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Abstract: The empirical entropy is a key statistical measure of data frequency vectors, enabling one
to estimate how diverse the data are. From the computational point of view, it is important to quickly
compute, approximate, or bound the entropy. In a distributed system, the representative (“global”)
frequency vector is the average of the “local” frequency vectors, each residing in a distinct node.
Typically, the trivial solution of aggregating the local vectors and computing their average incurs a
huge communication overhead. Hence, the challenge is to approximate, or bound, the entropy of the
global vector, while reducing communication overhead. In this paper, we develop algorithms which
achieve this goal.
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1. Introduction

Consider the distributed computing model [1–3], where the goal is to compute a
function over input divided amongst multiple nodes. A local computation, while simple,
does not always suffice to reach a conclusion on the aggregated input data, especially when
the function is nonlinear. On the other hand, broadcasting the local data to a coordinator
node is impractical and undesirable due to communication overhead, energy consumption,
and privacy issues. Generally, we seek to approximate or bound the function’s value on the
aggregated data without broadcasting it in its entirety.

The function we handle in this paper is the empirical Shannon entropy [4], which
is defined as ∑i −xi ln(xi) for a frequency vector X = (x1, . . . , xn) (i.e., all values are
non-negative and sum to 1). For some of the ensuing analysis, it is easier to use the
natural logarithm than the base 2 one, which only changes the value by a multiplicative
constant. Thus, hereafter, “entropy” will refer exclusively to the empirical Shannon entropy.
Specifically, we assume there exists a distributed system, with each node (or “party”)
holding a “local” frequency vector. The target function is defined as the global system
entropy, which is equal to the empirical Shannon entropy of the average of the local vectors.
Alas, to compute the exact value, we must first aggregate the local vectors and average
them, which often incurs a huge communication overhead. Fortunately, it often suffices to
approximate, or bound, this global entropy; for example:

• Often, a sudden change in the entropy indicates a phase change in the underlying
system, for example a DDoS (Distributed Denial of Service) attack [5]. To this end, it
typically suffices to bound the entropy, since its precise value is not required.

• A good measure of similarity between two datasets is the difference between their
aggregated and individual entropies. For example, if two collections of text are of a
similar nature, their aggregate entropy will be similar to the individual ones, and if
they are different, the aggregated entropy will be substantially larger. Here, too, it
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suffices to approximate the global entropy, or bound it from above or below in order
to reach a decision.

Guided by such challenges, we develop communication-efficient algorithms for bound-
ing and approximating the global entropy, which are organized as follows:

In Section 3, we present algorithms for bounding the global entropy, with low commu-
nication. Some results on real and synthetic data are also provided.

In Section 4, a novel algorithm is provided for approximating the global entropy. It is
tailored to treat the cases in which the algorithm in Section 3 underperforms.

2. Previous Work

The problem of reducing communication overhead in distributed systems is very
important both from the practical and theoretical points of view. Applications abound, for
example distributed graphs [2,6] and distributed machine learning [3]. Research close to
ours in spirit [7] deals with the following scenario: a system is given consisting of

• Distributed computing nodes denoted by N1 . . . Nt, with Ni holding a “local” data
vector Xi. The nodes can communicate, either directly or via a “coordinator” node.

• A scalar-valued function f (X, Y), defined on pairs of real-valued vectors.

Given the above, the challenge is to approximate the values f (Xi, Xj), i, j = 1 . . . t with a
low communication overhead; that is, the trivial solution of sending all the local vectors to
some computing node is forbidden.

A sketch for this type of problem is defined as a structure s(), of size smaller than the
dimension of Xi, which has the following property: knowledge of s(X), s(Y) allows one
to approximate f (X, Y) with very high accuracy. An important example [7] is f (X, Y) =
⟨X, Y⟩ (⟨X, Y⟩ stands for the inner product of X, Y).

There are many types of sketches, for example:

• PCA (Principle Component Analysis) sketch: given a large subset S ⊆ Rn, one wishes
to quickly estimate the distance of vectors from an underlying structure which S is
sampled from (a famous example is images of a certain type [8]). To this end, S is
represented by a smaller set, consisting of the dominant eigenvectors of S’s scatter
matrix, and the distance is estimated by the distance of the vector from the subspace
spanned by these vectors.

• In the analysis of streaming data, some important sketches were developed, in order
to handle large and dynamic streams, by only preserving salient properties (such as
the number of distinct items, frequency, and the norm). It is beyond the scope of this
paper to describe these sketches, so we refer to the literature [9].

Sketches are specifically tailored for the task at hand. In our case, X, Y are frequency
(probability) vectors, and f (X, Y) is the empirical Shannon entropy of (X + Y)/2. Similarly,
one may look at functions defined on larger subsets of {X1, . . . , Xt} (Section 3.4). Our task
is therefore to define a sketch s(), such that

• s(X) is much smaller than X.
• Knowledge of s(X), s(Y) allows one to approximate the empirical Shannon entropy of

(X + Y)/2.

We note here that some work addressed entropy approximation in the Streaming
Model [1,10,11]. Here, as in [7], we are mainly interested in the static scenario, in which
the overall communication overhead is substantially smaller than the overall data volume.
The “geometric monitoring” method [10,11], applied to solve the Distributed Monitoring
Problem [1], relies on checking local constraints at the nodes; as long as they hold, the
value of some global function, defined on the average of the local streams, is guaranteed
to lie in some range. Alas, when the local conditions are violated, the nodes undertake a
“synchronization stage” [12], which consists of communicating their local vectors in their
entirety (which here we avoid). In the future, we plan to extend the techniques developed
here to the distributed streaming scenario.
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3. Dynamic Bounds and Communication Reduction

In this section, we present algorithms for bounding the entropy of a centralized
vector—that is, the mean of several local vectors—by broadcasting a controlled amount
of inter-communication between machines. The proposed algorithms for both upper and
lower bounds accept the same input and therefore can be run concurrently.

3.1. Problem, Motivation, and an Example

This work addresses the following problem:

• Given nodes Ni, each holding a probability vector vi (i.e., all values are positive
and sum to 1), approximate the entropy of the average of vi, while maintaining low
communication overhead.

Let us start with the simplest possible scenario, which we shall analyze in detail, in
order to prepare the ground for the general treatment.

Example 1. There are two nodes, N1, N2, and the vectors they hold are of length 3. Assume without
loss of generality that N1 sends some of its data to N2, where “data” consists of a set of pairs
(coordinate, value), where “coordinate” is the location of a value of v1, and “value” is its numerical
value; then, N2 attempts to derive an upper bound on the entropy of v1+v2

2 . Note that vectors of
length 2 are hardly interesting, since sending a single datum allows one to compute the other (as
they sum to 1); hence, N2 will be able to exactly compute the entropy.

Intuition suggests that N1 should relay its largest value to N2. While (as we will show later),
this is true on the average, that is not always the case. Assume that the vectors held by the nodes are

v1 =

(
2
3

,
1
3

, 0
)

, v2 =

(
0,

1
2

,
1
2

)
Assume that N1 sends its largest value (and its coordinate) to N2. Now, N2 knows that (a) the first
value of the average vector is 1

3 , and (b) the second and third values of N2 sum to 1
3 . That leaves

open the possibility that these values are 1
6 each, which would render the average vector equal to(

1
3

,
1
3

,
1
3

)
,

hence, the upper bound is equal to the maximal entropy possible, 3 ln(3). However, if N1 sends its
second largest value

(
1
3

)
to N2, N2 can conclude that the second value of the average vector equals

5
12 ; hence, the upper bound on the entropy is strictly smaller than 3 ln(3).

We observe here that the key consideration in determining the upper bound is the
distribution of the “slack” corresponding to the unknown values at the other node (N1
in this example). The overall size of this “slack” is one-half of the unknown values, and
it should be distributed amongst the same set of coordinates in N2 after they have been
divided by 2.

In contrast to the above “adversarial” example, on average, it is optimal to send the
largest value (i.e., it allows one to achieve a lower upper bound). To prove this, we have
(numerically) computed the integral of the upper bound over all triplets, both after the
largest value and a random value were sent; sending the highest value, on the average,
yielded an upper bound lower by 0.041 than sending a random value. More general
experiments, for both real and synthetic data, are reported in Section 3.5.

We now address the general scenario. Let us start with a few definitions:

Notation 1. Let {X1, . . . , Xt} be a set of local vectors held in t nodes {N1, . . . , Nt}. Then,
X̃ = 1

t ∑t
i=1 Xi is the aggregate vector, which in our case is the mean over all local vectors.
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Notation 2. Let x ∈ [0, 1]. We define the Entropy activation function h(x) by:

h(x) =

{
0 if x = 0
−x ln x otherwise

Definition 1. Let X ∈ Rn s.t ∀i : 0 ≤ xi ≤ 1. Then, H(X) denotes the Shannon’s Entropy of
X [4], given by

H(X) =
n

∑
i=1

h(xi)

We will henceforth assume all vectors are of length n and behave like X in Definition 1,
even if it is not explicitly noted. We also assume each value of X can be represented by at
most b bits.

Notation 3. Let XLocal, XOther denote a probability vector held by a local machine and a probability
vector held by a remote machine, respectively.

In this section, we present algorithms for deciding whether the entropy of an average
probability vector that sums to 1 is greater or lesser than a user-defined threshold. Formally,
we will address two problems:

1. Determining whether the inequality H
(
X̃
)
≤ L holds for some user-defined constant L.

2. Determining whether the inequality H
(
X̃
)
≥ U holds for some user-defined constant U.

We begin with a lemma which provides the foundation for both the Local Upper
Bound (Section 3.2) and Local Lower Bound (Section3.3) in the following subsections.

While noting that the lemma and its corollary hold for any vector X ∈ Rn, our vectors
are always frequency vectors and hence sum to 1; the ∆ below corresponds to the “slack”
added after dividing the respective value by 2, as explained in the discussion of Example 1
above; hence, the values still sum to 1.

Lemma 1 (Extrema of Entropy). Let X = (x1, . . . , xn) ∈ Rn s.t. ∀i, xi ≥ 0. Let ∆ be a positive
number, and let i, j be two distinct coordinates of X.

• Let Xi = (x1, . . . , xi + ∆, . . . , xn);
• Let X j =

(
x1, . . . , xj + ∆, . . . , xn

)
.

If xi < xj, then H(Xi) > H(X j).

Proof. To establish H(Xi)− H(X j) > 0, then since H(X) is coordinate-wise additive, it
suffices to show that:

h(xi + ∆)− h(xi) > h(xj + ∆)− h(xj) .

Using the observation that h′(x) = − ln x− 1, which is strictly decreasing, we divide
the proof into two cases depending on the relation between xi + ∆ and xj:

1. xi + ∆ ≤ xj:
Since xi < xi + ∆ ≤ xj < xj + ∆, the intervals (xi, xi + ∆) and (xj, xj + ∆) are disjoint.
By applying the Lagrange Mean Value Theorem, for some c1 ∈ (xi, xi + ∆) and
c2 ∈ (xj, xj + ∆):

h′(c1) =
h(xi + ∆)− h(xi)

∆

h′(c2) =
h(xj + ∆)− h(xj)

∆
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Since h′() is decreasing and c1 < c2, we immediately obtain that h′(c1) > h′(c2). It
follows that:

h(xi + ∆)− h(xi)

∆
= h′(c1) > h′(c2) =

h(xj + ∆)− h(xj)

∆
h(xi + ∆)− h(xi) > h(xj + ∆)− h(xj)

2. xi + ∆ > xj:
Observing the disjoint intervals (xi, xj), (xi + ∆, xj + ∆). The sought inequality, fol-
lowing the Lagrange Mean Value Theorem for c1 ∈ (xi, xj), c2 ∈ (xi + ∆, xj + ∆), as
in the case above, is:

h(xj)− h(xi)

∆
= h′(c1) > h′(c2) =

h(xj + ∆)− h(xi + ∆)
∆

h(xi + ∆)− h(xi) > h(xj + ∆)− h(xj)

Corollary 1. Given a probability vector X, and ∆ > 0, the following properties hold:

1. If ∆ is added to any value of X, the maximal increase of its entropy will occur when ∆ is added
to the minimal value of X.

2. If ∆ is added to any value of X, the minimal increase of its entropy will occur when ∆ is added
to the maximal value of X.

3.2. Upper Bound

While ln(n) is a trivial upper bound to the entropy, and does not require any commu-
nication to agree upon, we can develop a more efficient alternative while incurring a small
communication overhead. Let X, Sk(X) denote a probability vector and a k-sized ordered
subset of X’s k largest values, respectively. Hence, let local nodes broadcast the following
two ordered sets:

1. Sk(X) = ordered set of largest k values of X;
2. Ck(X) = the coordinates of the values in Sk(X), or formally {i | xi ∈ Sk(X)}.

Each of these messages costs at most k(b + log2 n) bits: b for each value and log2 n for
each corresponding coordinate. By sending these subsets of values and coordinates, local
machines can immediately obtain the following information regarding the local vector X
from which Sk(X), Ck(X) were sent:

• The sum of all values not in Sk(X), i.e., 1−∑x∈Sk(X) x, will be referred to as the mass
of the local vector that remains available to be distributed among coordinates. It will
be denoted by m in the following algorithms.

• max{X \ Sk(X)} ≤ min{Sk(X)}, since Sk(X) contains the largest values of X (where
X \ Sk(X) denotes set difference).

We next suggest an algorithm for a local machine with local probability vector XLocal
to compute the strict upper bound for X̃, which is the aggregated data of both XLocal and
XOther, which is a probability vector that is not accessible to the machine. The remote
machine broadcasts Sk(XOther) and Ck(XOther) for some predetermined k.

The algorithm constructs the unknown subset of the remote machine that ensures the
centralized entropy is maximized, or formally argmaxX H(XLocal + X), while maintaining
feasible constraints. We view this problem as an instance of constrained optimization, where
our target function is the global entropy, and the constraints are given by the broadcast set
of SK(X) and its sum. The main tool is Corollary 1 for every coordinate of XLocal.

Before we present the algorithm, we note two extreme cases, which instantly produce
an upper bound without the need to algorithmically compute it:

1. ∑x∈Sk(X) x ≈ 1. In this case, most (or all) the information of X is broadcast by the
message, and the entropy can be computed accurately without need for a bound.
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2. 1−∑x∈Sk(X) x ≥ ∑xi∈XLocal
xmax − xi, where xmax = max{XLocal}. In this case, there is

no need to run the proposed algorithm; the constraint maximization will always result is
an “optimal” target—the uniform vector with the value xmax +

1
n

(
m−∑xi∈XLocal

xmax− xi

)
,

whose entropy we know is maximal w.r.t its sum.

Theorem 1. Algorithm 1 runs in O(n2) time and returns an upper bound on the entropy of X̃ =
1
2 (XLocal + XOther).

Algorithm 1: Upper Entropy Bound for Two Nodes

Input: A local vector XLocal, a k-sized largest value ordered set Sk(XOther) and a
corresponding ordered coordinate set Ck(XOther)

Output: An upper bound for H(X̃)
1 X∗ ← (xi ∈ XLocal | i /∈ Ck(XOther))
2 XKnown ← (ui + vi | ui ∈ XLocal, vi ∈ XOther, i ∈ Ck(XOther))
3 m← 1−∑x∈Sk(XOther)

4 Sort X∗ in ascending order
5 i← 1
6 while m > 0 do
7 if i = |X∗| or m < i

(
x∗i+1 − x∗i

)
then

8 δ← m
i

9 else
10 δ← x∗i+1 − x∗i
11 end
12 For all j ≤ i increment x∗j by δ

13 m← m− iδ
14 i← i + 1
15 end
16 X̃′ ← concatenation of X∗ and XKnown

17 return H( 1
2 X̃′)

Proof. Let n′ be the length of X∗, which equals n− k. In each loop iteration, the algorithm
increments no more than n′ values of X∗, and since there are n′ coordinates of X∗, it will
perform at most n′ steps. Hence, the bound of O(n2) runtime follows.

Let X∗ = (x1, . . . , xn′) be the initial vector as noted in line 3, and let Y denote
the same by the end of the while loop, i.e., after the condition m = 0 is met. Let the
coordinates of Y be arranged in ascending order, which has no effect on its entropy:
Y = (y1, y2, . . . , yt, yt+1, . . . , yn′). Since at every loop iteration, all minimal coordinates are
incremented simultaneously, there exists some coordinate t such that for all i < t, yi equals
c, and for all i > t, yi is strictly greater than c. Hence, we can view Y as a concatenation of
the two vectors (YL, YR) as defined below:

• YL = (y1, . . . , yt) = (c, . . . , c);
• YR = (yt+1, . . . , yn′).

Let s(X) denote the sum of X. It now suffices to show that any vector Z that sums to
s(X∗) + m and can be achieved by performing only additions to X∗ has a lesser or equal
entropy value than Y. Let Z denote such a vector for every value of which zi satisfies
zi ≥ xi. Let Z = (ZL, ZR), where ZL = (z1, . . . , zt), ZR = (zt+1, . . . , zn′) for the same t as
defined above.

Since it holds that s(Z) = s(ZL) + s(ZR) = s(YL) + s(YR) = s(Y), we examine the
following cases:

• s(ZL) = s(YL), s(ZR) = s(YR): Note that ZR = YR, since their sum is equal, and YR
has had no further additions. In addition, since s(ZL) = s(YL) = c · |YL| and YL is the
uniform vector, H(ZL) ≤ H(YL). It follows that H(ZL) + H(ZR) ≤ H(YL) + H(YR).
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• s(ZL) < s(YL), s(ZR) > s(YR): there exists a subset
(
zi1 , . . . , ziℓ

)
⊆ ZR for which

every zij is greater than the corresponding value yij of YR. Let δij = zij − yij . For every
δij , there exists a value zℓ in ZL s.t zℓ < yij < zij , since s(ZL) < s(YL) = c · |YL| <
yij · |YL|. Let Z′ be Z after δij is subtracted from each zij and added to some zℓ ∈ ZL as
described above. By Lemma 1, H(Z′) > H(Z). It also holds that Z′R = YR, and that
H(Z′L) ≤ H(YL), since they both sum to c · |YL|, and YL is a uniform vector (whose
entropy is maximal). Therefore, H(Z) < H(Z′) ≤ H(Y).

• s(ZL) > s(YL), s(ZR) < s(YR): this case can be immediately omitted; it is an
impossibility to feasibly subtract a value from ZR or increase the value of s(ZL) above
s(YL).

Therefore, we have proven for any vector Z, it holds that H(Z) ≤ H(Y).

Next, we suggest a more time-efficient algorithm than Algorithm 1 that achieves an
equivalent bound, with a runtime of O(n log n). Suppose c is the maximal threshold all
values of the local vectors can be incremented to without exceeding the sum of the values
from the remote vector, m. Then, if we define the sorted coordinates of X∗ to be x1, . . . , xn′ ,
there is some coordinate t such that xt ≤ c ≤ xt+1.

By performing a binary search on the the coordinate t of the local vector as described
above, we can efficiently find that xt as described in the algorithm below.

Theorem 2. Algorithm 2 runs in O(n log n) time and returns an upper bound for the entropy of
X̃ = 1

2 (XLocal + XOther).

Algorithm 2: Binary Search Upper Entropy Bound for Two Nodes
Input: A local vector XLocal , a k-sized largest value set Sk(XOther) and a corresponding

ordered coordinate set Ck(XOther)
Output: An upper bound for H(X̃)

1 X∗ ← (xi ∈ XLocal | i /∈ Ck(XOther))
2 XKnown ← (ui + vi | ui ∈ XLocal, vi ∈ XOther, i ∈ Ck(XOther))
3 m← 1−∑x∈Sk(XOther) x
4 Sort X∗ in ascending order
5 low← 1
6 high← |X∗|
7 while low < high do
8 mid← ⌊ low+high

2 ⌋
9 T1 ← ∑x∗i ≤x∗mid

x∗mid − x∗i
10 T2 ← ∑x∗i ≤x∗mid+1

x∗mid+1 − x∗i
11 if T1 ≤ m < T2 then
12 low← mid
13 break
14 else if m = T2 then
15 low← mid + 1
16 break
17 else if T1 < m then
18 low← mid
19 else
20 high← mid− 1
21 end
22 end
23 count← |{x∗i ∈ X∗ | x∗i ≤ x∗low}|
24 for every x∗i ≤ x∗low do
25 x∗i ← x∗low + m

count
26 end
27 X̃′ ← concatenation of X∗ and XKnown

28 return H( 1
2 X̃′)
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Proof. The algorithm begins by sorting X∗, which costs O(n log n) and follows by perform-
ing a binary search on a range of size n′, wherein a single step requires O(n) operations.
Therefore, its runtime is O(n log n).

Since the vector X∗ constructed by this algorithm is equivalent to the vector which
Algorithm 1 computes, the proof of correctness is the same as the proof of Theorem 1.

It will be noted that the upper bound given by Algorithms 1 and 2 can be further
improved by using the feasibility constraint upon X∗. It is possible to increase a coordi-
nate of X∗ by a value larger than min{SK(XOther)}, particularly if for some coordinate i,
the inequality x∗i+1 − x∗i > min{SK(XOther)} holds. In order to keep the core algorithms
simple, we will address this formally in Appendix A by proposing an improvement to the
algorithms above, such that the bound will indeed by tight.

3.3. Lower Bound

We now turn to discuss a communication-efficient solution for computing a tight
lower bound for the entropy of a global vector. As with the upper bound, this problem is
an instance of constrained optimization, only that here, our target is to find the minimum.
As with the Upper Bound (Section 3.2), we use the same message containing Ck(X) and
Sk(X), for a remote vector X.

Property 1. Let n′ denote |X∗|, sup denote min{Sk(XOther)} and m denote 1−∑x∈Sk(XOther)
x,

as used in Algorithm 3. Then, n′ · sup ≥ m.

Algorithm 3: Lower Entropy Bound for Two Nodes
Input: A local vector XLocal, a k-sized largest value ordered set Sk(XOther) and a

corresponding ordered coordinate set Ck(XOther)
Output: A lower bound for H(X̃)

1 X∗ ← (xi ∈ XLocal | i /∈ Ck(XOther))
2 XKnown ← (ui + vi | ui ∈ XLocal, vi ∈ XOther, i ∈ Ck(XOther))
3 m← 1−∑x∈Sk(XOther) x
4 Sort X∗ in descending order
5 i← 1
6 sup← min{Sk(XOther)}
7 while m > 0 do
8 x∗i ← x∗i + min{m, sup}
9 m← m−min{m, sup}

10 i← i + 1
11 end
12 X̃′ ← concatenation of X∗ and XKnown

13 return H( 1
2 X̃′)

Proof. Using the definitions, we obtain the following inequality:

|X∗| ·min{Sk(XOther)} ≥ 1− ∑
x∈Sk(XOther)

x

which holds, since:

∑
x∈Sk(XOther)

x + |X∗| ·min{Sk(XOther)} ≥ ∑
x∈XOther

x = 1 .

Theorem 3. Algorithm 3 runs in O(n log n) time and returns a tight, lower bound for the entropy
of X̃ = 1

2 (XLocal + XOther)



Entropy 2022, 1, 0 9 of 17

Proof. After sorting the vector, we iteratively increment no more than n′ = |X∗| ≤ n
coordinates since n′ · sup ≥ m by Property 1; hence, the total runtime is O(n log n).

To prove the correctness of the bound, it suffices to examine our loop step; it is clear
we must add a total sum of m to any of X∗’s coordinates, and we cannot increment a single
coordinate by more than sup—since we know all remaining values of the unknown vector
X are lesser or equal to sup.

The algorithm increments the maximal values of X∗ by sup, which by Corollary 1
incurs the minimal entropy gain to X∗. Due to the fact that the entropy is coordinate-wise
additive, the ”greedy” approach which minimizes over coordinates separately reaches the
global minimum.

In Figure 1, the proposed algorithm, and the bounds computed using the algorithms
described herein, are compared to the bounds derived after sending a random subset of
coordinate–value pairs, as well as sending many random subsets and choosing the minimal
resulting bound. In Section 3.5, more extensive experiments are reported.

0 5 10 15 20
Number of Values Sent

3.0

3.5

4.0

4.5

5.0

En
tro

py

Relation Between Sk and Bound Accuracy

Mean Random
Best Random
Max Value
True Entropy

Figure 1. Comparison of three upper bounds as a function of the number of values sent. The red
plot corresponds to an average of random selections of values from the remote vector; the green plot
represents the best results (i.e., lower upper bounds) from 10,000 random selections; the blue plot
represents the algorithm described here, where Sk(X) consists of the largest values. The vectors have
a length of 100, and their values are sampled from a half-normal distribution with standard deviation
0.02 and then normalized to sum 1.

3.4. Multiparty Bounds

When considering the scale and variability of modern distributed systems, an al-
gorithm that supports multiple machines and incurs a low communication overhead
is desirable.

We next suggest a few modifications in order to generalize Algorithms 1–3, for the
upper and lower bounds of entropy centralized across t + 1 nodes. We denote Xi as the
vector of machine i, and in a manner similar to Section 3.2, Sk(Xi), Ck(Xi) are the ordered
sets of the k maximum values and their coordinates, respectively. Typically, the coordinates
of Ck(Xi) and Ck(Xj) will be disjoint, in which case each machine will have to broadcast its
missing coordinates. The additional communication may cost us up to tk(b + log2 n) bits.
We hereby assume a second round of communication occurs, and that (Sk(X1), . . . , SK(Xt)),
as well as (Ck(X1), . . . , CK(Xt)) include the same coordinates.

Below, we list the modifications to be made to the previous algorithms for the multi-
party case. These changes are similar for all three algorithms.

i. Input: In addition to the local vector XLocal , the k-sized largest value sets
Sk(X1), . . . Sk(Xt) and corresponding ordered coordinate sets Ck(X1), . . . , Ck(Xt)—
instead of single sets.
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ii. The sum to be added to all coordinates of X∗, m will be t−∑t
i=1

(
∑x∈Sk(Xi)

x
)

, since
there are t local vectors to process and construct, while local vector Xi contributes
1−∑x∈Xi

x.
iii. The return value is now H( 1

t+1 X̃′), since we have summed t additional vectors into
X∗ and XKnown.

3.5. Experimental Results

To evaluate our algorithms, we tested them on both real and synthetic probability
vectors. We now describe the methods and data used to perform our experiments and
analyze the results.

In Figures 2 and 3, we simulated the upper bound algorithm (Algorithm 2) and the
lower bound algorithm (Algorithm 3). Figure 2b depicts a simulation of the algorithms on
two randomly generated vectors: Node1 with uniform distribution and Node2 with beta
distribution. The probability vectors of Node1 and Node2 are shown in Figure 2a. Note
that as depicted in Figure 2b, the algorithms’ results in each node are determined by the
distribution of the local probability vectors. That is because the more probability mass is
transmitted, the tighter the bounds become, and the quicker it converges with respect to k.
As illustrated, in the bounds of Node1, which receives Node2’s maximal beta distribution’s
probability values, the bounds converge quickly with respect to k. In contrast, the bounds
that are computed at Node2, which receives the maximal values of the uniform distribution
of Node1, converge slowly to the real entropy. This is due to the fact Node2 does not gain
much information from Node1.

Results on Synthetic Vectors
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Node1 Upper Bound (Uniform)
Node2 Upper Bound (Beta)

Figure 2. Algorithmic bounds for the empirical entropy on synthetic probability vector of dimension
50 k. (a) depicts the distributions of the generated vectors: a normalized uniform distribution (i.e.
each value is randomly selected from U[0, 1], and then their sum is normalized to 1) which for brevity
we refer to as “uniform” at Node1, and a beta distribution at Node2 with parameters α = 0.2, β = 100.
The dashed line is the average vector of the two. (b) demonstrates the locally calculated upper bound
and lower bound for different numbers of top values transmitted (k) in Algorithms 2 and 3.
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Results on Real Data (20 Newsgroups Dataset)

0 2500 5000 7500 10000
Coordinates (Sorted)

(a)

10−2

10−3

10−4

0

Pr
ob

ab
ili

ty
 V

alu
e [

Lo
g]

Probability Values Histograms

Node1: Atheism
Node2: Hockey
Average Vector

0 2500 5000 7500 10000
Number of Top Values Transmitted

(b)

6

7

8

9

En
tro

py

Algorithmic Bounds
Maximum Entropy Value
Average Vector's Entropy
Node1 Entropy (Atheism)
Node2 Entropy (Hockey)
Node1 Lower Bound (Atheism)
Node2 Lower Bound (Hockey)
Node1 Upper Bound (Atheism)
Node2 Upper Bound (Hockey)

Figure 3. Algorithmic bounds between token frequency vectors of atheism-themed newsgroups and
hockey-themed newsgroups. (a) depicts the histogram of the tokens of the accumulation of the first
200 articles in each theme. Note that the histogram’s coordinates are organized in descending order
of each vector’s values separately; thus, the average vector may be larger, for some values, from both
Node1 and Node2. (b) demonstrates the locally computed upper bound and lower bound for different
numbers of top values transmitted (k) in Algorithms 2 and 3.

Fortunately, the difference between the bounds of Node1 and Node2 is an advantage
to our proposed algorithms; we can compare them and use the better one simply by
comparing the bounds (which requires transmitting only one scalar).

Another interesting observation can be drawn from Figure 2b; Node1’s lower bound is
already quite close to the global entropy for very small k values. The algorithm works well
here since the maximum value of Node2 is not large, which in turn enables the algorithm to
reach a tighter bound.

Figure 3b illustrates our experiments on the 20 Newsgroups Dataset [13] which in-
cludes about 20,000 newsgroup documents for 20 different topics. We measured the entropy
of token frequency vectors (A vector where each value corresponds to the frequency of a
word or token in the document). from the atheism-themed newsgroups and the hockey-
themed newsgroups. To do so, we took the top 10,000 occurring tokens and created token
frequency vectors on the first 200 articles from the atheism theme and the hockey theme.
The visual illustration of the (sorted) tokens frequency is in Figure 3a. As can be observed,
the atheism newsgroups is more verbally rich than the hockey newsgroup, having more
words which are unique to it.

As demonstrated in Figure 3b, the upper bound computed by both nodes is almost the
same. However, for the lower bound, Node1 (atheism) converges faster to the real entropy
as we increase the parameter k of the algorithm. We attribute that to the denser token
histogram of the hockey theme; thus, more “probability mass” is transmitted for the same k.

Figure 4 presents results for the multiparty case, as discussed in Section 3.4.
To conclude, the distribution of the probability vectors directly affects the tightness

of the bounds. The less concentrated the probability vectors are, the less information we
can send for every k; hence, the bounds become less tight, as demonstrated in Figure 5. A
solution for this case is presented in Section 4.
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Figure 4. An example of the multiparty upper bound on real and synthetic data. (a) For the real data,
we used vectors from the newsgroups dataset; each vector is of length 10,000. (b) The synthetic data
are sampled from half-normal distribution; each vector is of length 1000.
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Figure 5. Rate of convergence of the dynamic bound algorithms in Section 3 to the real entropy values
as a function of communication overhead. (a) Node2 obeys a uniform distribution, and Node1 obeys
a beta distribution with α = 0.1, β = 100. (b) Both nodes obey a beta distribution, one with α = 0.1,
β = 100 and the other with α = 0.02, β = 100.

4. Entropy Approximation

The algorithms described in Section 3 perform better in terms of communication
overhead when there are a few relatively large values in the local frequency vectors, i.e.,
a substantial percentage of the overall “probability mass” resides in a relatively small
percentage of the vectors’ values. However, in the case in which the vectors are “flat”—that
is, their distribution approaches a uniform one—the nodes will have to exchange many
values in order to reach tight bounds on the overall entropy; see Figure 5. In this section,
we offer a probabilistic solution to this problem.

Assume that two nodes N1, N2 hold vectors X, Y, and the goal is to approximate the
entropy of the average vector X+Y

2 , with a small communication overhead, relative to n,
the length of the vectors.

One solution, which was applied in previous work on monitoring entropy [10], is to
use sketches. This popular technique found many applications in computer science, for
example, for computations over distributed data [7]. A well-known sketch for entropy,
which we describe in Section 4.1, is presented in [14]; see also [15].
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Here we use a different sketch, which, for our purposes, performed better than the
sketch presented in [14]. In resemblance to Section 3, the two nodes first exchange all
values which are greater or equal to a threshold ε, whose value is determined by a commu-
nication/accuracy trade-off. Hence, we assume hereafter that all values are smaller than ε.
Next, choose a polynomial approximation, of degree at least 2, over the interval [0, ε], to the
function h(t) ≜ −t ln(t). Assuming in the meanwhile a degree 2 approximation, denote it
by At2 + Bt + C. The proposed method is oblivious to the choice of this approximation; we
have used the approach of minimizing∫ ε

0

(
f (t)− (At2 + Bt + C)

)2
dt ,

which allows a closed-form solution

A = − 5
4ε

, B = − ln(ε) +
13
12

, C =
ε

8
.

Using this quadratic function, we can approximate the entropy of the average vector X+Y
2 by

n

∑
i=1

(
A
(

Xi + Yi
2

)2
+ B

(
Xi + Yi

2

)
+ C

)
=

A
4

n

∑
i=1

(X2
i + Y2

i ) +
A
2

n

∑
i=1

XiYi +
B
2

n

∑
i=1

(Xi + Yi) + nC .

Note that with the exception of the term ∑n
i=1 XiYi, all terms can be computed locally

and require O(1) communication overhead to transmit. Thus, it only remains to approxi-
mate the term ∑i XiYi, which equals the inner product ⟨X, Y⟩. To this end, we can apply
an approximation based on the famed Johnson–Lindenstrauss Lemma [16], which is defined
as follows:

⟨X, Y⟩ ≈ 1
d

d

∑
i=1
⟨X, Ri⟩⟨Y, Ri⟩ ;

where Ri are independent random vectors with all values i.i.d standard normal variables,
which are generated by a pre-agreed upon random seed, and thus require no communica-
tion. A direct calculation yields that this estimate has expectation ⟨X, Y⟩ (i.e., is unbiased)
and its variance equals

∥X∥2∥Y∥2 + ⟨X, Y⟩
d

.

Similarly, we can apply higher-order approximations. For a cubic approximation, we
obtain a more complicated but identical in spirit sketch, which requires an approximation
of the expressions ∑n

i=1 X2
i Yi, ∑n

i=1 XiY2
i ; this, too, can be achieved by applying the estimate

above, since these quantities can also be represented as inner products of “local vectors”:
for example, ∑n

i=1 X2
i Yi = ⟨X2, Y⟩, where (X2)i ≜ X2

i .
Some results for two nodes are presented in Figure 6, in which the proposed sketch

is compared to the one in [14] (see Section 4.1). Extending the sketch to the multiparty
scenario is straightforward; results are presented in Figure 7b.
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Results on Synthetic Data
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Figure 6. Comparison of the Poly2 and CC sketches for approximating the empirical Shannon entropy.
(a) illustrates the synthetic probability vectors that were generated to perform the comparison.
(b) compares the Poly2 sketch to the CC sketch for varying sketch sizes. The comparison was made
using three different random seeds for the sketches. We used the value ε = 0.0002.
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Figure 7. (a): standard deviation of the error of the CC and Poly2 sketches, for two parties and
varying sketch size. The experiments were performed on a vector of dimension 10000 with uniform
distribution, which was followed by normalization to sum 1. The standard deviation was calculated
on 50 sketches for each sketch size. (b): comparison of the standard deviation of CC and Poly2 sketches
in the multiparty scenario for fixed sketch size and varying number of parties. The experiments
were performed for an i.i.d random vector distribution of dimension 5000 with sketch size 200 and
ε = 0.0002.

4.1. The Clifford-Cosma Sketch

We compare our sketch to an entropy sketch proposed in [14]. The sketch is a linear
projection of the probability vector. The linear projection is performed by a multiplication
matrix with i.i.d elements drawn from F(x; 1,−1, π/2, 0). The entropy approximation of
the d-dimensional linear projected vector (y1, . . . , yd) is:

H̃(y1, . . . , yd) = ln(d)− ln

(
d

∑
i=1

eyi

)
.

4.2. Sketch Evaluation

We now compare the proposed sketch to the one in [14], which is denoted “CC”. The
proposed quadratic sketch is denoted “Poly2”.
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5. Conclusions

We have presented novel communication-efficient algorithms for bounding and ap-
proximating the entropy in a distributed setting. The algorithms were tested on real and
synthetic data, yielding a substantial reduction in communication overhead. Future work
will address both sketch-based techniques and further development of the dynamic bound
algorithms presented here. In addition, we intend to address the efficient distributed
computation of other functions.
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Appendix A. Improving the Upper Bound

Let us recall Algorithms 1 and 2 from Section 3.2. As mentioned there, the computed
bound can be improved; we now present this improvement as a generalized algorithm that
achieves a tight upper bound. The algorithm below can be run following the upper bound
algorithms (either of them), after X∗ is computed, or as an external procedure that accepts
X∗, m and sup as input. We show the former option:

http://img.mdpi.org/data/contributor-role-instruction.pdf
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
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Algorithm A1: Tight Entropy Upper Bound for Two Nodes
Input: A local vector XLocal, a k-sized largest value ordered set Sk(XOther) and a

corresponding ordered coordinate set Ck(XOther)
Output: An upper bound for H(X̃)

1 Y∗ ← (yi ∈ XLocal | i /∈ Ck(XOther))
2 ci ← y∗i + min{SK(XOther)} for 1 ≤ i ≤ |Y∗|
3 Compute X∗ by algorithm 1 or 2
4 m← max{0, x∗1 − c1}
5 x∗1 ← min{x∗1 , c1}
6 i← 1
7 while m > 0 do
8 next← the minimal coordinate j > i s.t x∗j > x∗i
9 if m ≤

(
xnext − x∗i

)
(next− i) then

10 For all i < j < next increment x∗j by m
next−i−1

11 m← 0
12 else
13 For all i < j < next increment x∗j by xnext − x∗i
14 m← m−

(
xnext − x∗i

)
(next− i− 1)

15 end
16 i← i + 1
17 if i = |X∗| then
18 x∗i ← x∗i + m
19 m← 0
20 else
21 m← m + max{0, x∗i − ci}
22 x∗i ← min{x∗i , ci}
23 end
24 end
25 X̃′ ← concatenation of X∗ and XKnown

26 return H( 1
2 X̃′)
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