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Abstract

An important problem in distributed, dynamic databases is to continuously monitor the value

of a function defined on the nodes, and check that it satisfies some threshold constraint. We

introduce a monitoring method, based on a geometric interpretation of the problem, which enables

to define local constraints at the nodes. It is guaranteed that as long as none of these constraints

is violated, the value of the function did not cross the threshold. We generalize previous work

on geometric monitoring, and solve two problems which seriously hampered its performance: as

opposed to the constraints used so far, which depend only on the current values of the local

data, here we incorporate their temporal behavior. Also, the new constraints are tailored to the

geometric properties of the specific monitored function. In addition, we extend the concept of

safe zones for the monitoring problem, and show that previous work on geometric monitoring is

a special case of the proposed extension.

Experimental results on real data reveal that the new approach reduces communication by up

to three orders of magnitude in comparison to existing approaches, and considerably narrows the

gap between achievable results and a newly defined lower bound on communication complexity.

1 Introduction

Many emerging applications require processing high-volume streams of data. Examples include net-

work traffic monitoring systems, real-time analysis of financial data [36, 38], distributed intrusion

∗A preliminary version of this work appeared in PODS 2008.
†Corresponding author, dkeren@cs.haifa.ac.il.
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detection systems, and sensor networks [26]. A key difference between these problems and those han-

dled by traditional DBMS (Database Management System) is that the abovementioned application are

required to process continuous queries. DBMS receive queries that are static in nature, i.e. the system

receives a query, and returns a response based on the data currently present in the system. Here,

on the other hand, we are interested in handling continuous queries, i.e. the system receives a query

and continuously updates the user as new data arrives. This key difference poses new fundamental

challenges that are not addressed by traditional DBMS.

Various types of continuous queries have been studied in the past, including continuous versions

of selection and join queries [27], various types of aggregation queries [4, 29], and monitoring queries

[9]. While most previous work regarding data stream systems considers sequential setups (the data is

processed by a single processor), many data stream applications are inherently distributed: examples

include sensor networks [26], network monitoring [20], and distributed intrusion detection.

In many cases, the user of a distributed dynamic system is interested in receiving notifications when

global “events of interest” occur. These tasks are referred to as distributed monitoring tasks. Consider,

for example, a distributed system for detecting denial of service attacks. A node is considered to be

under attack if more than a certain percentage of the incoming traffic, say 0.1 percent, is directed to

that node. The system is comprised of agents installed on the routers controlling the network traffic

entering a local network. Each agent monitors the traffic flowing into the network through its host.

It is easy to see that in the example given above, when a certain node is under attack, at least

one of the agents will detect that the network traffic to that node exceeds 0.1 percent of the incoming

traffic. In other words, the global “event of interest” has a local indication. This fact can be utilized

to develop efficient monitoring algorithms, as described in [20].

In more complex monitoring tasks, global “events of interest” may be harder to detect by solely

examining local data. For example, consider a distributed search engine. The engine is comprised

of a distributed set of mirrors. Each mirror receives a stream of queries, where each query consists

of multiple search terms. We are interested in monitoring the correlation between the appearance of

pairs of terms is a search query. To achieve this, each mirror keeps track of the queries it received in

the last, say, 48 hours. We refer to these queries as the sliding windows held by the mirrors. Given

two search terms, denoted A and B, let fA and fB be the respective global frequency of occurrence1

of A and B, i.e. the frequency of their occurrence in the union of the sliding windows held by the

mirrors. In addition, let fAB be the global frequency of occurrence of both A and B. The correlation

between the appearance of A and that of B is measured using the correlation coefficient ρAB, which is

defined by:

1Frequency of occurrence is the number of search queries containing the term, divided by the total number of queries.
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ρAB(fA, fB, fAB) =
fAB − fAfB

√

(fA − f 2
A)(fB − f 2

B)

The correlation coefficient receives values in the range [−1..1]. A negative score indicates that the

terms tend to exclude each other, a score of zero indicates that there is no correlation between the

appearance of the terms, and a positive score indicates that the terms tend to appear in the same

queries. A typical requirement in data mining applications is to alert when the correlation coefficient

crosses a given positive threshold, since this means that two search terms became correlated. It is easy

to see that it’s impossible to reach a correct decision, given only the local values of the correlation

coefficient. This is a characteristic of non-linear functions; see for example Section 4 (“Running

Example”) in [33].

In this paper we consider a set of nodes, each of which holds a time varying data vector. The global

“event of interest” is defined by an arbitrary (possibly non-linear) function over the weighted average

of the vectors held by the nodes, and we are interested in detecting when the value of this function

crosses a predetermined threshold. For the above example, this means that we’re not interested in the

exact value of the correlation coefficient between the appearances of two tokens A,B at every point

in time – the large part of this information being redundant – but only on whether the correlation

coefficient had passed a certain threshold. We refer to such tasks as non-linear monitoring tasks.

1.1 Distributed Geometric Monitoring

While non-linear monitoring tasks can be performed by a naive algorithm that collects all the data

to a central location for analysis, the communication load incurred by such an algorithm may be

prohibitively high. Sensor networks are particularly vulnerable to a high communication load, since

communication is the primary factor affecting the power consumption of the network [37]. In addition

to communication load concerns, collecting data to a central location may violate privacy requirements

in certain applications.

Previous work [34] proposed algorithms for performing non-linear monitoring tasks that are based

on geometric techniques. The idea is to use the geometric properties of the local data vectors to

construct a set of local constraints. Each node then needs to verify that its local data vector conforms

to a local constraint. These constraints can be verified independently (i.e. each node can verify its

local constraint without communicating with other nodes), and if all the constraints are upheld, it is

guaranteed that the function did not cross the threshold. The constraints proposed in [34], however,

have several drawbacks.

The first deficiency of these constraints is that they are constructed solely according to the current

values of the local data vectors. Real-world data usually displays an underlying distribution. Here we
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solve this problem by fitting a probabilistic model to the data, and using it to create local constraints

that are optimized to the data received on the nodes, in the sense that the probability of a constraint

violation is minimized.

Another disadvantage of the geometric constraints proposed in previous work is that they are

generic in the sense that the same constraints are used regardless of the function at hand. To solve

this problem, we modify the constraints by tailoring them to the geometric properties of the specific

function which is being monitored.

Lastly, we define a general notion of safe zones (SZs). A node’s SZ consists of the set of vectors

which satisfy the local constraints, and as long as the vectors remain in their SZs, no communication

is required. We show that the SZs defined in previous work on geometric monitoring are a special case

of a general paradigm for computing optimal SZs, which are defined as certain convex subsets of the

function’s domain.

2 Related Work

A well studied problem is the monitoring of frequency counts over a single data stream [4, 6, 11, 29],

however these works do not address distributed environments. Other important problems over a single

data stream were studied in [10, 12, 19, 21].

Distributed function computation has been addressed by the “Distributed Triggers” framework

presented in [24]. Later, this framework has been employed to monitor network wide traffic anomalies

[22, 23]. Our work is consistent with the distributed triggers framework in that it employs a set of local

constraints for detecting a global event of interest. In contrast to [22, 23], which focus on an anomaly

detection problem, our work addresses a wide class of non-linear monitoring problems. Recent work

addressed thresholding a function defined on distributed nodes in the static case by first solving the

problem for a monotonic function and then extending to a general function by expressing it as the

difference of two monotonic functions [39].

Another important problem is the computation of the sum or average of a distributed set of

variables. Prominent examples include [20], which addresses the problem of detecting when the sum

exceeds a given threshold, [13], which proposes observing the distribution of the input data to derive

optimal algorithms, and [30] which enables tracking the sum, average, or minimum of a distributed

set of variables within a certain predetermined error margin. Our work differs in that we monitor the

value of an arbitrary function over a vector of distributed variables.

A common approach to distributed stream monitoring is the use of sketches to summarize data

while maintaining accuracy bounds. This approach has been employed to detect “heavy hitters” [28],

compute quantiles [15], count distinct elements [17], and compute join aggregates [14].
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Other distributed computation problems studied in previous work include top-k problems [8], set-

expression cardinality estimation [18], clustering [16], and distributed verification of logical expressions

[3].

Recent work addresses a theoretical tracking of frequency moments tracking, where the goal is

to minimize communication while maintaining an accurate estimate [40], tracking of “heavy hitters”

(elements whose frequency is at least a certain portion of a given set) and quantiles [41], and optimal

sampling from distributed streams [42]. Recently, the geometric monitoring scheme was proposed in

[34]. In contrast to the methods proposed in [34], which are oblivious to the nature of the data on the

streams and to the monitored function at hand, the methods presented here leverage this information,

yielding a very significant reduction in communications.

3 The Monitoring Framework

We now present a general framework for performing non-linear monitoring tasks. Refer to the data held

by each node as the local data vector, and to their weighted average as the global data vector. Denote

the dimension of these vectors by d (e.g. for the correlation coefficient example, d = 3). We refer to

the function evaluated at the global data vector as the monitored function. The combination of the

monitored function and the threshold value is viewed as inducing a coloring over the d -dimensional

domain: vectors for which the value of the monitored function is above (below) the threshold are

colored white (grey). Given this geometric interpretation, the goal of the monitoring task can be

viewed as determining the color of the global data vector at all times.

Upon initialization of the monitoring task, and when dictated by the monitoring algorithm, all

the local data vectors are collected by a certain node designated as the coordinator. The coordinator

calculates the weighted average of the local data vectors (i.e. it determines the global data vector),

and sends this value to the nodes. We refer to this vector as the estimate vector, and denote it by ~e.

The process of collecting the local data vectors and calculating the estimate vector is referred to as a

synchronization process.

As data arrives on the streams maintained by the nodes, each node keeps track of the difference

between the current value of its data vector and its value at the time of the last synchronization. We

refer to this difference as the delta vector. We denote the sum of the estimate vector and the delta

vector as the drift vector . The drift vector held by the ith node is denoted by ~vi. It is easy to verify

that the global data vector is a convex combination of the drift vectors, hence it belongs to their

convex hull.

Fig. 1 (left) depicts the coloring induced by the combination of the monitored function and the

threshold value, the initial data vectors (purple diamonds) and the estimate vector (blue square).
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Figure 1: Geometric interpretation of a monitoring problem.

As data arrives at the nodes, the local vectors change. The new location of the data vectors (purple

diamonds), as well as their initial location (white diamonds) are depicted in Fig. 1 (right). In addition,

the corresponding drift vectors (red circles) are depicted, and their convex hull is highlighted in gray.

Note that the difference between the current and initial values of the a data vector is equal to the

difference between the corresponding drift vector and the estimate vector.

Our goal is to define local constraints on the values of the drift vectors, such that each node can

verify its local constraint independently, such that if all the constraints are upheld, the convex hull of

the drift vectors is guaranteed to be monochromatic (i.e. all the vectors in it are of the same color).

As long as this convex hull remains monochromatic, the function’s value did not cross the threshold

and no communication is required.

The local constraints are defined by regions in Rd that each node determines according to the esti-

mate vector and its drift vector. If the region determined by a node is monochromatic, the constraint

is upheld, otherwise it is violated. We call these regions bounding regions, since we require that their

union covers the convex hull of the drift vectors.

We propose the following method for constructing bounding regions: the nodes agree in advance

on a d × d symmetric positive definite matrix A, which we name the shape matrix. In addition, the

nodes agree on a common vector denoted by ~r, which is called the reference vector. The shape matrix

and reference vector are determined during the synchronization process. Given a node’s drift vector

~vi, the reference vector ~r, and the shape matrix A, the bounding region constructed by the node is the

ellipsoid EA, which is defined as follows, using the Mahalanobis distance [43]:

EA(~r,~vi) =

{

~z

∣

∣

∣

∣

∣

(

~z−~r + ~vi

2

)T

A

(

~z−~r + ~vi

2

)

≤
(

~r − ~vi

2

)T

A

(

~r − ~vi

2

)

}

(1)

Note that by setting the shape matrix to the unit matrix, the bounding region maintained by each
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Figure 2: The use of ellipsoidal constraints.

node is a sphere centered at the midpoint between the reference vector and the node’s drift vector,

whose radius is half the distance between the reference vector and drift vector. Given a reference vector

and a drift vector, we denote the sphere created by using the identity matrix as the shape matrix by

B(~r,~vi):

EI(~r,~vi) = B(~r,~vi) =

{

~z

∣

∣

∣

∣

∥

∥

∥

∥

~z − ~r + ~vi

2

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

~r − ~vi

2

∥

∥

∥

∥

2

}

Using the identity matrix as the shape matrix and the estimate vector as the reference vector yields

the spherical bounds defined in [34].

When the shape matrix is not the identity, the bounding region held by a node is an ellipsoid

centered at the midpoint between the reference vector and the node’s drift vector. Fig. 2 illustrates

the use of local constraints to determine the value of the threshold function. The coloring induced by

the combination of the monitored function and the threshold value is depicted. The convex hull of the

drift vectors (red circles) is highlighted, and the ellipsoids constructed by the various node are shown.

As illustrated in the figure, all the ellipsoids are monochromatic, guaranteeing that the convex hull is

monochromatic as well (note that the covering theorem is correct for every choice of A). For a proof

of the general case, see Section 4.2.

In summary, the monitoring algorithm proceeds as follows: upon initialization, a synchronization

process is performed, after which each node holds an estimate vector, a reference vector, and a shape

matrix. Note that after the synchronization process, all the drift vectors are equal to the estimate

vector. If the estimate vector is used as the reference vector, the ellipsoids constructed by the nodes

are a single vector (and hence monochromatic), therefore after the synchronization process, all the

constraints are upheld. As more data arrives on the streams, each node verifies that its ellipsoid is

monochromatic. If one of the ellipsoids is not monochromatic, a synchronization process is performed.

We show that choosing the optimal shape matrix enables us to customize the constraints to the
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properties of the data received on the streams. In addition, we show that by carefully selecting the

reference vector, we can adjust the constraints to the monitored function at hand.

In the following section we discuss the use of ellipsoidal constraints. We build a probabilistic model

of the data, and use it to determine the shape matrix.

4 Constructing Data Sensitive Constraints

The goal in this section is to construct bounding regions that cover the convex hull of the drift vectors

as tightly as possible. We thus decrease the number of “false positives” generated by the constraints.

A constraint causes a “false positive” if the bounding region it defines is not monochromatic, while

the convex hull of the drift vectors is monochromatic; that means that the alert sent by the node was

spurious. Intuitively, we want the bounding regions to be “large” – not necessarily in terms of volume,

but in terms of the probability of the dynamic local vectors to remain in their bounding volumes

for as long as possible. While these optimal bounding volumes are not required for correctness, they

substantially improve the monitoring algorithm by minimizing communication.

We use previous data received on the streams to construct a probabilistic model of future values,

and then use this model to construct optimal bounding regions.

4.1 Data Modeling

In order to model the data received on the streams, we view it as if it were generated by a probabilistic

data source. Consider, for example, the search term correlation example presented in Section 1. Let

us assume that the appearance of each search term in a query is determined by a stationary random

variable that receives 1 if the term appears in the query, and 0 otherwise. We assume that the terms

used in a certain query are drawn independently of the terms used in previous queries (note that

we do not assume that the values drawn for the various terms in a certain query are independent).

Consequently, given two search terms, A and B, the global data vector (fA, fB, fAB) can be viewed as

an average of i.i.d random vectors.

Under these assumptions, according to the Central Limit Theorem, the distribution of the global

data vector converges to a multi-variate Gaussian (normal) distribution, as the number of search

queries held in the sliding windows increases. Recall the multi-variate Gaussian distribution:

G~µ,Σ(~v) =
1

(2π)d/2 det(Σ)1/2
exp(−1

2
(~v − ~µ)TΣ−1(~v − ~µ))

Where ~µ is the expected value of the global data vector, and Σ is its covariance matrix. Given

a set of previous values of the drift vectors, we can construct an empirical probability distribution of
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these values by calculating their mean and covariance matrix, and use them as the parameters of a

multi-variate Gaussian distribution. Then, we can use this distribution to predict future values of the

drift vectors.

Note that a Gaussian distribution of drift vectors is not particular to the search term correlation

example. The Gaussian distribution is commonly used to characterize the behavior of natural phe-

nomena, and is particularly suitable whenever the drift vector can be modeled as the sum or average

of independently drawn random vectors. As a result, we expect that the methods presented below will

be applicable to a large family of practical problems.

4.2 Using the Model to Construct Tight Bounding Regions

Intuitively, it would be simpler to construct tight bounding regions on the drift vectors if the data were

isotropic, i.e. transformed so that it is distributed evenly in all directions. Formally, this means that

the variances of the transformed data along the various axes is identical, and that the covariance among

any pair of axes is zero. We use the model we built to determine a transformation that normalizes the

data so that it is isotropic. We show that by first applying this transformation on the drift vectors,

and then using spherical bounding regions as described in Section 3, we obtain ellipsoidal bounding

regions. In addition, we prove the validity of the ellipsoidal constraints (i.e. the ellipsoidal bounding

regions are guaranteed to cover the convex hull of the drift vectors), and show that by applying the

normalizing transformation, we obtain the tightest possible ellipsoidal bounding regions.

We start by describing the normalization process. Given G~µ,Σ(~v), we wish to transform the data

so that the variance of the transformed data is identical along the various axes, and the covariance

among any pair of of axes is zero. In order to do so, observe that the covariance matrix Σ is symmetric

and positive definite, and can therefore be decomposed as follows:

Σ = PΣDΣP−1
Σ

Where PΣ is a matrix whose columns are the normalized eigenvectors of Σ, and DΣ is a diagonal

matrix with the respective eigenvalues on its diagonal. Since Σ is symmetric, its eigenvectors are

orthogonal, and therefore PΣ is orthonormal. Since Σ is positive definite, its eigenvalues are positive.

Let D′
Σ be the square root of DΣ (i.e. a diagonal matrix with the square root of the eigenvalues of Σ

on its diagonal). Since PΣ is orthonormal, it can be viewed as a rotation transformation, and P−1
Σ

can

be viewed as the inverse rotation transformation. Since D′
Σ is a diagonal matrix, it can be viewed as

a scaling transformation. Let us define the linear transformation TΣ = D′−1
Σ P−1

Σ . Note that TΣ is a

concatenation of a rotation transformation and a scaling transformation. Given a drift vector ~v, drawn

from the distribution G~µ,Σ(~v), let ~v′ be the image of ~v under the transformation TΣ, i.e. ~v′ = TΣ~v. It
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is easy to show that the distribution of the transformed vectors is G′
~µ′,I

(~v′):

G′
~µ′,I

(~v′) =
1

(2π)d/2
exp(−1

2
(~v′ − ~µ′)T (~v′ − ~µ′))

where ~µ′ = TΣ~µ. Note that the distribution G′
~µ′,I

(~v′) is isotropic, i.e. the variance of the data is

equal in all directions (in the pattern recognition community such an operation is often referred to as

“whitening”, [43]).

The ellipsoidal bounding regions are constructed as follows: given an estimate vector ~e and a drift

vector ~vi, we determine ~e′ and ~v′
i, their image under the transformation TΣ. Next we construct a

sphere centered at the midpoint between ~e′ and ~v′
i, with a radius of half the distance between ~e′ and

~v′
i (recall that this sphere is denoted by B(~e′, ~v′

i)). Observe that the image of the sphere B(~e′, ~v′
i)

under the transformation T−1
Σ is the ellipsoid EΣ−1(~e,~vi) (see Eq. 1). According to a theorem from [34]

(which is quoted below), it follows that given a set of drift vectors ~v1,...,~vn, the union of the spheres

B(~e′, ~v′
1),...,B(~e′, ~v′

n) bounds the convex hull of the vectors ~v′
1,...,~v′

n:

Theorem 1 Let ~x, ~y1, ~y2, ..., ~yn ∈ Rd. Let Conv(~x, ~y1, ~y2, ..., ~yn) be the convex hull of ~x, ~y1, ~y2, ..., ~yn.

Let B(~x, ~yi) be a sphere centered at ~x+~yi

2
and with a radius of

∥

∥

∥

~x−~yi

2

∥

∥

∥

2
i.e., B(~x, ~yi) =

{

~z
∣

∣

∣

∥

∥

∥
~z − ~x+~yi

2

∥

∥

∥

2

≤
∥

∥

∥

~x−~yi

2

∥

∥

∥

2

}

. Then Conv(~x, ~y1, ~y2, ..., ~yn) ⊂
n
⋃

i=1

B(~x, ~yi).

Since linear transformations preserve convexity (i.e. the image of the convex hull of a set of vectors

is the convex hull of the images of these vectors), it follows that the convex hull of the original drift

vectors is covered by the ellipsoids EΣ−1(~e,~v1),...,EΣ−1(~e,~vn). Fig. 3 illustrates the process of bounding

the convex hull of a set of vectors using ellipsoids. This process can be thought of as first applying

a rotation transformation (1) and then a scaling transformation (2) on the vectors. Next, the convex

hull is bound using spheres (3), and finally, the inverse transformations are applied (4,5).

During the synchronization process, in addition to its drift vector, each node sends the coordinator

the covariance matrix and mean vector of the data values contained in its sliding window (note that

if the dimension d is large, bandwidth can be saved by compactly representing the covariance matrix

using the leading terms of its spectral decomposition). The coordinator uses this data to calculate the

covariance matrix representing the global data set, sends its inverse to the nodes as the shape matrix,

and sends the estimate vector as the reference vector. Experimental results show that using these

ellipsoidal bounding regions can reduce communication by over an order of magnitude in comparison

to spherical constraints (see Section 8).

Next, we formally show that using the inverse of the covariance matrix produces optimal ellipsoidal

bounding regions.
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Figure 3: Bounding a convex hull with ellipsoids.

4.3 Optimality of the Ellipsoidal Bounds

In the previous section we proposed ellipsoidal bounding regions, using the inverse of the covariance

matrix of the data as the shape matrix. Intuitively, this transformation should be optimal, since using

these ellipsoids is equivalent to bounding transformed, isotropic data with spheres. In other words,

if we use a different shape matrix, we should receive ellipsoids whose expected volume is greater.

Theorem 2 formally confirms this intuition; due to space limitations, its proof is not included.

Theorem 2 Let A be a d × d positive definite matrix such that det(A) = 1. Let Σ be the covariance

matrix of a d-dimensional Gaussian distribution G(~0,Σ) centered at the origin. Let ~x be a random

vector drawn according to G. Let V (~x) be the volume of the ellipsoid EA(~0, ~x). Then the expected value

of V (~x) is minimized by A = Σ
−1

det(Σ−1)1/d .

5 Strategies for Selecting a Reference Vector

Up to this point, we focused on creating constraints that minimize the volume of the bounding region

maintained by each node. While this approach is very effective, it only takes into account the convex

hull that needs to be bounded, but does not consider the monitored function. In fact large, but carefully

constructed bounding regions, can be more effective than smaller regions in bounding the convex hull of

the drift vectors. The size of the bounding regions is affected by the choice of the reference vector used

for constructing them. Up to this point, we used the estimate vector as the reference vector. However,

as the following example demonstrates, the estimate vector is not necessarily the best reference vector.
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Fig. 4 depicts the coloring induced by the function f(x, y) = 2x2/(x2 +1)−y, and a threshold value of

0. In addition, it depicts two drift vectors (red circles) ((0.45,0.39) and (0.105,0.055)) and an estimate

vector (blue square) (0.26,0.268). The figure depicts two choices of reference vectors: in Fig. 4 (left)

the estimate vector is used as the reference vector, while in Fig. 4 (right), a vector that is more distant

from the threshold surface is used (the threshold surface is the set of vectors for which the value of

the monitored function equals the threshold value). As illustrated by the figure, despite being larger,

the spheres created with the distant reference vector are monochromatic, while the smaller spheres

created with the estimate vector are not.

Figure 4: The effect of the reference vector on the bounding regions. The green reference point,

obtained by translating the blue reference point away from the white region’s boundary, yields larger

bounding volumes for the two red dots representing data points; however, these volumes are contained

in the white region, while the smaller ones, dictated by the blue reference point, are not.

Next we will expand upon the intuitive concepts described above. We begin by describing some

concepts, then define a formal construct called a safe zone. Then, we show how safe zones can be used

to evaluate the merits of a given reference vector, and finally, describe a method for selecting good

reference vectors.

5.1 Notations

Following are some notations used throughout this section. As mentioned above, a monitored function

g and the threshold value t define the threshold surface T (g, t), i.e. the set of vectors for which the

value of the monitored function is equal to the threshold value:

T (g, t) = {~x |g(~x) = t}

We assume that the monitored function g is continuous and differentiable in all Rd.

The distance of a vector ~x to the threshold surface is defined as the minimum over the distances

of ~x to all the vectors on the threshold surface, and is denoted by dist(T (g, t), ~x):
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dist(T (g, t), ~x) = min (‖~z − ~x‖2 |~z ∈ T (g, t)) (2)

Note that a sphere is monochromatic if and only if the distance of its center to the threshold surface

is greater than its radius. The vector on the threshold surface that is closest to a given vector ~x is

denoted by ~x∗. Note that there may be more than one vector on the threshold surface that minimize

the distance to ~x. In this case ~x∗ is arbitrarily selected among these vectors. Denote the normal to

the threshold surface at ~x∗ by ~n~x∗ . These constructs are illustrated in Fig. 5.

Figure 5: Illustration of a threshold surface, a reference point, and the normal.

Given a monitored function g and a threshold value t, define a function colg,t(~x) as follows:

colg,t(~x) =















1 if g(~x) > t

0 if g(~x) = t

−1 if g(~x) < t

Two vectors ~x and ~y have the same color if colg,t(~x) · colg,t(~y) = 1.

Given a reference vector ~r, let Sg,t(~r) be the set of all the vectors that create a monochromatic

sphere with ~r:

Sg,t(~r) =

{

~z

∣

∣

∣

∣

∥

∥

∥

∥

~z − ~r

2

∥

∥

∥

∥

2

< dist

(

T (g, t),
~z + ~r

2

)}

(3)

We call this set the safe zone induced by g, t, and ~r, indicating that as long as the drift vectors

lie inside their safe zones, it is guaranteed that the function did not cross the threshold, and no

communication is required.
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5.2 Using Safe Zones to Evaluate Reference Vectors

In this section, we assume that spherical bounding regions are used to bound the convex hull of the

drift vectors. In Section 5.3, we will discuss how the techniques developed in this section can be

applied to ellipsoidal bounding regions as well. Fig. 6 illustrates the safe zone defined by the estimate

vector and threshold surface that were depicted in Fig. 4 (outlined in blue), as well as the safe zone

defined by the distant reference vector (outlined in green). It is evident from the illustration that

the safe zone induced by the distant reference vector includes the safe zone induced by the estimate

vector. In other words, any drift vector that creates a monochromatic sphere with the estimate vector

creates a monochromatic sphere with the distant reference vector as well, but there is also a large set

of drift vectors that create a monochromatic sphere with the distant reference vector but not with the

estimate vector. In this regard, the distant reference vector is a better choice of reference vector than

the estimate vector. Safe zones enable us to formally evaluate the merits of a certain choice of reference

Figure 6: The estimate vector (blue) and the distant vector (green) that were depicted in Fig. 4, and

their respective safe zones.

vector in relation to a given function. For example, as described above, if the safe zone induced by

a given reference vector contains the safe zone induced by the estimate vector, then the former is

obviously a better reference vector then the estimate vector. However, using the full containment of

safe zones as a criteria for evaluating reference vectors can be restrictive. Intuitively, we would like to

find a reference vector so that the safe zone it induces is large at the vicinity of the estimate vector. We

are less concerned about whether the safe zone includes vectors that are far from the estimate vector.

This is because after a synchronization process, the drift vectors are equal to the estimate vector. As

data arrives at the nodes, the drift vectors tend to concentrate around the estimate vector (this is

also supported by the probabilistic model of the data). In order to capture this intuition we define

a property we call local containment of safe zones. The idea is that given two reference vectors, ~r1

and ~r2, then for ~r2 to be considered better than ~r1, it is sufficient for Sg,t(~r2) to contain Sg,t(~r1) in the
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“vicinity” of the estimate vector. We formally define a vicinity of the estimate vector as a connected

set2 of vectors that contains the estimate vector. In addition, we say that a vicinity of the estimate

vector is sufficiently large if it also contains ~e∗, the point on the threshold surface that is the closest

to the estimate vector. A formal definition of the local containment property follows.

Definition 1 Let g be a monitored function, t a threshold value, and ~e an estimate vector. Let L be

a vicinity of the estimate vector. Let ~r1 and ~r2 be two reference vectors. We say that the safe zone

induced by ~r1 is locally contained in the safe zone induced by ~r2 if [Sg,t(~r1) ∩ L] ⊂ [Sg,t(~r2) ∩ L]. Note

that this definition is with respect to a specific L.

We proceed to construct a sufficiently large vicinity of the estimate vector and a reference vector,

such that the safe zone induced by it locally contains the safe zone induced by the estimate vector.

To achieve this, we examine the set of vectors R that satisfy the following conditions:

1. For each vector ~r ∈ R, ~e∗ is the vector on the threshold surface that is the closest to ~r.

2. For each vector ~r ∈ R, colg,t(~r) = colg,t(~e).

Let ~rmax be the vector in R that is the most distant from ~e∗. We refer to ~rmax as the internal vector

(since, intuitively speaking, it is found by moving from ~e∗ into the region – white or gray – that contains

~e). Let Lmax be a sphere centered at ~rmax, whose radius is the distance between ~rmax and ~e∗ (see Fig.

7). Since ~e is in the line segment connecting ~rmax and ~e∗, it is easy to see that Lmax includes both ~e

and ~e∗, and is therefore a sufficiently large vicinity of the estimate vector. We propose using ~rmax as

the reference vector. This has two advantages. The first is that the safe zone induced by ~rmax locally

contains the safe zone induced by the estimate vector (with respect to the vicinity Lmax). The second

is that given ~e, ~rmax can be efficiently determined. We start by showing that the safe zone induced

by ~rmax locally contains the safe zone induced by the estimate vector. This proceeds as follows: in

Lemma 1 we show that the safe zone induced by ~rmax contains the entire vicinity. As a result, it locally

contains the safe zone induced by the estimate vector.

Lemma 1 Let g be a monitored function, t be a threshold value, and ~e be an estimate vector. Let

~rmax and Lmax be a reference vector and a sufficiently large vicinity, as described above. Then Lmax ⊂
Sg,t(~rmax).

Proof: We need to show that for every vector ~z ∈ Lmax, the sphere B(~rmax, ~z) is monochromatic.

2The term “connected set” refers to a pathwise connected set, i.e. given two vectors ~x and ~y that belong to the set,

there exists a continuous function f , that maps the interval [0,1] into the set such that f(0) = ~x, f(1) = ~y.
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Figure 7: A threshold surface, an estimate vector, the set R and the vicinity Lmax.

It is easy to see that this sphere is contained in Lmax, therefore it is sufficient to show that Lmax is

monochromatic. Let us assume, by way of contradiction, that Lmax is not monochromatic, i.e. there is

a vector ~z ∈ Lmax such that colg,t(~z) · colg,t(~rmax) = −1. Since g is continuous, there exists a vector ~z′

on the line segment between ~rmax and ~z such that colg,t(~z′) = 0, i.e. ~z′ is on the threshold surface. Note

that
∥

∥

∥

~z′ − ~rmax

∥

∥

∥

2
< ‖~z − ~rmax‖2 ≤

∥

∥~e∗ − ~rmax

∥

∥

2
. In summary, ~z′ is a vector on the threshold surface

that is closer to ~rmax than ~e∗. This stands in contradiction to ~e∗ being the vector on the threshold

surface that is the closest to ~rmax, thus concluding the proof.

Next, we show that ~rmax can be efficiently determined. In order to do so, we observe that the

vectors in R are located along the normal to the threshold surface at ~e∗. This follows immediately

from Lemma 2 below. The significance of this observation is that regardless of the dimensionality of

the domain of the function g, the vectors in R are a subset of a one-dimensional subspace.

Lemma 2 Let g be a monitored function, t a threshold value, ~x an arbitrary vector, and ~x∗ the vector

on the threshold surface that is the closest to ~x. Then ~x lies along the ray starting at ~x∗, and whose

direction is defined by ~n ~x∗, the normal to the threshold surface at ~x∗. In other words, there is a real

value α, such that ~x = ~x∗ + α~n ~x∗.

Proof: Given ~x, let us search for the vector ~y on the threshold surface that is closest to ~x. Using

the terminology and results of Lagrange multiplier theory, denote F (~y) = ‖~y − ~x‖2
2 + λ(g(~y)− t). The

sought ~y satisfies ∂F
∂~y

= 2(~y−~x)+λ(∇g)(~y) = 0, hence (∇g)(~y) = − 2
λ
(~y−~x). However it is well known

from calculus that (∇g)(~y) is parallel to the normal to the threshold surface at ~y, thus concluding the

proof.
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The fact that the set R is one-dimensional enables employing the following strategy for selecting

a reference vector: during the synchronization process, after determining the estimate vector ~e, the

coordinator calculates ~e∗ (this can be done by employing the optimization techniques described in [31]).

Once ~e∗ has been calculated, the coordinator sets the reference vector to be equal to the estimate vector,

and iteratively examines new reference vectors by doubling the distance of the previous reference vector

from ~e∗, i.e. the reference vector ~ri examined in the ith iteration is ~e∗ +2i(~e− ~e∗). In each iteration we

calculate the vector on the threshold surface that is closest to ~ri. If this vector is ~e∗, we proceed to the

next iteration, and, continuing in this fashion, find ~rmax using a binary search. The synchronization

process is concluded by sending the nodes ~rmax as the reference vector.

Experimental results (Section 8) show that applying spherical bounding regions while using the

internal vector as the reference vector typically reduces communication by over an order of magnitude

in comparison to the spherical constraints used in [34].

5.3 Selecting Reference Vectors while Employing Ellipsoidal Bounding

Regions

In Section 4 we leveraged a probabilistic model of the data to reduce communication load by employing

ellipsoidal constraints. In Section 5.2 we reduced communication by selecting a better reference vector,

but we used spherical constraints. We now describe an algorithm that combines both methods.

Recall that bounding the convex hull of the drift vectors using ellipsoids is equivalent to bounding

the convex hull of drift vectors with spheres after applying a linear transformation to the drift vectors.

In order for the transformed monitoring problem to remain consistent with the original problem, we

apply the transformation to the monitoring function as well, i.e. if g(~v) is the monitored function, and

TΣ is the transformation applied to the drift vectors, then the transformed function is g(T−1
Σ ~v).

We can select a better reference vector while leveraging the probabilistic model of the data by

selecting the reference vector in the transformed monitoring problem. Note that, as opposed to the

case of the isotropic distribution assumed in Section 5.2, here the optimal direction by which to move

away from the boundary is not necessarily orthogonal to it. Experimental results show that combining

ellipsoidal bounds with reference vector selection yields a reduction in communication that is far

greater than employing each of these methods separately. Typically, the reduction in communication

achieved by combining both approaches reaches two orders of magnitude in comparison to the spherical

constraints presented in [34], and in certain cases exceeds three orders of magnitude.
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5.4 An Example

In some cases, it is possible to provide an accurate description of the safe zone, and the optimal choice

of the reference vector. We now present an example of a very simple but illustrative threshold surface.

Let the data be two-dimensional, (x, y), the monitored function equal to y, and the threshold equal to

0; so, the allowable region G is simply the upper half-plane. It’s relatively simple to compute the safe

zone associated with a point.

Lemma 3 The safe zone (using spherical constraints) corresponding to a point r0 = (x0, y0) is the

parabola y = (x−x0)2

4y0

.

proof: Let D be the disk whose diameter is the line segment connecting r0 and a point p = (x, y).

For the disk to be contained in the upper half-plane, it is enough to check whether its lowest point is

in the upper half-plane; but the y coordinate of the lowest point is y+y0

2
− ||p−r0||

2
. The result follows

immediately.

Assume that the data distribution is a Gaussian centered at (0, 1), with an eccentricity of 4, and

at an angle of π
4

(see Fig. 8). The equation of this Gaussian is e−
17

4
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2
y− 17

4 . In

order to illustrate the considerations affecting the choice of a better reference point, we now show

an incremental version (as opposed to the global choice of a single best reference point, treated in

Section 5.3). The question posed is: given a current reference point, how should it be perturbed in

order to obtain an optimal reference point? If we fix the length of the perturbation to some small

positive constant (taken to be 0.1 in the following example), the question is in what direction to move

in order to maximize the total probability in the safe zone. To determine this, the following iterative

computation was performed: at each stage, the integral of the Gaussian was computed for the safe

zones of all points at a distance of 0.1 from the current reference point, and the one with the highest

integral was chosen as the new reference point. The path that results from concatenating these points

(Fig. 8) represents the optimal path by which to move away from G’s boundary. Note that for an

axes-aligned Gaussian, it will be simply a straight vertical line, resulting in paraboloid regions with

increasing areas; here however, the safe zones are chosen so as to also contain as much “probability

volume” of the Gaussian as possible.

6 Theoretic Optimal Geometric Constraint

Experimental results (Section 8) show that employing the new geometric constraints presented above

very substantially reduces communication. The question arises – how much further improvement to the

constraints is at all possible? The geometric monitoring scheme is based on distributively constructing

bounding regions, such that the union of these regions covers the convex hull of the drift vectors. Since
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Figure 8: The optimal path (brown curve) by which to move the original reference point (dark circle)

away from G’s boundary (the x-axis). The red ellipses depict the level sets of the Gaussian distribution

representing the data, and the three parabolic curves correspond to the safe zones of the reference

points with the respective colors. Note that initially the curve does not move vertically away from

the boundary (as it would for an isotropic Gaussian), but also curves to the left, in order to “capture

more probability” of the Gaussian inside the safe zone (since this results in the apex of the parabola

moving to the left as well).

the only thing the nodes know about the global vector is that it is contained in this convex hull, the

most we can expect from any set of geometric constraints is for a constraint to be violated only if

the convex hull is not monochromatic, i.e. a constraint with no “false positives”. We refer to such

constraints as optimal constraints.

We can simulate optimal constraints by collecting all the drift vectors every time new data is re-

ceived by one of the nodes, and checking whether the convex hull of these vectors is monochromatic.

Such an approach is not feasible in practice, since checking the constraints requires the nodes to com-

municate, but simulating these constraints gives us an indication of how much additional improvement

is at all possible. In Section 8 we compare results not only to previous work but to the theoretic optimal

constraints as well.

7 Experimental Results

We performed several experiments using various geometric constraints. The constraints were tested on

a distributed feature selection problem. In this setup news stories, which are referred to as documents,

are received at a set of distributed nodes. Each document is categorized as belonging to several

categories (Sports, News, etc.). Our goal is to select the most relevant words, or features, for classifying

the documents according to a certain label (e.g. News). This task, which is of great importance in
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data mining and machine learning, is known as feature selection. In order to decide, at any given time,

whether or not to select a certain feature, each node maintains a sliding window containing the last

k documents it received. The relationship between the appearance of the feature and the category

label is captured using a contingency table, and the relevance of the feature is scored by evaluating the

chi-squared measure on the sum of the contingency tables held by the nodes. The feature is selected if

its chi-square score exceeds a predetermined threshold. A detailed description of the feature selection

process can be found in [35].

We used the Reuters Corpus (RCV1-v2) [32] to generate a set of data streams. RCV1-v2 consists

of 804414 news stories, produced by Reuters between August 20, 1996, and August 19, 1997. Each

story has been categorized according to its content, and identified by a unique document id.

RCV1-v2 has been processed by Lewis et al. [25]. Features were extracted from the documents,

and indexed. A total of 47236 features were extracted. Each document is represented as a vector

of the features it contains. We refer to these vectors as feature vectors. We simulate ten streams

by arranging the feature vectors in ascending order (according to their document id), and selecting

feature vectors for the streams in round robin fashion.

In the original corpus each document may be labeled as belonging to several categories. The

most frequent category documents are labeled with is “CCAT” (the “CORPORATE/INDUSTRIAL”

category). In the experiments our goal is to select features that are most relevant to this category.

Each node holds a sliding window containing the last 6000 documents it received (this is roughly the

amount of documents received in a month). We chose three features that display different characteristic

behavior. The chosen features are “Bosnia”, “ipo”, and “febru”. Fig. 9 depicts how the chi-square

score for each feature evolves over the streams. The chi-square score for the feature “Bosnia” displays

a declining trend as the stream evolves. The score for “ipo” remains relatively steady, while the score

for “febru” peaks halfway through the stream.
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Figure 9: Chi-square score for the features “Bosnia”, “ipo”, and “febru” as it evolves over the streams.
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We monitored each feature using threshold values ranging from 30 to 480. We repeated this exper-

iment using the following constraints: (1) The spherical constraints with the estimate vector as the

reference vector (the constraints presented in [34]), (2) Ellipsoidal constraint with the estimate vector

as the reference vector, (3) Spherical constraint with the internal vector as the reference vector, (4)

Ellipsoidal constraint with the internal vector as the reference vector, (5) Theoretic optimal constraint.

The results of these experiments are presented in Fig. 11. Since the chi-square scores for “Bosnia”

and “ipo” remain relatively high (above 140), all the constraints are more efficient when monitoring

these features using low threshold values. The chi-square scores for “ipo” fluctuate around 250, which

explains why the communication expenditure is highest for a threshold value of 250. The chi-square

score for “Bosnia” is more varied, therefore we do not see a distinct decline in communication expen-

diture. The gap between the performance of the spherical constraints presented in [34] and that of the

theoretic optimal constraints is typically two orders of magnitude

With the exception of the local peak about halfway through the stream, “febru” receives a low

chi-square score. As a result, the number of times the chi-square score for “febru” crosses a given

threshold is low in comparison to the other features, and the gap between the performance of the

spherical constraints presented in [34] and the theoretic optimal constraints is typically only one order

of magnitude.
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It can be observed that using ellipsoidal bounding regions (with the estimate vector as the reference

vector) reduces the communication expenditure by a constant factor in comparison to the spherical

constraints. In contrast, using spherical constraints with an internal reference vector is more effective

for lower threshold values. This is because the threshold surfaces induced by chi-square and the

examined threshold value are such that they allow plenty of space for distancing the reference vector

when the chi-square score of the estimate vector is above the threshold value, and very little space

when it is below the threshold. When higher threshold values are used, it is more common for the
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Figure 10: The number of messages generated by monitoring the chi-square score of the features using

various constraints.

chi-square score of the estimate vector to be below the threshold value, thus reducing the effectiveness

of the internal reference vector.

The experiments clearly indicate that using constraints that combine ellipsoidal bounds with an

internal reference vector consistently outperform the rest of the constraints. Furthermore, in most

cases, the communication cost incurred when using these constraints is close (typically by 50 percent

for “Bosnia” and “ipo”, and by 90 percent for “febru”) to the communication cost incurred when using

the theoretic optimal constraint.

8 Generalization: Safe Zones as Convex Subsets of G

We now present a more general view of the monitoring problem, which includes the safe zones defined

by spherical/ellipsoidal bounding volumes as a special case. The idea behind this generalization

commences with the observation that the safe zones defined by the spherical bounding volumes are

always convex, and vice-versa (every convex subset of the allowable region can serve as a safe zone).

Therefore, one may as well search for the optimal convex subset. We now proceed to formalize and

prove the relevant concepts and theorems, and to compare the generalized approach with the one

presented in the previous sections.

As before, denote the allowable region, defined by the monitored function g(x) and the threshold

t, by G = {x|g(x) < t}, and let the reference point be denoted by r. Recall that the safe zone S

consists of all the points v such that B(v, r) ⊂ G. The following lemma concerns a general property

of S, which holds for every function, threshold, and reference point:

22



Lemma 4 S is convex.

Proof: first, note that B(v, r) = {x|(x − v, x − r) ≤ 0} (this is straightforward; in two dimensions,

by the way, it follows immediately from Thales’ theorem, which states that an inscribed angle in a

semicircle is a right angle). Now, assume that {vi}n
i=1 are in S – that is, for 1 ≤ i ≤ n, B(vi, r) ⊂ G.

Now let v be a convex combination of vi, so there are scalars λi such that λi ≥ 0,
∑

i

λi = 1,
∑

i

λivi =

v. To prove that B(v, r) ⊂ G (hence v ∈ S), we will prove that B(v, r) ⊂ ∪iB(vi, r). Assume

x ∈ B(v, r); so (x − v, x − r) ≤ 0. Since
∑

λi = 1, (x − v, x − r) = (
∑

λix − ∑

λivi, x − r) =
∑

λi(x − vi, x − r). If for all i, x /∈ Si, then for all i (x − vi, x − r) > 0, and since λi are positive, this

would imply that
∑

λi(x−vi, x−r) is also positive; but this last expression equals (x−v, x−r) which

we know to be negative. So, there must be an i such that x ∈ Si, which concludes the proof. Note

that this will also hold for ellipsoidal constraints. As the following lemma demonstrates, the fact that

the safe zones defined by the spherical constraints is a convex subset of G can be viewed as a special

case of a sufficient condition for safe zones.

Lemma 5 Assume WLG that the reference vector is the origin O, and denote the initial data vector

at node i by v0
i (note that

∑

i

v0
i = 0, since the reference vector is the average of the local vectors). Let

C be any convex subset of G which contains O. Then the sets defined by Si(C) , {v0
i + c|c ∈ C} are

legal safe zones at the nodes. Note that the safe zone at the i-th node is the translation of C by the

node’s initial data vector.

Proof: we need to prove that as long as the local vectors are in their respective safe zones, the

threshold of the monitored function was not crossed – that is, that the global vector did not wander

out of G. Let the local vector at node i equal v0
i + ci, for some ci ∈ C. Then the global vector is

the average of these local vectors which equals g ,

∑

i

ci

n
(since

∑

i

v0
i = 0). But since C is convex,

g ∈ C, hence g ∈ G (recall that C is a subset of G).

8.1 Safe Zones Defined by Convexity

As Lemma 5 suggests, we can define safe zones by the following construct. Assume that the proba-

bility distribution of the monitored data (which in the previous sections we modeled as a Gaussian

distribution) is p(x). As before, assume WLG that the reference vector is the origin O. Then, solve

the following optimization problem:

maximize

∫

C

p(x)dx such that C is a convex subset of G and O ∈ C. (4)
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Denoting the optimal C by C0, assign the i-th node the safe zone defined by C0 translated by v0
i .

These safe zones are legal, since as proved in Lemma 5 the average of vectors in the safe zones is inside

G. Maximizing the overall probability for the data to be in C0 guarantees that the local vectors will

remain in their safe zones for the longest duration possible. Note that if one does not impose convexity,

the resulting safe zones will not be valid, since the average of vectors which belong to a non-convex

set need not be in the set.

8.2 Computing Convex Safe Zones

In order to find the optimal convex safe zone, it is required to optimize over all convex subsets of G.

Generally, this is impossible, since the class of all such subsets is a non-linear, infinite dimensional

space. To define an optimization problem which can be practically solved in the general case, one

must restrict attention to a finitely-parameterizable family of subsets. In two-dimensional Euclidean

space R2, a natural choice are convex polygons, which can be defined as the convex hull of n points.

Thus, there will be 2n parameters to the optimization problem (the coordinates of these n points).

The first question which arises is: how much of the safe zone’s quality are we losing by restricting it

to a convex polygon with n vertices? The following theorem [2] provides an answer:

Theorem 3 let C be a convex subset of the plane, and let k be a fixed integer. Denote by Ck the

maximal value of the ratio A(Pk)
A(C)

, where A stands for area and Pk is any convex polygon with k vertices

inscribed in C . Then the minimal value of Ck is obtained when C is a disk. It is straightforward to

see that as k increases, Ck behaves as 1 − α
k2 for some small constant α.

This theorem quantifies the rate of approximation of an inscribed convex polygon to an arbitrary

convex set in the plane. In d dimensions, the bound α
k2 is replaced by cd

k
2

d−1

< cd
k

for a dimension-

independent constant c. This demonstrates that with a reasonable number of vertices, a very good

approximation can be achieved. Thus, it is sufficient to restrict attention to safe zones defined as the

convex hull of an appropriately chosen number of points.

8.3 Details of the Optimization: Target Function and Constraints

The optimal convex subset is solved for by a constrained optimization paradigm. The constraints are

1) that it is convex, and 2) that it is contained in G. The target function to maximize under these

constraints is

∫

C

p(x)dx. As noted in Section 8.2, convexity is guaranteed by defining the candidate

safe zone C as the convex hull of the points which are the input to the optimization routine (we have

used Matlab’s function convhull to construct the convex hull). There are a few options to test whether

C is contained in G; typically, G is described by a certain inequality, and standard methods, such as
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Lagrange multipliers, can be used to determine the point in C farthest from G. The distance between

this point and G is then used in the optimization routine as the measure of constraint violation (we

have used Matlab’s fmincon routine). It remains to calculate the target function,

∫

C

p(x)dx. We tested

two methods: the most direct one is integrating the Gaussian p.d.f over C. In the two-dimensional case,

we can use Green’s theorem to reduce the integral to a one-dimensional integral over C’s boundary

∂C, using the identity
∫∫

C

exp
(

−Ax2 − 2Bxy − Cy2 − Dx − Ey − F
)

dxdy =

√
π

2
√

A

∮

∂C

exp

(

−Ey − F − Cy2 +
(D + 2By)2

4A

)

erf

(√
Ax +

D + 2By

2
√

A

)

In higher dimensions, one can use Stokes’ theorem, or apply numerical integration methods. Another

option is to estimate the quality of C directly from the discrete data available at the nodes, before it is

approximated by a Gaussian distribution. To implement this method, we defined the target function

as
∑

i

exp (−λd(pi, C)), where the data points are denoted pi and d(pi, C) is the distance from pi to C

(which equals zero if pi ∈ C), and λ is a positive constant. The motivation for not taking the target

function as the number of points inside C is that this defines a discontinuous target function, with

jump discontinuities whenever a point enters or exits C. In our experience, optimization routines find

it difficult to handle such discontinuities.

Some examples are now provided, in which the two types of safe zones are compared. The data

consists of wind measurements of the El-Nino system in two directions (x is for east-west and y for

south-north), as taken from [5]. The first function to monitor (Fig. 11) was xy − 196, hence G is

the set bounded from above by the graph of y = 196
x

, and from below(left) by the positive half of the

x(y) axes. Fig. 11 depicts the safe zone defined by spherical bounding volumes and the one found by

optimizing over all hexagons contained in G. Here we used a discrete probability model. Next (Fig.

12) we show results for a more complicated G, whose boundary is made both of concave and convex

parts. The monitored function is a fourth-degree polynomial, x4 + y4 − 5(x2 + y2) + 10x − 3.

8.4 Another Look at the Safe-Zone Defined by Bounding Volumes

Here we take a closer look at the structure of the safe zones defined by spherical bounding volumes.

In addition to providing another proof why the safe zone is convex, it will allow to elucidate on its

structure, and compare it to the optimal convex subset defined in Sections 8.2-8.3.

Recall (we’ll follow here the notations used in the beginning of Section 7) that for a given G and

reference vector r, the safe zone (denote it S(G, r)) equals all the points v such that B(r, v) ⊂ G.
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Figure 11: Example of a convex subset of G as safe zone. The monitored function is xy − 196, so

G is bounded by the hyperbolic curve and the positive axes; data is depicted as green dots, and the

reference point by an ×. Depicted are the safe-zone defined by spherical bounding regions (top),

outlined in blue. Data points correctly classified are marked in green, misclassified in red (note that

points outside G and also outside the safe-zone are correctly classified). Bottom: a polygonal safe-zone

(also outlined in blue) which was derived by solving the optimization problem that seeks the optimal

convex hexagon contained in G. For the decagon, 94.6% of the points were correctly classified, and

for the safe zone defined by the bounding volumes, 92.5% were correctly classified.

Figure 12: Same as Fig. 11, for a more complicated G. For the optimal convex decagon (bottom),

97.4% of the points were correctly classified, and for the safe zone defined by the bounding volumes

(top), 94.9% were correctly classified.

Clearly, S(G, r) = {v|B(r, v) ∩ G′ = φ}, where G′ denotes the complement of G. Hence, S(G, r) =

∩y∈G′Ay, where Ay , {v|y /∈ B(r, v)}. It is straightforward to see that Ay is the half-plane passing

through y and perpendicular to the segment connecting r and y, and which contains r (Fig. 13). It is

also trivial that if y /∈ G, then a vector z /∈ G which satisfies Az ⊂ Ay can be found by infinitesimally
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translating y towards G. To conclude:

Theorem 4 : S(G, r) equals the intersection of half-planes supported by G’s boundary points, where

for each boundary point u the boundary of the respective half-plane passes through u and is perpendicular

to the segment connecting r and u (note that the half-plane boundary is generally not tangent to G’s

boundary).

An example is presented in Fig. 13. It can be seen that, while the intersection of the half-planes

Figure 13: A sketch demonstrating Theorem 4. Depicted are G and a reference point r. The three

red lines represent the boundaries of three half-planes, and their intersection is the dark triangle. The

safe zone equals the intersection of all half-planes supported by G’s boundary, with their boundary

perpendicular to the line segment between r and the boundary point.

defined a convex set (since a half-plane is convex and any intersection of convex sets is convex), the

convex subset of G thus defined is not optimal, since the half-planes often cut “too much” from G.

8.5 Computation and Evaluation of Safe-Zones

There are a few factors which influence the decision whether to use a safe-zone defined by bounding

volumes or by optimizing over convex subsets. The obvious advantage of using the bounding volume

approach is that it requires no optimization. The convex subset approach, however, requires to solve

what may be a non-trivial optimization problem, especially if the data resides in a high-dimensional

space. Another factor is the complexity of testing whether the local data vectors are inside their

safe-zones or not; for the bounding volume approach, this requires testing whether a sphere is inside
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G, and for the convex subset approach, whether a point is inside it. To summarize, the choice of which

approach to use depends on the safe-zones’ quality (which is measured by the value of target function),

difficulty of the optimization problem, and complexity of testing whether the local vectors are in their

safe zones.

9 Running Times

We now discuss running times and performance for both algorithms. For the bounding volumes

approach, checking whether a local condition has been violated at a certain node requires determining

whether the sphere subtended by the local data vector and the reference point is contained in the set

G , {x|f(x) ≤ T}, for the monitored function f and threshold T (in case ellipsoidal bounding volumes

are used, G is transformed by the same transformation that renders the ellipsoidal bounding regions

spherical). Therefore, the question is how distant a point (the sphere’s center) is from G′s boundary.

The running time for solving this problem was addressed in previous work (see Section 7 in [33]). Here

we ran tests on additional data and compared them to the approach applying an optimal convex subset.

The data used was air pollution measurements [1]. We used data of up to four dimensions, consisting

of measurements of SO2, PM10, O3, and NO, all in micrograms per cubic meter. Typical data for two

of the components is depicted in Fig. 14. The global function monitored was a weighted sum of the

pollutant concentration, which is used in estimating the AQI (air quality index). The average running

time for testing the local conditions was 0.032 seconds for four-dimensional data, 0.021 seconds for

three-dimensional data, and 0.0013 seconds for two-dimensional data. These averages were computed

for 1,000 runs.

9.1 Comparison Between the Two Algorithms

In terms of running time, there is a difference between the two approaches presented here: the bounding

volumes approach requires no pre-processing, as its safe zone is guaranteed to be correct, while the

optimal convex subset approach requires to first determine the safe zone. However, typically the

running time for checking the local conditions in the optimal convex subset approach is shorter, as the

definition of the subset is relatively simple (there is no need to compute the distance of a point from G′s

boundary, as for the bounding volume method). A typical result is now presented, for two-dimensional

data consisting of the SO2 and NO pollutants from the database introduced in the beginning of this

section. G is an ellipse with a horizontal axis of length 30 and a vertical axis of length 120, centered

at the data’s center of gravity. There were a total of 1,500 observations across the 235 nodes used,

178 of which yielded a global violation. The bounding volume approach yielded a total of 223 alerts

(meaning that 45 of them were false alarms). The optimal convex subset method was applied to this
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Figure 14: Data for two of the air pollutants used in the experiments.

data, with the safe zones respectively defined as convex polygons with number of vertices ranging from

four to ten. Results are presented in the following table:

Number of vertices Number of alerts Optimization time (seconds)

4 365 19.22

5 284 53.49

6 270 66.63

7 257 78.79

8 238 87.42

9 199 91.97

10 180 95.88

while the pre-processing time increases with the safe zone’s complexity, the richer safe zones yield

lower communication overhead. The time for checking the local conditions in this case is negligible

(consisting of the time to test whether a point is inside a convex polygon, which is logarithmic in the

number of vertices). Note that the pre-processing stage (whose running time is provided in the table

above) has to be performed only once.

10 Conclusion and Future Work

We presented geometric constraints that take advantage of the distribution of the data vectors and

the shape of the threshold surface of the monitored function. Using these constraints yields a typical
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improvement of two orders of magnitude in comparison to the results achieved with previously used

constraints. In all cases, the new constraints drastically reduced the gap between previous results and

those achieved when using theoretic optimal constraints. We also defined a more general concept of

safe zones, based on convex subsets of the function’s allowable region. While this approach requires

pre-processing in order to determine the safe zone, it can yield lower communication overhead.

Future research will attempt to devise new types of geometric constraints. We also plan to explore

methods for resolving constraint violations, and study cases in which the data distributions greatly

vary between nodes.

11 Acknowledgment

This submission greatly benefited from the remarks of three anonymous reviewers.

12 Appendix: Common Notations

The following table summarizes the most common notations used throughout this paper.

f() monitored function

T threshold

G the set {x|f(x) ≤ T (“allowable region”)

EA(~r, ·) bounding volume defined by a reference vector ~r and shape matrix A (Eq. 1)

G~µ,Σ multi-variate Gaussian distribution with average ~µ and covariance matrix Σ

p(x) data distribution at the nodes
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