means that P and U commute:                   In general, 
an operator Q will be said to have a symmetry if it 
commutes with U. 

.UPPU =



Recall that                     So Q commutes with U 
iff Q commutes with H (remember that U is a 
sum of powers of H).

Suppose there’s a state                                        
is physically the same state as      ; so, it differs 
from        only by a phase factor.  For example, 
look at the two states    
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so, the phase change is 0 for      and     for          

• Another example: look at an RHC polarized 
photon, and rotate it by an angle      about the z-
axis. Then its state is multiplied by 

• It’s straightforward to see that if the symmetry 
operation of Q on a state         multiplies        by a 
phase factor       , then this is true forever:         
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Parity

Look at the operator                                            

Since                it is immediate that if   

).,,(),,( zyxzyxP −−−=
  ,ψψ δieP =,2 IP =

 .1or    1  then −== δδ ii ee

• P is called the parity operator and the two cases 
above correspond to states having even or odd parity.
For the hydrogen ion,       has even parity,       has odd 
parity, and       has no definite parity.

• It turns out that parity is not always conserved; it is 
violated by 
• If                 is not involved, it turns out that any state with 
definite energy which is not degenerate (meaning that there are 
no other definite energy states that have the same energy) must 
have either even or odd parity. As a matter of fact, let Q be any 
symmetry operator, and let          be a non-degenerate state with 
energy E. So                            and
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So,          is a state with definite energy E, but we assumed that    
is the only such state. So we must have                         but as 
we saw before, if                then
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The conservation laws in QM
•Various conservation laws can be expressed in QM as 
multiplication by a certain phase factor which depends on 
time, location etc. with a constant which equals the conserved 
quantity. Note: since there are states without a definite 
momentum for example, we cannot always talk about 
“conservation of momentum” as in classical physics (the most 
we can do for such states is hope that the average momentum 
is conserved). Some examples:
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Then         corresponds to the classical momentum. Similarly, 
there may be special states         such that after the passage of 
time     , the state turns into                        Then     
corresponds to the classical energy. 

If you find this perplexing, check what happens to the wave equation      
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at the equations for a photon’s momentum and energy).

• Let               denote translation by a, and assume that 
there’s a special state          such that

• If            denotes rotation by      around the z-axis, and )(φzR φ
,)( 00 ψψφ φim

z eR = is the angular momentum forhm .0ψ
It turns out that for an RHC/LHC photon this is equivalent to the 
classical notion of angular momentum, with values         For linearly 
polarized light, there’s equal amplitude to be in RHC or LHC, so a 
single photon doesn’t have a definite angular momentum, and that’s 
why (classically) a beam of linearly polarized light has zero angular 
momentum.

.h±

(and look again



Infinitesimal Transformations

As in Lie group theory, it is customary in QM to study transformations 
with an infinitesimal displacement. For example, let ).,()( ttUDt ττ +=

As we saw before,                                         so for a small           ,)0()( ψψ h

iHt

et
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
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But we know that for a state of definite energy E the passage of time 
multiplies the state by                                         
So, it makes sense to refer to H as the energy operator (more on this 
later). 

energy. sphoton' 1 ==⇒∆−≈∆− hωωω Htitie

• Similarly, for a small displacement                 we may assume that

the state changes linearly in                                  

),( xDx ∆
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for a definite momentum state; so, call        the momentum operator.xp
( ) ⇒∆+≈=∆ ∆ ψψψ xikexD xik
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Note that               behaves like                should, so we can guess 

That                             That turns out to be true (more later).   
xpi )( h dxdψ

.
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d
ipx
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• Similarly, we can define the angular momentum operator         by
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And it immediately follows that         seems like    zJ .xy ypxp −



Part II: the Continuous 
(Infinite-Dimensional) 

Case: the Wave Function



The Wave Function and the Axiomatic 
Foundations of QM

• So far, we have dealt with a finite number of base 
states. That is, a system could be described by a 
finite linear combination of probability amplitudes. 

• This does not always suffice. Think for example 
about the location of a particle along the x-axis. 
There is a continuum of possible locations, and 
they cannot be expressed as a finite linear 
combination of anything. 

• Same holds for momentum.

• This led to the definition of the wave function.
For a particle in a one-dimensional world, it is a 
continuous function which defines the amplitude to 
be, for example, at any location x.

• Next, we present the axioms of QM for what a 
wave function is and how it behaves over time. 
They are given side-by-side with the classical 
physics axioms, to emphasize both the similarity 
and difference between the two.



changes according to 
Schrödinger’s equation:

where H is the quantum 
Hamiltonian, created by 
substituting
In the classical Hamiltonian. 

The system changes with time 
according to Hamilton’s equations, 
where is the classical 
Hamiltonian (total energy):

If a particle is in the state        a 
measurement of the variable    

yields an eigenvalue of 
the operator                   with a 
probability
and the state changes from        
to         (        collapses to   

A measurement of a dynamical 
variable                 yields a 
uniquely defined result, and the 
state is unchanged by the 
measurements. 

The x of classical mechanics is 
replaced by the operator  X, 
defined by 
and p is replaced by the 
operator P defined by 

Every dynamical variable is a 
function of x and p.

X and P are Hermitian.

The state of a particle at time t 
is given by a vector (function) 
in Hilbert space, 

The state of a particle at time t is 
given by its position         and 
momentum

QMClassical
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Points for Discussion:

• What is the wave function? Inner product: 

• What are the X and P operators, and what are their 
eigenvectors and eigenvalues? Relation to Fourier transform!

• The meaning of the collapse of the state vector for the X and 
P operators. What happens if an eigenstate is measured? 
Reminder: two-slit experiment with measurement. Question: 
how can a photon cause the wave function of a battleship to 
collapse? Reminder: Stren-Gerlach experiment.

• The Schrödinger equation for a free particle as the limit of a 
finite dimensional state: where does the derivative come 
from? (Later).

Complications:
1. What does the classical xp go to: XP or PX? Answer: average.

2. What if       is degenerate? Answer:                            
where         is the projection on the subspace of vectors with 
eigenvalue

3. The eigenvalue spectrum of         is continuous. Answer: replace all 
sums by integrals, and “probability” by “probability density”.    
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Expectation and Uncertainty

• We saw that the measurement process in QM is 
probabilistic. Yet, we can ask what the average result of 
measuring      in the state          is: following the usual 
definition of expectation, it equals  

ψΩ

ψωωωψωψψωωψωω
ωωω









==≡Ω ∑∑∑  

2

where               range over the eigenvalues/eigenvectors of       
Since     is Hermitian, its (normalized) eigenvectors are 
orthonormal. It’s easy to see that       can be resolved by    

ωω , .Ω
Ω

ωωω
ω
∑=Ω  

Ω

(hint: verify that both sides are equal when 
operating on every         , and use the fact 
that              span the entire space).

ω
{ }ω 

So,  the expectation is                             This is nice, since we 
don’t need to find           eigenvalues and eigenvectors in order 
to compute the expectation. 

• The average has a meaning only when computed over an 
ensemble of identical particles. It cannot be computed for a 
single particle, because the first measurement changes it.

• For an eigenstate, the expectation is equal to the 
corresponding eigenvalue. Thus, the Energy/Position 
/Momentum  measurement of a state with definite EPM yields 
the “correct” and unique EPM result.

.ψψ Ω=Ω
sΩ′



The uncertainty for       in a state        is also defined just
like the classical variance:

Ω ψ
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Example – the Gaussian centered at a with width     
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The average of the position is
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which is hardly surprising. As for the uncertainty:
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What about the momentum operator P?
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as can be directly 
verified by substituting 
and integrating.

• It is instructive to see how               looks in momentum space. 
Since the orthonormal basis corresponding to momentum space is

given by                                        then            is represented in 
momentum space by
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So, the narrower the position distribution (small    ), the broader 
the momentum distribution. This not only agrees with the 
physics discussed before, it is also no surprise to anyone who 
studied the Fourier transform! Note: 

∆
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• This happens because P and X don’t commute, 
and don’t have common eigenvectors 
(“eigenkets”). Since only the eigenkets of an 
operator are unaffected by a measurement of the 
operator, we cannot have a system for which we 
know both the position and momentum. 

• If two operators commute, there is a basis of 
common eigenkets, and the order of the 
measurements doesn’t make a difference.

• The commutator of two operators is defined as

• It is straightforward to see that

[ ] ΛΩ−ΩΛ≡ΛΩ,

[ ] hiPX =,



Interlude: Proof of Heisenberg’s Uncertainty Theorem

We want to obtain a lower bound on 

( ) ( ) ψψψψ 2222 )()( PPXXPX −−=∆∆

The trick is to reduce this to an expression depending on 

[ ] hiPXXPPX =−=,

define PXXPBAABPPBXXA −=−⇒−=−=  ,
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Now:
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To get the inequality, we will throw away

which is of course positive, and prove that                  
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Ignoring the constant factor of 2, this last expression equals

Now we have to remember that ψψψψψ
+∗

Ω Ω=Ω∀ :,

And that                                       and that ,, BBAA == ++ +++
ΩΛ ΩΛ=ΩΛ∀ )( :,

And it immediately follows that G is indeed 0. Thus the proof is 
complete, and after taking roots: 2))(( h≥∆∆ PX



• Is the minimum attained? We can assume           
The Cauchy-Schwartz inequality is not strict only if 
the two vectors are linearly dependent, so we must 
have
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But to minimize, we must also have 
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That is, a Gaussian with a phase shift proportional 
to the momentum saturates the uncertainty.



Interlude: Finite-Dimensional Example: the effect of 
measurement (Shankar Ex. 4.2.1)

Consider the following operators on :3C
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• What are the possible values obtained if          is measured?

Answer: the          eigenvalues/normalized eigenvectors are
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So the possible results when        
is measured are 0,1,-1.

zL

• In the state in which                what are

Answer: if              the state must be                   According to what 
we proved before:
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• Find the eigenvalues and normalized eigenkets of         in the         
basis.

Answer: the       basis is the standard one. An immediate 
computation yields that the          eigenvalues/normalized 
eigenvectors are
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• If a particle is in the state with               , and         is measured, 
what are the possible outcomes and their probabilities?

xL

Answer: if                the state must be                             According 
to the axioms, the possible outcomes are the           eigenvalues,              
with probabilities equal to the square of the inner product of  
with the corresponding eigenket. A straightforward calculation yields 
that we get 0 with probability          1 with probability         and    
with probability             

,1−=zL .)1,0,0( t=ψ
xL

ψ

,21 ,41 1−
. 41

• Consider the state                                        in the       basis.  If        
is measured in this state and the result is 1, what is the state after the 
measurement? If         is then measured, what are the possible 
outcomes and respective probabilities?

( ) t 21,21,21=ψ zL 2
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Answer: 
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
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 2
zL

So, there’s a degenerate eigenvalue, 1, with an 
eigenket subspace                          and a 0     
eigenvalue with an eigenket (0,1,0). If 1 was 
measured, the result is the (normalized) projection 
of           on V, which equals  

)},,0,{( baV =

ψ ( )( ) . 2,0,1 31 t

1−=zL xL



Next,        is measured. The possible results, and their probabilities, 
are: 0 is measured with probability 0, 1 is measured with 
probability          and –1 is measured with probability

NOTE: the measurement of        does not determine the subsequent 
measurements of

zL

,31 .32
2
zL

!zL

• A particle is in a state for which the probabilities are 

note that the most general state with this property is
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ψ

does this mean that one can choose arbitrary values of          
without affecting the physical state?

321 ,, δδδ

Answer: no. The physical state is immune only to global phase 
shifts:                            are physically equivalent in the sense that 
they generate the same probability distribution for any observable. 
However,  if for example                                      then

and if                                              then    

ψψ δie  and  

,0321 === δδδ ,1== xLψ

  ,    0 231 and πδδδ === .1−== xLψ



A Note on the Position, Momentum, 
and Energy Operators

• We saw that for a state of definite position (delta function) 
the operator X indeed returns the position, and that for a state 
of definite momentum (a pure wave,                         )    
the operator P indeed returns the momentum.

• What about the other states? The most we can ask for is 
that the average of X (P) will be what we consider intuitively 
to be the average position (momentum). That is indeed the 
case.

• Let         be a state.  The probability density to be at the 
position x is                                       so the average position 

is defined by                                  but the average of the X

operator is defined by  

And they are indeed equal.
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Note: if the integration limits are unspecified, they are assumed

to be .    to ∞∞−



What about the momentum? Remember that the momentum 
operator is defined by

dx
diP ψψ h−= h

h

ipx

ep
π2

1 =
and that its 
eigenkets, with 
eigenvalues p, are 
defined by 

So the probability for the state       to be with momentum p isψ
ppp ψψψ =

2

.
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I

dpppp ψψ∫So the average momentum is

We want to prove that this equals the average of the 
operator P, which is

4434421
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dxiPP ψψψψ ′−== ∫ ∗)(

To prove that I=II, note that dxxp
ipx

e )(
2
1 ψ
π

ψ ∫
−

= h

h
Which is just           Fourier transform (up to the       factor). 
Now, remember that (up to constants which we won’t bother 
with here), the product of the Fourier transform with p is the 
transform of the derivative; this reduces                      in I to 
the transform of the derivative. Lastly, remember that the 
Fourier transform is unitary, so the inner product of the 
transforms equals the inner product of the respective 
functions. This immediately reduces I to II.

sψ ′ h

ψpp



In very much the same way, the Hamiltonian H is the energy 
operator, and                               is the system’s average energy.ψψ |HH =

• Example: Gaussian 
wave packet ( ) 412

2)()( 22
0

∆
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∆+−+

π
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axaxik ee

A straightforward calculation yields

• Average position = 

• Average momentum  =

• Average energy =  

∫ −== ∗ adxxX  ψψψψ

( )∫ =′−= ∗ hh 0 kdxiP ψψψψ
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• Question: what happens to the average energy when              ,  
and why? It looks odd that the mass m is in the denominator –
can you explain it?

0→∆

(for a free particle)



Schrödinger’s  Equation
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• Tells us how a state changes over time, hence is 
very important. Where does it come from? There are 
various heuristics to justify the equation; for 
example, suppose a free electron is moving through 
a crystal, in which the atoms are close to each other:

δ
1C 2C

. ), 20 CC

0 1 2

Let       be the amplitude to be at atom at time t. 
Now look again at the equations for the ammonia 
molecule. Here, we have three states (if we assume 
that, as a very short time passes – remember, we’re 
looking at the time derivative – the change in        
depends only on it and on                    So we can 
guess the following equation (up to constants):

iC i

1C

0C
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dt
dCi −−=h

Now, use the well-known approximation for 
the second derivative at x:

2
)()(2)()(

δ
δδ ++−−

≈′′ xfxfxfxf

And thus the right-hand side equals, up to 
constants, the second derivative of the wave 
function by x.

• The simplest (and very common) case for a non-free 
particle has the Hamiltonian

)(
2 2

22

xV
dx
d

m
+−

h

Where V is some potential. 

• It is impossible to prove Schrödinger’s  
equation. It does not follow from the 
axioms.



ψψψψ HitHt
dt
di == &hh   ,)()(

Solving Schrödinger’s Equation

• This is a differential equation, which resembles equations 
in classical physics.

• The goal is to find the propagator             which satisfies

• As often happens, a good direction to proceed is to first 
find the (normalized) eigenkets and eigenvalues of the 
Hermitian operator H. 

• Since H is the energy operator, we will often denote the 
eigenkets/eigenvalues with the letter E: 

• Suppose we have these eigenkets/eigenvalues. Since they 
are orthonormal and span the space, then for every state
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• Plugging this last form into the equation yields

• So, 

• And
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• So we have a closed-form expression for the propagator. In 
the infinite dimensional case, the sum is replaced by an 
integral.

• The so-called normal modes,                                              
are also called stationary modes, because they change only 
by a phase factor, hence have the same probabilities to be in 
a certain state regardless of the time. They correspond to 
systems which start off in an eigenket of H (definite energy 
state).

,)( hiEteEtE −=



• Another expression for the propagator is given by

But it is not always manageable. Note that it implies that      
is a unitary operator.

hiHtetU −=)(
)(tU

• Schrödinger’s equation on the line is usually solved in the 
X-basis.

• Note that             is an operator. By)(tU )0()()( ψψ tUt =
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∞

∞−
32143421

conditions  initialpropagator

)0,()0,;,(),( ψψwe mean that

where hiHt

E

exEExxtxU −′=′ ∑)0,;,(

Or, in the infinite dimensional case,
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• How does one derive such equations? It’s straightforward

from                                                    multiply by          on :  )( hiEt
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conditions  initialpropagator
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• The propagator as the evolution of simple states: let’s 
look at the equation

And take                 to be a state with definite position, that is, 
a delta function at  a. Then 
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)0,;,()()0,;,(),( atxUxdaxxtxUtx =′−′′= ∫
∞
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δψ

taking               yields  bx =

=)0,;,( atbU The amplitude to be in b, at time t, when at 
0=t the state is a delta function at a.

• And in general,                         is the factor weighing the 
contribution of the amplitude to be in at time 0 to the 
amplitude to be in x at time t. 
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Solving Schrödinger’s  Equation 
for a Free Particle

• If there’s no potential, the equation is relatively simple:

ψψψ
m
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• Is it trivial? Not at all; even for relatively simple initial 
states, the development of the wave function over time 
may be surprisingly complicated.

• To solve the equation, first find the eigenkets of H:

• The kets , which are eigenstates of P, suggest 
themselves. Remember that
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and so

Hence for every E there are two corresponding eigenstates:

mEpEmEpE 2,,2, −==−==+

• Physically, this means that a particle with energy E can be 
moving to the left or right. But in QM, the following state –
which has no meaning in classical mechanics – also exists:

mEpmEpE 22 −=+== βα

Note that this is a single particle 
which can be caught moving either 
left or right!



• The next step is to compute the propagator. In the 
position eigenkets it equals
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and so for an initial state                      the state at time t is),0,(x′ψ
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• What happens if               We get the integral 
of a function multiplied by things like                  
where A is very large: 
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Plot of            multiplied by                   If we 
integrate, only the value at 0 remains.
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Interlude: The Free Particle Propagator 
in the Momentum (Fourier) Domain

• For a free particle, Schrödinger’s equation is
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• Switching to the Fourier domain yields
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i
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tud
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• Which is solved by

)0,(),( 2
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uttu m
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e Ψ∝Ψ

• This observation highlights the “convolution 
nature” of the free particle propagator, and the 
manner in which it blurs spatially, and sharpens in 
the frequency (momentum) domain, as time goes 
on. The convolution kernels are like those in the 
previous slide.



Interlude: The Density Matrix
• Expresses the expectation as a linear function of the 
operator being measured.

• Allows to include “usual” uncertainty about the state.

• Closely related to Boltzmann distribution and quantum 
statistical mechanics.
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• Reminder – what is the probability to obtain a 
value       when measuring A (at time t)? na
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• Incorporating “classical” uncertainty: 
suppose the starting conditions of a physical 
system are not exactly known, and that it has 
probability        to be in state                               
Then, the density matrix can be naturally 
extended by defining

And linearity immediately proves that the 
expected value of an operator A is 
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• Some further properties:

• is Hermitian.

•

•

• The meaning of        is the probability to 
obtain          in a measurement.  It is termed 
“population”, while         are termed 
“coherence”. 

• If we’re working in the basis of eigenstates
of the Hamiltonian H, then from the 
equation for the development of         over 
time, it follows immediately that  
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• Relation to quantum statistical mechanics: in 
thermodynamic equilibrium, it turns out that

,  where k is Boltzmann’s

constant and T the temperature. Z is chosen so 
to normalize the trace to 1 (it is the partition 
function). If         is the basis of H’s eigenstates, 
then  
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Path Integrals: Feynman’s 
Formulation of QM

∑∝′ h)]([)0,;,( txiSextxU
Where the summation ranges over all paths connecting            
to              and S is the classical action (the integral over           
of the kinetic minus potential energy).

• What does this mean?

• The classical path is the one with the smallest action. In 
Feynman’s formulation, the propagator is the sum of all
paths, each weighted by the exponent of      times the action 
over        What happens for objects with a large mass, for 
example, is that due to the     in the denominator, the 
contributions around any path but the classical one are in 
very different phases and therefore cancel out.  

• This formulation is equivalent to the one we had shown, but 
highlights the connection to classical physics. Also, in some 
cases (but not usually) it is easier to use it to calculate the 
propagator.    
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• Proof of the path integral formulation: look at the 
propagator with a fixed potential V. Proceeding 
much like as in the free particle case, this time       
is an eigenstate with energy                  so the 
propagator is
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• Derivation of the free particle propagator via 
path integrals:
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Path Integral Normalization Factor

• The question arises as to how to normalize the 
summation over all paths.

• Approximate each path by a piecewise linear 
function:

t

x

ax =0

bxN =

1+ix
ix

at it 1+it bt

. .

.

. .

..
.



( ) .2 , ......1lim

as integralpath   the writetocustomary  isIt 

.
2

 So, .
2)(

2
2

equal
must it  ,propagator particle free  with the thiscomapring

2

  toevaluates integralGaussian  The

. with  replacingby y immediatel followswhich 

...)(
2

exp...lim

 ...
2

exp...lim

factor) gnormalizin a is (
 then is propagator particle free The

. so , Denote

2
1

121],[

0

202
1

)(
22

12
1

2
1

1

11
1

2
10

11
1

2

0

1

2
0

1







=







=

−
















−









∑ −

≅







∑ ∫

≡−=−=

−
∞

∞−

∞

∞−

∞

∞−
→

−
−

−
−

−

−

−

∞

∞−

∞

∞− =
−

∞

∞−
→

∞

∞−
−

∞

∞− =

∞

∞−
→

+

∫ ∫ ∫

∫ ∫∫

∫ ∫∫
−

m
iB

B
dx

B
dx

B
dxe

B

i
mA

xx
T

mi

Ti
m

e
i

mAN

xx
x

dxdxxxmiA

dxdxdtxmiA

A

TttNtt

NabSi

N
N

xx
T

miN
N

jj

N

N

j
jj

N

N

j

x

x

abii

cl

N

j

j

e

επ

εππ

π
ε

ε

ε

εε

ε

ε

ε

h

h
h

h

h

&

h

&
h

h

h



Equivalence to Schrödinger’s Equation
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Calculating the Path Integral
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Perturbation Theory and Feynman Diagrams
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A Path Integral Formulation for the 
Density Matrix
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If the initial state is a Gaussian wave function
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• The mean position at time t is                 (like the classical 
case).

• The uncertainty in position grows from                 at time 0    
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Evolution of a Gaussian Packet
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Position uncertainty =

This can be viewed as t times the initial uncertainty 
in the velocity.

• Note also that the uncertainty in position grows 
very slowly – especially for a heavy particle. 

• Note that there is a non-zero probability for the 
particle to “go backwards”, that is, be captured at the 
opposite direction in which it is “generally moving”.



• The Gaussian packet has an “average” velocity, associated 
with the motion of its center. This is the so-called “group 
velocity”.

• Let a (stationary) packet be defined by

where             is the phase of             Assume that       has a 
strong peak at           then the integral can be approximated by

This  wave packet has a peak at the location in which the 
phases of the exponentials change the slowest, since then they 
interfere the least. This occurs for the x at which the derivative

of the phase by k is zero, that is,            
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Operator Power Series for the Propagator

• We saw that the propagator for a free particle can be 
expressed as
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It appears as if the spread of the wave function is not growing 
over time, because all the derivative are nonzero only at the 
interval                  How is this possible? . 2Lx ≤

The operator power series doesn’t 
converge (at the boundaries).
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Look more carefully at

You can try and sum a few of the first terms, 
and obtain a reasonable approximation, if the 
higher derivative don’t diverge and if t is 
small enough.

• But one has to be cautious: look at a particle 
moving under the influence of a force f. The 
Hamiltonian is then (assuming we fix all 
constants to obtain a simple form): 
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The calculation of this operator is 
tricky because the operators of 
second derivative and multiplication 
by x do not commute!



Solving Schrödinger’s  Equation 
for a Particle in a Box

• For a particle under the influence of a potential              
the states of definite energy satisfy 
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• Next, we solve it for a particle bounded by an infinite 
potential (“walls”) on both sides:
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• In regions I and III,

• So the solutions are

xVxV BeAe 00 −+=ψ

• In region III, for example, the                 part is not 
physically allowed, as it diverges to infinity. Only the        
part is allowed,  but as                    the solution is zero.  Same 
holds for region I.

• So the solution can be non-zero only in region II. The 
equation there is
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• It immediately follows that the (normalized) solutions are
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• There is no solution corresponding to               since it 
equals 0.

• The energy (E) corresponding to           is 

• There is no state with definite energy 0!
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First (green) and second (red) states: left=amplitude, right=probability.



• A state with energy 0 would violate the uncertainty 
principle:

• The particle is bound between            and           so 
the position uncertainty is bounded by

• We must have                else the particle will drift 
away to infinity, but that’s impossible, as it is bound 
in the box. But

• What about the average energy? We know that 

2L− ,2L
.2L

( ) 2

2
2

2
 ,

2 L
P

L
PPXLX hhh

≥∆⇒≥∆⇒≥∆∆≤∆

,0=P

( ) 2

2
222

L
PPPP h

≥=−=∆

2

22
22

22 mLm
P

HE h
≥==

While the lowest energy level is obtained when    
and it equals                        (the ground state 
energy). The uncertainty principle can sometimes 
be applied to find a rough estimate of the ground 
state energy. 
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Example Question (Shankar, 5.2.1):

• A particle is in the ground state in a box of length 
L. Suddenly the box expands to twice its size. 
What is the probability to find the particle in the 
ground state of the new box?
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Quantization of Energy

• We saw that the energy levels of the particle in a 
box are quantized.

• A particle which is bound by a potential from 
escaping to infinity is said to be in a bound state. 

Formally,

• It turns out that the energy levels of a bound 
particle are always quantized.

• Why? Look again at Schrödinger’s  Equation:

• Assume that          is everywhere bounded. It 
follows that both                   are continuous. 
Assume also that there’s a bounded region (a 
“well”) in which the particle’s energy is larger than 
the (fixed) potential, but that outside the well the 
potential is greater than the energy:
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Solution is sum of 
sines and cosines

0,  >=′′ IIIIII cc ψψ0,  >=′′ II cc ψψ

Solution is sum of 
rising  and 
decreasing 
exponentials

Solution is sum of 
rising and 
decreasing 
exponentials

I
II

III

But one of them has to be zero 
because the rising exponentials go to 
infinity as .∞→x

• So we’re left with one parameter (degree of freedom) for each 
of regions I and III, and two d.o.f for II. We have four constraints 
– the continuity of the function and its derivatives at each of the 
borders (just like splines). It appears that we can solve for every 
E; but note that there is a redundancy for multiplying by a scalar, 
hence we really have 3 d.o.f and four constraints – so there will 
be a solution only for “special” cases. This is why the energy 
levels for a bound state are quantized. This argument can be 
extended to any finite potential. If the potential is infinite 
(particle in a box) we have to enforce only the continuity of the 
function, not the derivative.



Finite Potential Well
• Like particle in a box, but the walls are lowered 
to a finite height: we’ll assume the energy to be 
which is smaller than    
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             : region
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                 : region

• As noted, enforcing continuity of the function and 
its derivative yields four equations in A,B,C,D, but 
these can be solved only up to a scale factor, hence 
the system is overdetermined and can be solved only 
for special values of energy. The resulting equations 
are transcendental and don’t have a closed-form 
solution.



The Probability Current

• For particles, or classical flux, the current is the 
amount of something crossing, say, a unit area 
during unit time.

• In QM, it makes sense to talk about the 
probability current. If many particles are present, 
it will be equivalent to the classical definition.

• The probability current is defined for a one-
dimensional particle as the amount of probability 
crossing over: how did the probability to find the 
particle to the right of       change between time     
and 
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0t tt ∆+0



• The probability change is
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Then the probability change is            and  J  is 
therefore the probability current.

• A straightforward application of Schrödinger’s  
Equation yields
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• Initial state: Gaussian packet centered at 0, 
moving to the right at unit speed.

State at 
2=t

State at 
3=t

Probability 
current at 3=t

• Why is the current negative at certain points?
• Because the packet is moving to the right, but is 
also expanding! So there’s an area in which the 
probability to the left of x is increasing.



• For the right moving wave packet  
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• The probability current is 

• Intuitively, this is true because               is the 
speed of the packet, and the packet is uniform, 
so the current depends only on the speed.

• It can also be immediately verified that 
current for two such wave packets moving at 
the opposite directions is 

m
pAJ 2=

mp
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m
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Where A,B are the coefficients of the right and left 
moving packets.



Introduction to Scattering

When a classical particle hits a potential barrier, 
it either passes it (if its energy is higher than the 
barrier’s energy), or is reflected (if its energy is 
lower). The situation in QM is rather different.

• Start by considering a step barrier

0=x

} 0V
Iψ 0=t

0>>tRψ

Tψ

An incoming packet hits the barrier and 
disintegrates into a left and right going packets.

incoming

transmitted

reflected



Straightforward Solution
• Find the basis of the normalized eigenstates of 
the step potential Hamiltonian.

• Project the initial wave function on that basis.

• Propagate each of the basis functions in time 
(with the corresponding coefficient).

• As the time tends to infinity, identify the right 
and left moving components.

It turns out that, under certain 
assumptions, a much simpler method can 

be used – which is rooted in classical 
optics, and in the wave-particle duality.



• The problem can be solved in principle for any 
packet, but it is impossible to obtain a closed-form 
expression for the solution. 

• Often, one is interested in cases in which the 
incoming wave is very wide, and therefore has a 
sharp peak in momentum space. 

• In that case, it is possible to derive the ratio of the 
reflected and transmitted parts with relative ease by 
essentially reducing it to a stationary problem, 
dependent only on the energy.

• The main trick is to look at all the components –
incoming, reflected, and transmitted – as coexisting, 
and to measure the ratio of their probability currents. 
The justification is: if the incoming wave is very 
wide, it is impossible to tell when it hits the barrier.

• We’ll assume that      is the wave number of the 
incoming packet, hence its energy and momentum are 
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• The reflected part has the same wave number (and 
frequency, of course) as the incoming wave. The transmitted 
part has a wave number         which must satisfy 1k

2
02

01
2
100

22
h

h
mVkkmkVE −=⇒=−
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Tunneling

• What happens if ?00 EV >

0=x

} 0V “the forbidden zone”
ψ

energy = 0E

• The solution to Schrödinger’s Equation in the 
forbidden zone is 

2
00

2
2

2
00

)(2 ,

0)(2

h

h
EVmk

VEm

xke −
=∝

⇒=
−

+′′

−ψ

ψψ

I
II

,2 2
01 hmEk =If                                    

the solutions are 

 +

−

−

xk

xikxik

CeII
BeAeI

2

11

              :  region
  : region

where











+
=⇒

−
=

=⇒
−
+

=

2
2

2
1

2
1

2

21

1

2

21

21

42

1

kk
k

A
C

kik
ik

A
C

A
B

kik
kik

A
B



• So, a particle can break into the forbidden zone 
(although it cannot go too far into it). If the potential 
drops again to zero, the particle can escape through 
the barrier and then it is free (like some particles 
escaping from a nucleus). 

• It is immediate to see that the probability 
current going into the right half is zero; yet –
some particles manage to escape into it. 

• How can this happen? It seems to violate 
energy conservation!

• From the uncertainty principle, conservation of 
energy is violated only if we can measure this 
violation. The position uncertainty for the particle 
in the forbidden zone is very small (a decreasing 
exponential), hence the uncertainty in momentum 
is large enough – and it doesn’t allow the 
measuring process to determine that energy 
conservation was violated.



A 1D particle hitting a step with a potential higher 
than the particle’s energy. Note short penetration 

into the forbidden zone.



Tunneling: a 2D particle hitting a barrier. The 
probability amplitude is depicted.
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• As before, enforcing the function and its 
derivative to be continuous at               yields four 
equations, which can be solved up to a scale 
factor, and then  
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Scattering off a 
potential barrier. 
Horizontal axis 
is             
vertical axis is 
T. Scales are 
chosen so that 

(following 
Eisberg & 
Resnick, p. 
202). Lower is 
detail of upper; 
note that T is 
equal to 1 at 
certain energies 
(strange, 
because we can 
have more
transmission at a 
lower energy!).
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assume(a,positive); assume(k1,real); assume(k2,real);
psi1:=A*exp(I*k1*x)+B*exp(-I*k1*x); # (-infinity,-a/2) k1=sqrt(2*E*m/h^2)
psi2:=C*exp(k2*x)+DD*exp(-k2*x);  # (-a/2,a/2) k2=sqrt(2*(V0-E)*m/h^2)
psi3:=F*exp(I*k1*x); # (a/2,infinity) 

# now force continuity and first derivative continuity

eq1:=subs(x=-a/2,psi1-psi2);
eq2:=subs(x=-a/2,diff(psi1,x)-diff(psi2,x));
eq3:=subs(x=a/2,psi2-psi3);
eq4:=subs(x=a/2,diff(psi2,x)-diff(psi3,x));
sol:=solve({eq1,eq2,eq3,eq4},{F,C,B,DD});
Fsol:=subs(sol,F)/A; numF:=numer(Fsol);
help1:=expand(simplify(numF*conjugate(numF)));
denomF:=denom(Fsol);
help2:=expand(simplify(denomF*conjugate(denomF)));

T:=help1/help2;

T1:=subs({k1=sqrt(2*m*E/h^2),k2=sqrt(2*m*(V0-E)/h^2)},T);
# Following Eisberg & Resnick p. 202
T2:=simplify(subs(h=sqrt(2*m*V0*a^2/9),T1));
T3:=simplify(subs(E=V0*r,T2));

plot1:=plot({T3},r=0..1,thickness=3,axes=boxed,axesfont=[TIMES,BOLD,16],n
umpoints=1000):

Xmaple code for potential 
barrier, tunneling

EV >0



#################################### end V0>E, start E>V0

assume(a,positive); assume(k1,real); assume(k2,real);
psi1:=A*exp(I*k1*x)+B*exp(-I*k1*x); # (-infinity,-a/2) k1=sqrt(2*E*m/h^2)
psi2:=C*exp(I*k2*x)+DD*exp(-I*k2*x);  # (-a/2,a/2) k2=sqrt(2*(E-V0)*m/h^2)
psi3:=F*exp(I*k1*x); # (a/2,infinity) 

# now force continuity and first derivative continuity

eq1:=subs(x=-a/2,psi1-psi2);
eq2:=subs(x=-a/2,diff(psi1,x)-diff(psi2,x));
eq3:=subs(x=a/2,psi2-psi3);
eq4:=subs(x=a/2,diff(psi2,x)-diff(psi3,x));
sol:=solve({eq1,eq2,eq3,eq4},{F,C,B,DD});
Fsol:=subs(sol,F)/A; numF:=numer(Fsol);
denomF:=denom(Fsol);

T:=simplify(abs(numF/denomF)^2);

T1:=subs({k1=sqrt(2*E*m/h^2),k2=sqrt(2*(E-V0)*m/h^2)},T);
#following Eisenberg&Resnick p. 202
T2:=simplify(subs(h=sqrt(2*m*V0*a^2/9),T1)); 
T3:=simplify(subs(E=V0*r,T2));

plot2:=plot({T3},r=1..10,thickness=3,axes=boxed,axesfont=[TIMES,BOLD,16],
numpoints=1000):

with(plots):
display({plot1,plot2});
plot(T3,r=2..10,thickness=3,axes=boxed,axesfont=[TIMES,BOLD,16],numpoints
=200);

EV <0



A Delta Function Potential

• Assume the same situation as before, but instead 
of a step potential we have a “Delta function”
potential – that is, a very narrow infinite wall.

0=x

xikAe 0

xikBe 0− xikCe 0

• Note that the wave number on the right of the 
barrier is the same as on the left, because there is no 
region in which is loses energy.

• As before, there are two equations: the function 
has to be continuous at 0 (hence A+B=C). The first 
derivative equation is a bit more tricky, because 
Schrödinger’s Equation is  

Potential = )(xaδ
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• What happens to      at               Since it is the 
integral of         which contains a product of the 
Delta function, it jumps by                       when 
crossing the barrier from left to right. So, the 
equation for        is                      
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• As the particle is heavier, and its wave number 
smaller, it will tend more to behave classically (that 
is, reflect).



Arbitrary Barrier

• Express as the limit of rectangular barriers of 
infinitesimal width, and calculate the limit of the 
product of the corresponding transmission 
coefficients.



Some results on Degeneracy

• Recall that an eigenvalue is degenerate if there 
are two linearly independent states with eigenvalue

Theorem: there is no degeneracy in one dimensional 
bounded states.

Proof: assume
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But a difference in scale factor means that the states 
represent the same physics. 



Theorem: If parity is conserved (that is, the 
Hamiltonian commutes with the parity 
operator), then every non-degenerate state of 
definite energy has definite parity.

Proof: Let Q be the parity operator. 
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There can be degeneracy in two dimensional 
systems – such as a particle in a 2D box:

• The states of definite energy are products of the 1D 
states for x and y, and their energy is the sum of 
energies of the corresponding 1D states.

• So, if we know for example that the energy is 

then the state is not uniquely determined, 

but instead it can be any normalized linear 
combination of 
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The Harmonic Oscillator

• Very important – models the behavior of a 
system around an equilibrium point, even for 
many particles (as follows by diagonalizing the 
Hamiltonian).

• The Hamiltonian is the same one as in classical 
mechanics, with the usual substitution      :, XxPp →→

22

222 Xm
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PH ω
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• Since X and P are Hermitian, it follows that H
cannot have negative eigenvalues.

• To find the definite energy states, we must solve
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• Define constants and a variable change
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• To solve it, look at the asymptotic behaviors:

• But                   is ruled out from physical 
considerations. 

• At the other end
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• Next, guess a solution
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• Fortunately, there’s a way out: look at the recursion 
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This has to stop somewhere in order to prevent the 
solution from diverging, so we must have
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• So, energy quantization somehow came (again) 
into the picture. The solution for energy E is
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• The H’s are the Hermite polynomials. The first are
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A few examples. 
The upright arrows 
mark the classical 
turning point for an 
oscillator with the 
given energy; note 
that, much like as 
with the potential 
barrier, the oscillator 
enters the classically 
forbidden zone with 
non-zero probability. 
Note also that as the 
energy increases, the 
behavior starts to 
resemble the 
classical behavior.



Interlude: Finding the Oscillator’s Ground 
State from the Uncertainty Principle
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• Let’s search for the minimal energy state, that is, 
the normalize          which minimizes :ψψ Hψ
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Recall that                                                   (just as 
with ordinary average and variance), and the same for 
P. Since we want a minimum, take                               
and then
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• We proved that the minimum is obtained for a 
Gaussian; since                            the Gaussian is 
centered at 0 and has no phase (momentum) shift, 
which after normalizing equals
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• Due to the non-degeneracy of one dimensional 
bounded states,              must indeed be the ground 
state (there’s only one state with the minimal energy 
equal to its eigenvalue). Thus, to quote Shankar, we 
have found the ground state by “systematically 
hunting in Hilbert space”.

minψ



• Example question: a potential barrier is added, so 
that the potential for                  What is the ground 
state energy? 

• Answer: no even solutions are possible, since 
they are non-zero at            So the ground state 
energy is  

. is 0 ∞≥x

.0=x
( ) .23 ωh



Analysis of the Oscillator with the 
“Raising” and “Lowering” Operators

• An important and particularly attractive technique 
due to Dirac for solving the oscillator in the energy 
basis.

• In order to solve

• Define the two operators
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• It readily follows that their commutator is

• And they “nearly factor” H (“nearly” because 
X,P do not commute):
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• So, operating with            lowers and raises the eigenvalues
of       But since H (and therefore       are positive definite, the 
operation by a has to stop somewhere:   

• Due to the non-degeneracy of one dimensional bounded 
states, every such “decreasing sequence” has to end with the 
same           denote it

• Label the successive operations of      on        by
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Example question:

• What are                   in the state 

• Up to a constant                                               
Ignoring c for the moment,

Since           lower and raise      and since

Now, use the identities  

To obtain (after multiplying by           
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Passage from the Energy Basis to 
the Coordinate Basis

( )

 2 ,2 so 

   denote     
22

2
1

2

 

2
1

2
1

212
1

2
1

2
1

2
1









−=








+=

=





+








⇔





+






=

−− +

dy
dya

dy
dya

xmy
dx
d

m
xm

P
m

iXma

h
h

h

hh

ω
ω

ω

ω
ω

• To find the ground state in the coordinate basis:
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And the other eigenstates can be derived (up to a 
normalizing factor) by
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Coherent States

• Seek the “classical limit” of the oscillator, 
i.e. states with a relatively small uncertainty 
in energy etc.

• Time development of classical oscillator:
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• There is a lot of similarity between these 
relations and the average behavior of the 
quantum oscillator:

( )( )
( ) ( )( )

( )21
21ˆ

21ˆ

+=
−−==

+==

+

+

+

aaH
aaiPP

aaXX

ω
β

β

h

h

( )
( )

[ ]
.21that 

 then Assume . 21

but  -- )0(
 have should  wesimilarly, behave

energy to For the .(0)(0)
ask that  therefore We. of role the

playing  with equations, oscillator
classical  the toidenticalalmost  is This

)0()0(2)(ˆ
)0()0(21)(ˆ

2
0

2
0

2
0

0

0

0

*

*

][
][

>>

+=

==

=

−−=

+=

+

−

−

α
αω

αωω

αψψ
α

α

αα

αα
ωω

ωω

h

hh

H

aaH

a

eeitP

eetX
titi

titi



• This analysis suggests to require
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• It follows that:
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The Operator         and the Wave Function)(αD )(xαψ
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Field Quantization
• For two coupled oscillators, new variables can 
be defined which decouple them. This can also 
be done for an infinite chain of oscillators, a 
continuous string, and the electromagnetic field.

• The Hamiltonian for a pair of coupled 
oscillators equals  

where      controls the strength of the coupling.

• Defining new variables and new masses

decouples the resulting differential equations, 
and the Hamiltonian can be written as
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• The quantum mechanics case proceeds similarly: 
new observables are defined by

• From the commutation relations of the original 
observables 

It follows that the same relations hold for the new 
observables. It also follows that the Hamiltonian

equals

Note that this is true only because of the 
commutation relations between the new 
observables.
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A basis for the system’s wave functions is given by 
the tensor product of the corresponding 
eigenvectors of                       which are given by 
the respective raising and lowering operators: 

the eigenvectors of       are given by

The eigenvectors of the system are given by
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• In the (0,0) state, both the average and the distance 
between the two masses are Gaussians around zero.

• In the (1,0) state, the average’s distribution has two 
peaks away from zero, and the distance is a Gaussian 
around zero.

• In the (0,1) state, the average’s distribution is a 
Gaussian around zero, and the distance’s distribution 
has two peaks away from zero.

• In the (1,1) state, the distributions of both the 
average and the distance have two peaks away from 
zero.
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Continuous String
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• In Fourier domain, the equations are

decoupled:

• It’s straightforward to see that the 

Lagrangian equals

• The momentum conjugate to      is

• The Hamiltonian is
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A schematic proof that                are 
canonical (most constants ignored, 
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• Now, quantize by promoting             to 

Operators
(note: as for one particle, the classic variables               are time-
dependent, but the operators are not).

• Denote                                     It has

eigenstates and eigenvalues

• Since the       commute, a general state can 
be defined by                         with energy      
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• What is the ground state        Its k’th Fourier 
coefficient is an oscillator with frequency 
proportional to k, at its ground state – i.e. a 
Gaussian with variance             So a sample of 
the ground state is a function with slowly 
decreasing Fourier coefficients. This decrease 
reflects the coupling in the spatial domain, 
and the samples are not random noise, but 
have some measure of smoothness associated 
with them.

• The ground state is a fractal of dimension 2.

• An excited state is the superposition of 
sinusoids with the ground state. 
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Quantization of the EM Field
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• Experimental motivation for 
quantizing the EM field: spontaneous 
decay of hydrogen atoms when no 
field is present. 
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• The EM Lagrangian is

and indeed it yields Maxwell’s equations when 
varied with respect to the potentials.

• But since       does not appear in L, has no 
conjugate momentum.

• Since we’re working in free space (no 
charges/currents), this problem can be alleviated 
by working in Coulomb gauge with

• The Lagrangian is then simpler, but it doesn’t 
yield the equation                 any more. This 
condition now has to be enforced.

• This will result in one less degree of freedom for 
the vector potential A. 
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• The coordinates are               , and the

conjugate momenta are 

• Alas, they are not canonical. We’d like to have

but taking the divergence with respect to r
yields zero on the left-hand side, but not the right-
hand side.

• The way out of this is to parameterize A by 
independent variables, so that                    will hold. 
As in some cases in classical mechanics, this is 
easier to do in the Fourier domain, in which the 
condition is algebraic and not differential, and in 
which the coordinates can be decoupled.
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• Since             and            are real, there is 
a complex vector function         satisfying:

• The existence of         is guaranteed by 
the redundancy in the Fourier transforms 
of the real functions A and      :  for a real 
f, 

• The choice of          is guided by the 
following identities for the oscillator:      
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• The conditions                          are 
expressed in the Fourier domain by

which suggests to expand a(k) in a basis 
orthogonal to k. 

• Define for every k an orthonormal basis

• For every k expand a(k) as follows:

This yields
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• Before imposing transversality

And it follows that
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• Next, discard            which must be 
zero due to the transversality.

• The EM Hamiltonian is 

and it equals
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• It immediately follows that

so the field is a sum of a continuous 
family of oscillators, two at each 
frequency.

• Next, promote                       to operators

satisfying the canonical 
commutation relations

and define raising and lowering operators
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A and      are also promoted to operators:

To find the Hamiltonian, symmetrize   

by                                to obtain 
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• In the ground state, ALL the oscillators 
are in their ground state, so for all

• Formally, the energy of the ground state 

(“vacuum”) is  
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• It can be verified from the definition of H
and from the commutation relations that

(this is computed “above” ).

• The momentum operator of the field can 
be computed by promoting the classical EM

momentum                              to

And it can be verified that the momentum 
of                                   is         Since           

it follows that           is 
a massless particle – the photon. Its wave 
function is     
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• The state of the field is given by the 
number of photons at each           that is, by 
successive application of creation operators 
(Fock state):

• Expected value and variance of vacuum 
electric field in location r:
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• For simplicity’s sake, write 
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The Classical Limit

• We should hope that, as mass and energy scales 
increase to “everyday scale”, QM laws should 
converge to Newtonian mechanics laws. Look for 
example at the harmonic oscillator when the energy 
increases – it resembles the behavior of a 
“Newtonian” oscillator.

• It makes sense, in this regard, to look at the 
average, or expectation, of position and momentum. 
Therefore let us look at how the average changes 
over time: let      be a function of X and P. Then Ω
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• For example

• and

• which look just like Hamilton’s equations. Alas, 
we cannot argue that the latter hold for average 
quantities, since in general

• However, it’s still a good approximation.
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Rotational Invariance 
and Angular Momentum

• Translations in 2D are given by 

and linear combinations of these. Much like in the 
1D case, translation by a vector a is given by

y
iP

x
iP yx ∂

∂
−→

∂
∂

−→ hh ,

jiP ,a)( Pa
yx

i PPeT +== ⋅− h

2D Translations
Motivation: Central Potential (Atoms)
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• Let a 2D rotation be described by 
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• The operator that rotates the 2D vectors is 
denoted by                    and the corresponding

Hilbert space operator is denoted

For an infinitesimal rotation,  
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• Physical interpretation: if                         H is 
rotationally invariant, and experiments will yield 
the same results in the coordinates are rotated. 
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• There are still an infinite number of degrees of 
freedom for choosing            This is solved by 
demanding that the eigenvectors of       are also the 
eigenvectors of, say, a rotationally invariant 
Hamiltonian. Physically, this means that the state 
is determined not only by its angular momentum, 
but also by its energy.
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Examples (Shankar p. 315):

• A particle’s wave function is 

Prove that
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Rotationally Invariant Problems
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Angular Momentum in 3D
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• The total angular momentum operator (squared) 
is defined by  
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The square root of       is regarded as the total 
angular momentum of the system. The goal 
is to characterize a “pure” state by its 
(definite) total angular momentum, energy, 
and magnetic quantum number (the last being 
the angular momentum around the z-axis).
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Finite Rotations in 3D

• Rotations are represented by       
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• There are particles whose wave function is 
more complicated (non-scalar). For these 
particles, there are rotation-like operators J 
which satisfy the commutation rules

JJJ hi=×
• For example: 
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• Just as before:
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Finite Rotations
• In order to compute the transformation induced by 
finite (as opposed to infinitesimal) rotations, one 
has to calculate
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• The calculation is facilitated by the fact that the 
matrices for                        are all block diagonal in 
the constant  j  blocks.

• Also, since the eigenvalues of          (in the 
constant-j block) are  
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• This allows to express                  as a linear

combination of                                                , so 
the powers in the exponential usually have a 
simple periodic behavior which allows to write it 
down as simple functions of       (see also 
discussion here on Stern-Gerlach apparatuses).   
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The Matrices of Angular Momentum Operators
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Angular Momentum Functions in the Coordinate Basis
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• Example question (Shankar, 12.5.13): a 
particle’s state is proportional to                          
Prove that
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Note that as m grows, 
there is more of the 
momentum in the z 
direction, and the 
probability to have large z
values decreases.



Solution of Rotationally Invariant Problems
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The Free Particle in Spherical Coordinates
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• Example (Shankar 12.6.8): Find the energy levels 
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The Isotropic Oscillator
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The Hydrogen Atom
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• Assume in the meanwhile that the proton’s mass is 
infinitely larger than the electron’s, so only the 
electron’s wave function is sought. The potential is 
induced by the attraction between the proton and 
electron, and the equation has the form
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Multi-Electron Atoms

• Due to the Pauli exclusion principle, two 
electrons cannot occupy the same state if their 
parameters (energy + angular momentum + z-axis 
momentum + spin) are identical.

• Hence, first the lowest energy level,             is 
filled: Hydrogen and Helium.There are two 
electrons there (two spins). Then, for              the 
degeneracy is 4, multiplied by two spins given 8, 
and this accounts for the following 8 elements 
(Lithium to Neon). For             first the                 
are filled (two electrons: there’s a                         
degeneracy, multiplied by two spins). Same for        
l=1, for which there are six electrons (3 “l levels”
multiplied by two spins). By then we are at 
2+8+8=18 (Argon). However, the next electron 
(in Potassium) does not choose n=3&l=2, but 
n=4&l=0. WHY?

,1=n

,2=n

,3=n

,1=n

112 =+l
0=l



• The answer lies in the interaction of the 
electron’s charges with each other (which 
we have neglected). The n=4&l=0 is farther 
away from the nucleus then the n=3&l=2 
electron (see equation for average distance). 
So, it is partially screened from the 
Coulomb potential by the charge of the other 
electrons. 



Spin
• Spin has no analogue in classical physics.

• An electron is prepared in a state of zero linear 
momentum (i.e. space-independent) state. Since all 
the angular momentum operators involve 
derivatives w.r.t x,y,z, we expect that its angular 
momentum(s) will all be zero. However, upon 
measurement along, say, the z-axis, the results of 
measuring       are          

• So, the electron has some kind of “intrinsic”
angular momentum. Same holds for other particles.

• The wave function of a particle with spin has a 
few components, and the spin operators linearly 
mix these components – as opposed to the orbital 
momentum operators, which mix the coordinates.

• The number of components is determined by the 
number of values which the “intrinsic” angular 
momentum can attain. The wave function is then 
just a direct product unifying the “ordinary” wave 
function with these different “intrinsic” values.

zL .2h±
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• Note that knowing       determines the 
state. Actually, instead of specifying a state 
by               we can specify a unit vector       
such that the state is an eigenstate of          
with eigenvalue
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Spin Dynamics (How Spin Behaves 
in a Magnetic Field) 

Bµ

I

• The torque induced by the magnetic field B on 
the current carrying loop is to align its normal 
with the field. The torque is given by

Where                             is the magnetic moment, 

B,µT ×=

⊥
⋅

= eIµ
c
A

A the loop area, and       a unit vector 
perpendicular to the loop’s plane. See slides 27-8 
in electrodynamics file.

• The interaction energy between the loop and B
is given by                (so that the gradient of this 
expression is the force acting on the loop).

⊥e

 B⋅− µ
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2. T is torque 
(two slides 
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The “real” reason this happens is the colinearity
of the magnetic and angular moments.



• What is the equivalent of these ideas in QM?

• The Hamiltonian of a particle of mass m and 
charge q in a magnetic field is
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• The spin magnetic moment is assumed to 
be of the same shape:
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Energy Levels of an Electron in a Magnetic Field

• As noted before, if the Hamiltonian separates 
into a spin and orbital parts, we have twice the 
number of orbital states – each one will now have 
a             spin. 

• Now assume there’s a magnetic field B=Bk
present. For the hydrogen atom, the coupling of 
the proton to B can be ignored because its mass to 
charge ratio is much higher than the electron’s. 
For the electron, the combined Hamiltonian is
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The Stern-Gerlach Experiment Revisited

• As in classical electrodynamics, an inhomogenous
magnetic field creates a force on a dipole, which is 

given by               k (assuming the field is in the z-

direction). So particles with positive spin will go 
upwards, and those with negative spin downwards. 
By blocking one of the paths, we can ensure that the 
particle leaving the apparatus will have a definite 
and known spin in the z-direction (i.e. we know that 
it is an eigenstate of        and we know the 
eigenvalue). This results in a space quantization of 
the emerging particles (they’re not continuously 
scattered, but emerge only at distinct points 
corresponding to the different spins; spin half will 
concentrate at two points etc). Note, especially, that 
not only the total spin is quantized, but the spin at 
every axis as well.
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z ∂
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• Suppose we have a sequence of SG apparatuses. 
We may ask what percentage of those leaving 
apparatus i will leave apparatus i+1 (see slides 48-
51). We can now solve this problem rigorously, 
since the equations for the behavior of spin under 
rotation of the axis have been derived.

• The electron is in a mixed spin state .
1
0

0
1

















+







βα

Due to the heavy proton, the behavior is semi-classical, so the 
spin up part induces an upwards moving wave-packet, and 
similarly for the spin down part. So the wave packet has really 
two components – upwards and downwards. The blocking is 
like a measurement, and it forces the spin into a single state; if 
the lower beam is blocked, we get “pure” spin up.



Examples
• Spin half particles are moving along the y-axis (see 
drawing) enter two collinear SGAs, the first with its 
field along the z-axis and the second’s field is along 
the x-axis (i.e. it is the first, rotated by           What 
portion of those leaving the first will exit the second, 
if the lower beams in the two SGAs are blocked?

• Answer: we can think of the particles leaving the 
first being rotated by        and then entering an SGA 
identical to the first. The equation for rotation of spin 
half particles was developed before (slide 210):
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• Since the lower path of the first SGA is blocked, 

those emerging from it are in a state         and after

acts on them they become                   

The probability for them to exit the second SGA 
(which after the rotation also has its field pointing 
up the z-axis), equals their probability to yield 1 
when their z-spin is measured, i.e. the square of the 
projection of the state vector on the eigenvector of 

with eigenvalue 1, but this eigenvector is         
so the probability is clearly  

• Now, assume that another SGA is placed after 
the second, which transmits only spin down along 
the z-axis. How many of those entering it will exit? 
We know that those leaving the second have a spin 
up along x, so their state vector is the eigenvector 

of        with eigenvalue 1, which equals                
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The probability of this particle going through a z-
spin down SGA is clearly         and so        of those 
leaving the first will exit the third.

• Note that if the middle SGA has both beams 
unblocked (i.e. all those entering it leave it), then 
no particle which leaves the first will exit the third 
(they leave the first with spin up and all are 
therefore blocked by the third). So, the blocking in 
the middle one increases the percentage of those 
leaving the third.

• Other way to compute: to see what happens with 
the particle after it leaves the first (and is in a     
state in the z-basis) upon entering the rotated          
SGA: simplest way to understand it is to rotate the 
entire system by             since then we’re back with 
an SGA with its field along z, calculate there, and 
rotate back by  

,21 41
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SGA’s Acting on Spin One Particles

• The computation proceeds very much like for 
spin half. Suppose that the first SGA passes only 
z-spin up particles, and the second one is rotated 
around the y-axis by an angle     What percentage 
of those exiting the first will leave the second?

• Answer: as before, we compute what such a 
rotation does to the particle’s state. Just like for 
spin half, the rotation operator is defined by

.θ

[ ] hSθ)θ( ⋅−= iRU e
To compute the exponents of spin one operators, 
note that, since the eigenvalues are            then 

The Pauli matrices are defined just like for spin 
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Addition of Angular Momenta

• Question: how does a system with two spin half 
particles appear (in terms of spin) when viewed as a 
single object?

• Such systems are naturally described in QM by the 
direct (tensor) product. For example, the system 
with two spin half particles is the vector space of 
dimension 4 spanned by 
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However, the following basis diagonalizes
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• This means that the tensor product of two spin-
half particles behaves like the direct sum of a spin 
one and spin zero particle – since each state can be 
viewed as a linear combination of the three spin one 
states (l=1,m=1,0,-1) and the spin zero state 
(l=m=0) (careful – the spin one particles requires 
three, not one, scalars to describe its state!). 

• And in general, for two particles of spin     and
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As follows by counting arguments and from 
considering the upper and lower bounds for the total 
spin. It remains to calculate the coefficients of the 
basis transformation. All this carries over to systems 
with more than two particles, e.g. 
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• Formally, we write



The Hyperfine Interaction in Hydrogen

• In addition to the Coulomb interaction, there’s an 
interaction Hamiltonian of the form                        
between the proton and electron, due to their 
magnetic moment. It splits the ground state to two

levels:
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A Very Short Introduction to Scattering

• Assume that a plane wave                hits a potential 
centered around the origin, and which decreases faster 
than        (so the potential has no effect at infinity).     

• Asymptotically              the scattered wave will behave 
like a free particle. The solutions are known to be of the 
form

for the wave to be purely outgoing, this must equal

and the total wave is therefore
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• The stationary states satisfy (up to a choice of 
constants)                                     (      is proportional to 
the energy).

• The cross-section (amount of particles scattered per 
angle) is proportional to                 It also turns out that, 
asymptotically, the scattered current is only radial. 
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The Integral Scattering Equation and Green’s Function
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• Try to solve with a Green function for the operator:
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Some examples of the Born approximation (left – the 
potential, right – dependence of           on    . This is 2D, 
the incoming wave is at the x-direction).
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Partial Waves
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• If the potential is rotationally symmetric (central), the 
scattered wave can be studied by separately analyzing its 
components which have fixed angular momentum. 
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Example: scattering of l=1 from a hard sphere
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