
Chapter 2

RADIOMETRY —
MEASURING LIGHT

In this chapter, we introduce a vocabulary with which we can describe the behaviour
of light. There are no vision algorithms, but definitions and ideas that will be useful
later on. Some readers may find more detail here than they really want; for their
benefit, sections 2.4, 2.5 and 2.6 give quick definitions of the main terms we use
later on.

2.1 Light in Space

The measurement of light is a field in itself, known as radiometry. We need a
series of units that describe how energy is transferred from light sources to surface
patches, and what happens to the energy when it arrives at a surface. The first
matter to study is the behaviour of light in space.

2.1.1 Foreshortening

At each point on a piece of surface is a hemisphere of directions, along which light
can arrive or leave (figure 2.1). Two sources that generate the same pattern on this
input hemisphere must have the same effect on the surface at this point (because
an observer at the surface can’t tell them apart). This applies to sources, too;
two surfaces that generate the same pattern on a source’s output hemisphere must
receive the same amount of energy from the source.

This means that the orientation of the surface patch with respect to the direction
in which the illumination is travelling is important. As a source is tilted with respect
to the direction in which the illumination is travelling, it “looks smaller” to a patch
of surface. Similarly, as a patch is tilted with respect to the direction in which the
illumination is travelling, it “looks smaller” to the source.

The effect is known as foreshortening. Foreshortening is important, because
from the point of view of the source a small patch appears the same as a large patch
that is heavily foreshortened, and so must receive the same energy.
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Figure 2.1. A point on a surface sees the world along a hemisphere of directions centered
at the point; the surface normal is used to orient the hemisphere, to obtain the θ, φ
coordinate system that we use consistently from now on to describe angular coordinates
on this hemisphere. Usually in radiation problems we compute the brightness of the surface
by summing effects due to all incoming directions, so that the fact we have given no clear
way to determine the direction in which φ = 0 is not a problem.

2.1.2 Solid Angle

The pattern a source generates on an input hemisphere can be described by the
solid angle that the source subtends. Solid angle is defined by analogy with angle
on the plane.

The angle subtended on the plane by an infinitesimal line segment of length dl at
a point p can be obtained by projecting the line segment onto the unit circle whose
center is at p; the length of the result is the required angle in radians (see Figure 2.2).
Because the line segment is infinitesimally short, it subtends an infinitesimally small
angle which depends on the distance to the center of the circle and on the orientation
of the line:

dφ =
dl cos θ

r

and the angle subtended by a curve can be obtained by breaking it into infinitesimal
segments and summing (integration!).

Similarly, the solid angle subtended by a patch of surface at a point x is obtained
by projecting the patch onto the unit sphere whose center is at x; the area of the
result is the required solid angle, whose unit is now steradians. Solid angle is
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usually denoted by the symbol ω. Notice that solid angle captures the intuition in
foreshortening — patches that “look the same” on the input hemisphere subtend
the same solid angle.
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Figure 2.2. Top: The angle subtended by a curve segment at a particular point is
obtained by projecting the curve onto the unit circle whose center is at that point, and
then measuring the length of the projection. For a small segment, the angle is (1/r)dl cos θ.
Bottom: A sphere, illustrating the concept of solid angle. The small circles surrounding
the coordinate axes are to help you see the drawing as a 3D surface. An infinitesimal patch
of surface is projected onto the unit sphere centered at the relevant point; the resulting
area is the solid angle of the patch. In this case, the patch is small, so that the angle is
(1/r2)dA cos θ.

If the area of the patch dA is small (as suggested by the infinitesimal form), then
the infinitesimal solid angle it subtends is easily computed in terms of the area of
the patch and the distance to it as

dω =
dA cos θ

r2

where the terminology is given in Figure 2.2.
Solid angle can be written in terms of the usual angular coordinates on a sphere

(illustrated in Figure 2.2). From figure 2.1 and the expression for the length of
circular arcs, we have that infinitesimal steps (dθ, dφ) in the angles θ and φ cut out
a region of solid angle on a sphere given by:

dω = sin θdθdφ

Both of these expressions are worth remembering, as they turn out to be useful for
a variety of applications.
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2.1.3 Radiance

The distribution of light in space is a function of position and direction. For exam-
ple, consider shining a torch with a narrow beam in an empty room at night — we
need to know where the torch is shining from, and in what direction it is shining.
The effect of the illumination can be represented in terms of the power an infinitesi-
mal patch of surface would receive if it were inserted into space at a particular point
and orientation. We will use this approach to obtain a unit of measurement.

Definition of Radiance

The appropriate unit for measuring the distribution of light in space is radiance,
which is defined as:

the amount of energy travelling at some point in a specified direction,
per unit time, per unit area perpendicular to the direction of travel, per
unit solid angle (from [Sillion, 1994])

The units of radiance are watts per square meter per steradian (Wm−2sr−1). It
is important to remember that the square meters in these units are foreshortened,
i.e. perpendicular to the direction of travel. This means that a small patch viewing a
source frontally collects more energy than the same patch viewing a source radiance
along a nearly tangent direction — the amount of energy a patch collects from a
source depends both on how large the source looks from the patch and on how large
the patch looks from the source.

Radiance is a function of position and direction (the torch with a narrow beam
is a good model to keep in mind — you can move the torch around, and point the
beam in different directions). The radiance at a point in space is usually denoted
L(x, direction), where x is a coordinate for position — which can be a point in
free space or a point on a surface — and we use some mechanism for specifying
direction.

One way to specify direction is to use (θ, φ) coordinates established using some
surface normal. Another is to write x1 → x2, meaning the direction from point
x1 to x2. We shall use both, depending on which is convenient for the problem at
hand.

Radiance is Constant Along a Straight Line

For the vast majority of important vision problems, it is safe to assume that light
does not interact with the medium through which it travels — i.e. that we are in a
vacuum. Radiance has the highly desirable property that, for two points p1 and p2

(which have a line of sight between them), the radiance leaving p1 in the direction
of p2 is the same as the radiance arriving at p2 from the direction of p1.

The following proof may look vacuous at first glance; it’s worth studying care-
fully, because it is the key to a number of other computations. Figure 2.3 shows
a patch of surface radiating in a particular direction. From the definition, if the
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Figure 2.3. Light intensity is best measured in radiance, because radiance does not go
down along straight line paths in a vacuum (or, for reasonable distances, in clear air). This
is shown by an energy conservation argument in the text, where one computes the energy
transferred from a patch dA1 to a patch dA2

radiance at the patch is L(x1, θ, φ), then the energy transmitted by the patch into
an infinitesimal region of solid angle dω around the direction θ, φ in time dt is

L(x1, θ, φ)(cos θ1dA1)(dω)(dt),

(i.e. radiance times the foreshortened area of the patch times the solid angle into
which the power is radiated times the time for which the power is radiating).

Now consider two patches, one at x1 with area dA1 and the other at x2 with
area dA2 (see Figure 2.3). To avoid confusion with angular coordinate systems,
write the angular direction from x1 to x2 as x1 → x2. The angles θ1 and θ2 are as
defined in figure 2.3.

The radiance leaving x1 in the direction of x2 is L(x1,x1 → x2) and the radiance
arriving at x2 from the direction of x1 is L(x2,x1 → x2).
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This means that, in time dt, the energy leaving x1 towards x2 is

d3E1→2 = L(x1,x1 → x2) cos θ1dω2(1)dA1dt

where dω2(1) is the solid angle subtended by patch 2 at patch 1 (energy emitted
into this solid angle arrives at 2; all the rest disappears into the void). The notation
d3E1→2 implies that there are three infinitesimal terms involved.

From the expression for solid angle above,

dω2(1) =
cos θ2dA2

r2

Now the energy leaving 1 for 2 is:

d3E1→2 = L(x1,x1 → x2) cos θ1dω2(1)dA1dt

= L(x1,x1 → x2)
cos θ1 cos θ2dA2dA1dt

r2

Because the medium is a vacuum, it does not absorb energy, so that the energy
arriving at 2 from 1 is the same as the energy leaving 1 in the direction of 2. The
energy arriving at 2 from 1 is:

d3E1→2 = L(x2,x1 → x2) cos θ2dω1(2)dA2dt

= L(x2,x1 → x2)
cos θ2 cos θ1dA1dA2dt

r2

which means that L(x2,x1 → x2) = L(x1, θ, φ), so that radiance is constant along
(unoccluded) straight lines.

2.2 Light at Surfaces

When light strikes a surface, it may be absorbed, transmitted, or scattered; usually,
a combination of these effects occur. For example, light arriving at skin can be
scattered at various depths into tissue and reflected from blood or from melanin in
there; can be absorbed; or can be scattered tangential to the skin within a film of
oil and then escape at some distant point.

The picture is complicated further by the willingness of some surfaces to absorb
light at one wavelength, and then radiate light at a different wavelength as a result.
This effect, known as fluorescence, is fairly common: scorpions fluoresce visible
light under x-ray illumination; human teeth fluoresce faint blue under ultraviolet
light (nylon underwear tends to fluoresce, too, and false teeth generally do not
— the resulting embarrassments led to the demise of uv lights in discotheques);
and laundry can be made to look bright by washing powders that fluoresce under
ultraviolet light. Furthermore, a surface that is warm enough emits light in the
visible range.
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2.2.1 Simplifying Assumptions

It is common to assume that all effects are local, and can be explained with a
macroscopic model with no fluorescence or emission. This is a reasonable model for
the kind of surfaces and decisions that are common in vision. In this model:

• the radiance leaving a point on a surface is due only to radiance arriving at
this point (although radiance may change directions at a point on a surface,
we assume that it does not skip from point to point);

• we assume that all light leaving a surface at a given wavelength is due to light
arriving at that wavelength;

• we assume that the surfaces do not generate light internally, and treat sources
separately.

2.2.2 The Bidirectional Reflectance Distribution Function

We wish to describe the relationship between incoming illumination and reflected
light. This will be a function of both the direction in which light arrives at a surface
and the direction in which it leaves.

Irradiance

The appropriate unit for representing incoming power which is irradiance, defined
as:

incident power per unit area not foreshortened.

A surface illuminated by radiance Li(x, θi, φi) coming in from a differential region
of solid angle dω at angles (θi, φi) receives irradiance

Li(x, θi, φi) cos θidω

where we have multiplied the radiance by the foreshortening factor and by the solid
angle to get irradiance. The main feature of this unit is that we could compute
all the power incident on a surface at a point by summing the irradiance over the
whole input hemisphere — which makes it the natural unit for incoming power.

The BRDF

The most general model of local reflection is the bidirectional reflectance dis-
tribution function, usually abbreviated BRDF. The BRDF is defined as

the ratio of the radiance in the outgoing direction to the incident irra-
diance (after [Sillion, 1994])
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so that, if the surface of the preceding paragraph was to emit radiance Lo(x, θo, φo),
its BRDF would be:

ρbd(θo, φo, θi, φi) =
Lo(x, θo, φo)

Li(x, θi, φi) cos θidω

The BRDF has units of inverse steradians (sr−1), and could vary from 0 (no light
reflected in that direction) to infinity (unit radiance in an exit direction resulting
from arbitrary small radiance in the incoming direction). The BRDF is symmetric
in the incoming and outgoing direction, a fact known as the Helmholtz reciprocity
principle.

Properties of the BRDF

The radiance leaving a surface due to irradiance in a particular direction is easily
obtained from the definition of the BRDF:

Lo(x, θo, φo) = ρbd(θo, φo, θi, φi)Li(x, θi, φi) cos θidω

More interesting is the radiance leaving a surface due to its irradiance (whatever
the direction of irradiance). We obtain this by summing over contributions from all
incoming directions:

Lo(x, θo, φo) =

∫
Ω

ρbd(θo, φo, θi, φi)Li(x, θi, φi) cos θidω

where Ω is the incoming hemisphere. From this we obtain the fact that the BRDF
is not an arbitrary symmetric function in four variables.

To see this, assume that a surface is subjected to a radiance of 1/ cos θi Wm−2sr−1.
This means that the total energy arriving at the surface is:∫

Ω

1

cos θ
cos θdω =

∫ 2π

0

∫ π
2

0

sin θdθdφ

= 2π

We have assumed that any energy leaving at the surface leaves from the same
point at which it arrived, and that no energy is generated within the surface. This
means that the total energy leaving the surface must be less than or equal to the
amount arriving. So we have

2π ≥

∫
Ωo

Lo(x, θo, φo) cos θodωo

=

∫
Ωo

∫
Ωi

ρbd(θo , φo, θi, φi)Li(x, θi, φi) cos θidωidωo

=

∫
Ωo

∫
Ωi

ρbd(θo , φo, θi, φi)dωidωo

=

∫ 2π

0

∫ π
2

0

∫ 2π

0

∫ π
2

0

ρbd(θo, φo, θi, φi) sin θidθidφi sin θodθodφo
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What this tells us is that, although the BRDF can be large for some pairs of
incoming and outgoing angles, it can’t be large for many.

2.3 Important Special Cases

Radiance is a fairly subtle quantity, because it depends on angle. This generality
is sometimes essential — for example, for describing the distribution of light in
space in the torch beam example above. As another example, fix a compact disc
and illuminate its underside with a torch beam. The intensity and colour of light
reflected from the surface depends very strongly on the angle from which the surface
is viewed and on the angle from which it is illuminated. The CD example is worth
trying, because it illustrates how strange the behaviour of reflecting surfaces can
be; it also illustrates how accustomed we are to dealing with surfaces that do not
behave in this way. For many surfaces — cotton cloth is one good example — the
dependency of reflected light on angle is weak or non-existent, so that a system of
units that are independent of angle is useful.

2.3.1 Radiosity

If the radiance leaving a surface is independent of exit angle, there is no point in
describing it using a unit that explicitly depends on direction. The appropriate unit
is radiosity, defined as

the total power leaving a point on a surface per unit area on the surface
(from [Sillion, 1994])

Radiosity, which is usually written as B(x) has units watts per square meter
(Wm−2). To obtain the radiosity of a surface at a point, we can sum the radiance
leaving the surface at that point over the whole exit hemisphere. Thus, if x is a
point on a surface emitting radiance L(x, θ, φ), the radiosity at that point will be:

B(x) =

∫
Ω

L(x, θ, φ) cos θdω

where Ω is the exit hemisphere and the term cos θ turns foreshortened area into
area (look at the definitions again!); dω can be written in terms of θ, φ as above.

The Radiosity of a Surface with Constant Radiance

One result to remember is the relationship between the radiosity and the radi-
ance of a surface patch where the radiance is independent of angle. In this case
Lo(x, θo, φo) = Lo(x). Now the radiosity can be obtained by summing the radiance
leaving the surface over all the directions in which it leaves:

B(x) =

∫
Ω

Lo(x) cos θdω
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= Lo(x)

∫ π
2

0

∫ 2π

0

cos θ sin θdφdθ

= πLo(x)

2.3.2 Directional Hemispheric Reflectance

The BRDF is also a subtle quantity, and BRDF measurements are typically difficult,
expensive and not particularly repeatable. This is because surface dirt and aging
processes can have significant effects on BRDF measurements; for example, touching
a surface will transfer oil to it, typically in little ridges (from the fingertips) which
can act as lenses and make significant changes in the directional behaviour of the
surface.

The light leaving many surfaces is largely independent of the exit angle. A
natural measure of a surface’s reflective properties in this case is the directional-
hemispheric reflectance, usually termed ρdh, defined as:

the fraction of the incident irradiance in a given direction that is reflected
by the surface, whatever the direction of reflection (after [Sillion, 1994])

The directional hemispheric reflectance of a surface is obtained by summing the
radiance leaving the surface over all directions, and dividing by the irradiance in
the direction of illumination, which gives:

ρdh(θi, φi) =

∫
Ω
Lo(x, θo, φo) cos θodωo

Li(x, θi, φi) cos θidωi

=

∫
Ω

{
Lo(x, θo, φo) cos θo

Li(x, θi, φi) cos θidωi

}
dωo

=

∫
Ω

ρbd(θo, φo, θi, φi) cos θodωo

This property is dimensionless, and its value will lie between 0 and 1.
Directional hemispheric reflectance can be computed for any surface. For some

surfaces, it will vary sharply with the direction of illumination. A good example is
a surface with fine, symmetric triangular grooves which are black on one face and
white on the other. If these grooves are sufficiently fine, it is reasonable to use a
macroscopic description of the surface as flat, and with a directional hemispheric
reflectance that is large along a direction pointing towards the white faces and small
along that pointing towards the black.

2.3.3 Lambertian Surfaces and Albedo

For some surfaces the directional hemispheric reflectance does not depend on illu-
mination direction. Examples of such surfaces include cotton cloth, many carpets,
matte paper and matte paints. A formal model is given by a surface whose BRDF
is independent of outgoing direction (and, by the reciprocity principle, of incom-
ing direction as well). This means the radiance leaving the surface is independent
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of angle. Such surfaces are known as ideal diffuse surfaces or Lambertian
surfaces (after George Lambert, who first formalised the idea).

It is natural to use radiosity as a unit to describe the energy leaving a Lam-
bertian surface. For Lambertian surfaces, the directional hemispheric reflectance is
independent of direction. In this case the directional hemispheric reflectance is of-
ten called their diffuse reflectance or albedo and written ρd. For a Lambertian
surface with BRDF ρbd(θo , φo, θi, φi) = ρ, we have:

ρd =

∫
Ω

ρbd(θo, φo, θi, φi) cos θodωo

=

∫
Ω

ρ cos θodωo

= ρ

∫ π
2

0

∫ 2π

0

cos θo sin θodθodφo

= πρ

This fact is more often used in the form

ρbrdf =
ρd

π

a fact that is useful, and well worth remembering.
Because our sensations of brightness correspond (roughly!) to measurements of

radiance, a Lambertian surface will look equally bright from any direction, whatever
the direction along which it is illuminated. This gives a rough test for when a
Lambertian approximation is appropriate.

2.3.4 Specular Surfaces

A second important class of surfaces are the glossy or mirror-like surfaces, often
known as specular surfaces (after the Latin word speculum, a mirror). An ideal
specular reflector behaves like an ideal mirror. Radiation arriving along a particular
direction can leave only along the specular direction, obtained by reflecting the
direction of incoming radiation about the surface normal. Usually some fraction
of incoming radiation is absorbed; on an ideal specular surface, the same fraction
of incoming radiation is absorbed for every direction, the rest leaving along the
specular direction. The BRDF for an ideal specular surface has a curious form
(exercise ??), because radiation arriving in a particular direction can leave in only
one direction.

Specular Lobes

Relatively few surfaces can be approximated as ideal specular reflectors. A fair
test of whether a flat surface can be approximated as an ideal specular reflector is
whether one could safely use it as a mirror. Good mirrors are suprisingly hard to
make; up until recently, mirrors were made of polished metal. Typically, unless the
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Figure 2.4. Specular surfaces commonly reflect light into a lobe of directions around
the specular direction, where the intensity of the reflection depends on the direction, as
shown on the left. Phong’s model is used to describe the shape of this lobe, in terms of
the offset angle from the specular direction.

metal is extremely highly polished and carefully maintained, radiation arriving in
one direction leaves in a small lobe of directions around the specular direction. This
results in a typical blurring effect. A good example is the bottom of a flat metal pie
dish. If the dish is reasonably new, one can see a distorted image of one’s face in
the surface but it would be difficult to use as a mirror; a more battered dish reflects
a selection of distorted blobs.

Larger specular lobes mean that the specular image is more heavily distorted
and is darker (because the incoming radiance must be shared over a larger range of
outgoing directions). Quite commonly it is possible to see only a specular reflection
of relatively bright objects, like sources. Thus, in shiny paint or plastic surfaces,
one sees a bright blob — often called a specularity — along the specular direction
from light sources, but few other specular effects. It is not often necessary to model
the shape of the specular lobe. When the shape of the lobe is modelled, the most
common model is the Phong model, which assumes that only point light sources
are specularly reflected. In this model, the radiance leaving a specular surface is
proportional to cosn(δθ) = cosn(θo−θs), where θo is the exit angle, θs is the specular
direction and n is a parameter. Large values of n lead to a narrow lobe and small,
sharp specularities and small values lead to a broad lobe and large specularities
with rather fuzzy boundaries.

2.3.5 The Lambertian + Specular Model

Relatively few surfaces are either ideal diffuse or perfectly specular. Very many
surfaces can be approximated has having a surface BRDF which is a combination
of a Lambertian component and a specular component, which usually has some
form of narrow lobe. Usually, the specular component is weighted by a specular
albedo. Again, because specularities tend not to be examined in detail, the shape
of this lobe is left unspecified. In this case, the surface radiance (because it must
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now depend on direction) in a given direction is typically approximated as:

L(x, θo, φo) = ρd(x)

∫
Ω

L(x, θi, φi) cos θidω + ρs(x)L(x, θs, φs) cosn(θs − θo)

where θs, φs give the specular direction and ρs is the specular albedo. As we shall
see, it is common not to reason about the exact magnitude of the specular radiance
term.

Using this model implicitly excludes “too narrow” specular lobes, because most
algorithms expect to encounter occasional small, compact specularities from light
sources. Surfaces with too narrow specular lobes (mirrors) produce overwhelm-
ing quantities of detail in specularities. Similarly, “too broad” lobes are excluded
because the specularities would be hard to identify.
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2.4 Quick Reference: Radiometric Terminology for Light

Term Definition Units Application

Radiance the quantity of energy trav-
elling at some point in a
specified direction, per unit
time, per unit area perpen-
dicular to the direction of
travel, per unit solid angle.

wm2sr−1 representing light travelling
in free space; representing
light reflected from a surface
when the amount reflected
depends strongly on direc-
tion

Irradiance total incident power per unit
surface area

wm−2 representing light arriving at
a surface

Radiosity the total power leaving a
point on a surface per unit
area on the surface

wm−2 representing light leaving a
diffuse surface
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2.5 Quick Reference: Radiometric Properties of Surfaces

Term Definition Units Application

BRDF the ratio of the radiance sr−1 representing reflection
(Bidirectional in the outgoing direction off general surfaces
Reflectance to the incident irradiance where reflection depends
Distribution strongly on direction
Function)

Directional the fraction of the unitless representing reflection
Hemispheric incident irradiance in off a surface where
Reflectance a given direction that direction is

is reflected by the unimportant
surface, whatever the
direction of reflection

Albedo Directional hemispheric unitless representing a
reflectance of a diffuse diffuse surface

surface
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2.6 Quick Reference: Important Types of Surface

Term Definition Examples

Diffuse surface; A surface whose BRDF is Cotton cloth; many rough
Lambertian surface constant surfaces; many paints

and papers; surfaces whose
apparent brightness doesn’t
change with viewing direction

Specular surface A surface that behaves like Mirrors; polished metal
a mirror

Specularity Small bright patches on
a surface that result from
specular components of

the BRDF
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2.7 Notes

We strongly recommend François Sillion’s excellent book [Sillion, 1994], for its very
clear account of radiometric calculations. There are a variety of more detailed pub-
lications for reference [] Our discussion of reflection is thoroughly superficial. The
specular plus diffuse model appears to be originally due to Cook, Torrance and
Sparrow. A variety of modifications of this model appear in computer vision and
computer graphics; see, for example []. Reflection models can be derived by combin-
ing a statistical description of surface roughness with electromagnetic considerations
(e.g. []) or by adopting scattering models (e.g. [], where a surface is modelled by
colourant particles embedded in a matrix, and a scattering model yields an approx-
imate BRDF).

Top of the list of effects we omitted to discuss is off-specular glints, followed by
specular backscatter. Off-specular glints commonly arise in brushed surfaces, where
there is a large surface area oriented at a substantial angle to the macroscopic surface
normal. This leads to a second specular lobe, due to this region. These effects can
confuse algorithms that reason about shape from specularities, if the reasoning is
close enough. Specular backscatter occurs when a surface reflects light back in the
source direction — usually for a similar reason that off-specular glints occur. Again,
the effect is likely to confuse algorithms that reason about shape from specularities.

It is commonly believed that rough surfaces are Lambertian. This belief has a
substantial component of wishful thinking, because rough surfaces often have local
shadowing effects that make the radiance reflected quite strongly dependent on
the illumination angle. For example, a stucco wall illuminated at a near grazing
angle shows a clear pattern of light and dark regions where facets of the surface
face toward the light or are shadowed. If the same wall is illuminated along the
normal, this pattern largely disappears. Similar effects at a finer scale are averaged
to endow rough surfaces with measurable departures from a Lambertian model (for
details, see [Nayar and Oren, 1995; Oren and Nayar, 1995; Wolff, 1996; Wolff, 1994]).
Determining non-Lambertian models for surfaces that appear to be diffuse is a well
established line of enquiry.

Another example of an object that does not support a simple macroscopic surface
model is a field of flowers. A distant viewer should be able to abstract this field as a
“surface”; however, doing so leads to a surface with quite strange properties. If one
views such a field along a normal direction, one sees mainly flowers; a tangential
view reveals both stalks and flowers, meaning that the colour changes dramatically
(the effect is explored in []).

2.8 Assignments

Exercises

1. How many steradians in a hemisphere?

2. We have proven that radiance does not go down along a straight line in a
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non-absorbing medium, which makes it a useful unit. Show that if we were to
use power per square meter of foreshortened area (which is irradiance), the
unit must change with distance along a straight line. How significant is this
difference?

3. An absorbing medium: assume that the world is filled with an isotropic
absorbing medium. A good, simple model of such a medium is obtained by
considering a line along which radiance travels. If the radiance along the line
is N at x, it will be N − (αdx)N at x + dx.

• Write an expression for the radiance transferred from one surface patch
to another in the presence of this medium.

• Now qualitatively describe the distribution of light in a room filled with
this medium, for α small and large positive numbers. The room is a
cube, and the light is a single small patch in the center of the ceiling.
Keep in mind that if α is large and positive, very little light will actually
reach the walls of the room.

4. Identify common surfaces that are neither Lambertian nor specular, using
the underside of a CD as a working example. There are a variety of im-
portant biological examples, which are often blue in colour. Give at least
two different reasons that it could be advantageous to an organism to have a
non-Lambertian surface.

5. Show that for an ideal diffuse surface the directional hemispheric reflectance
is constant; now show that if a surface has constant directional hemispheric
reflectance, it is ideal diffuse.

6. Show that the BRDF of an ideal specular surface is

ρbd(θo, φo, θi, φi) = ρs(θi){2δ(sin
2 θo − sin2 θi)}{δ(φo − φπ)}

where ρs(θi) is the fraction of radiation that leaves.

7. Why are specularities brighter than diffuse reflection?

8. A surface has constant BRDF. What is the maximum possible value of this
constant? Now assume that the surface is known to absorb 20% of the radia-
tion incident on it (the rest is reflected); what is the value of the BRDF?

9. The eye responds to radiance. Explain why Lambertian surfaces are often
referred to as having a brightness that is independent of viewing angle.

10. Show that the solid angle subtended by a sphere of radius ε at a point a
distance r away from the center of the sphere is approximately π( εr )

2, for
r  ε.


