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Abstract-Symmetry is usually viewed as a discrete feature: an object is either symmetric or non- 
symmetric. In this presentation, symmetry is treated as a continuous feature and a continuous measure 
of symmetry (the Symmetry Distance) is defined. This measure can be easily evaluated for any shape 
or pattern in any dimension. A preliminary study presented here shows that the Symmetry Distance is 
commensurate with human perceptual experience. Good correlation is found between the continuous 
symmetry values and the perceived goodness of figures. 

1. INTRODUCTION 

William Blake's classic poem sings of the 'fearful symmetry' of his celebrated 'tyger'. 
Why is the symmetry fearful? A possible reason is that although we perceive the 

biological symmetry, it is not perfect. The tiger still looks like a tiger when you 
view it in a mirror - just as does a human face - but the left-hand side of the 

tiger or your face is not precisely the same as the reflection of the right-hand side. 

Symmetries abound in the biological world and in our visual world; yet most of these 

symmetries are not perfect. In the visual world, loss of symmetry is further enhanced: 

Even perfectly symmetric objects lose their exact symmetry when projected onto the 

image plane or the retina due to occlusion, perspective transformations, or digitization. 

Clearly, the popular binary conception of symmetry (i.e. an object is either symmetric 
or is not symmetric) and exact mathematical definitions thereof (Weyl, 1952; Miller, 

1972) are inadequate to describe and quantify the symmetries found in the natural 

world. Needed is a continuous measure of symmetry, one that would be able to 

quantify the 'amount' of symmetry entailed in Blake's 'tyger'. The development of 
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Figure 1. The continuous symmetry measure can compare the 'amount' of symmetry of different shapes 
and can compare the 'amount' of different symmetries of a single shape. Thus the notion that a is 'more' 
mirror symmetric than b can be quantified. Similarly, the notion that c is 'more' rotationally symmetric 
than mirror symmetric, can be quantified. 

such a measure, and its evaluation against actual perception, form the theme of this 
article. 

In this paper, a 'Symmetry Distance', capable of measuring and quantifying all types 
of continuous symmetries of objects is introduced. Our definition of the Symmetry 
Distance produces a versatile and simple tool that can supply a set of measures for any 
object reflecting the amount of different types of symmetry (rotational, reflectional, 

etc.) possessed by the object. The generality of this symmetry measure allows one to 

compare the symmetry distance of several objects relative to a single symmetry type 
and to compare the symmetry distance of a single object relative to various symmetry 
types. Thus the intuitive notion that the shape of Fig. la is 'more' mirror-symmetric 
than the shape of Fig. lb, can be quantified. Similarly, the intuitive notion that the 

shape of Fig. lc is 'more' rotationally symmetric (of order two) than mirror symmetric 
can be quantified. 

This concept of continuous symmetry is commensurate with perceptual behavior. 
To demonstrate this we tested visual evaluation of figural goodness as mediated by 
symmetry. In Section 2, we define the Symmetry Distance and in Section 3 we briefly 
describe a method for evaluating the Symmetry Distance. In Section 4 we discuss 
continuous symmetry in terms of human perception and present some preliminary 
studies that show a good correlation with human perception of figural goodness. 

2. A CONTINUOUS SYMMETRY MEASURE - DEFINITION 

We define the Symmetry Distance (SD) as the minimum effort required to transform 
a given object into a symmetric object. This effort is measured by the mean of 
the square distances taken to move each point of the object from its location in the 

original object to its location in the symmetric object. Note that no a priori symmetric 
reference shape is assumed. In effect, we measure the distance from a given object 
to the set of all symmetric objects. 
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Figure 2. The space Q of all shapes of a given dimension, where each shape P is represented by a 

sequence of n points. A metric d is defined on this space which serves as a distance function between 
every two shapes in S2. 

Denote by Q the space of all shapes of a given dimension, where each shape P is 

represented by a sequence of n points {Pd7:J (Fig. 2). We define a metric d on this 

space as follows: 

This metric defines a distance function between every two shapes in Q. 

We define the Symmetry Transform of a shape P, with respect to a given symmetry 

type G, as the shape P which is G-symmetric and closest to P in terms of the metric d. 

The Symmetry Distance (SD) of a shape P with respect to a given symmetry type G, 
is now defined as the distance between P and its Symmetry Transform P: 

The SD of a shape P = {Pd7==-d is evaluated by finding the symmetry transform 

P = {Pd7==-d of P (Fig. 3d) and computing: 

This definition of the Symmetry Distance implicitly implies invariance to rotation 

and translation. Normalization of the original shape prior to the transformation allows 

insensitivity to size (Fig. 3). We normalize by scaling the shape so that the maximum 

distance between points on the contour and the centroid is a given constant (in this 

paper all examples are normalized to 100). The normalization presents an upper 
bound on the mean squared distance moved by points of the shape. Thus the SD 

value is limited in range, where SD = 0 for perfectly symmetric shapes. 



458 



459 

Figure 4. Symmetry Transforms and Symmetry Distances of a 2D polygon. (a) The 2D polygon. (b) Sym- 
metry Transform of (a) with respect to C2-symmetry (SD = 1.87). (c) Symmetry Transform of (a) with 
respect to C3-symmetry (SD = 1.64). (d) Symmetry Transform of (a) with respect to C6-symmetry 
(SD = 2.53). (e) Symmetry Transform of (a) with respect to Mirror-symmetry (SD = 0.66). 

The general definition of the Symmetry Distance enables evaluation of a given shape 
for different types of symmetries (mirror-symmetries, rotational symmetries, etc.). 
Moreover, this generalization allows comparisons between the different symmetry 

types, and allows expressions such as 'a shape is more mirror-symmetric than rotatio- 

nally-symmetric of order two'. An additional feature of the Symmetry Distance is 
that we obtain the symmetric shape which is 'closest' to the given one, the symmetry 
transform, enabling visual evaluation of SD. 

An example of a 2D polygon and its symmetry transforms with respect to various 

symmetry types and the corresponding SD values are shown in Fig. 4. Note that 

shape 4e is the most similar to the original shape 4a and, indeed, its SD value is the 

smallest. The Symmetry Distance and symmetry transform have recently been applied 
to image processing and chemical applications (Zabrodsky et al., 1993; Zabrodsky 
and Avnir, 1993). 

3. EVALUATING THE SYMMETRY TRANSFORM 

A simple geometric algorithm has been derived for evaluating the Symmetry Trans- 
form (and accordingly, the Symmetry Distance) of a shape represented by a sequence 
of points, with respect to any type of symmetry. For simplicity, an outline of the al- 

gorithm is given here for the case of rotational symmetry in 2D. For more details and 

extensions to other types of symmetry in higher dimensions, see Zabrodsky (1993). 
Consider the simple case where a shape P is represented by n points and its Sym- 

metry Transform with respect to rotational symmetry of order n (Cn-symmetry) is to 
be found. The following algorithm finds the Cn-symmetric configuration of points 
which is closest to P in the mean square sense (i.e. in terms of the metric d defined 

in Section 2): 
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Algorithm for finding the Cn-symmetry transform: 

1. Fold the points ipln-1 by rotating each point Pi counterclockwise about the 

centroid by 2ni /n radians obtaining the points {Pd7,:-ri (Fig. 5b). 

2. Average the points {Pd7,:-ri obtaining point Po (Fig. 5c). 

3. Unfold the points by duplicating Po and rotating clockwise about the centroid 

by 27riln radians obtaining the Cn-symmetric points {Pd7,:-ri (Fig. 5d). 

The set of points fpln-1 is the symmetry transform of the points {Pd7,:-ri; i.e. 

they are the Cn-symmetric configuration of points closest to [piln-1 in terms of the 

average distance squared. Proof of the correctness of this algorithm can be found in 

Zabrodsky (1993). 
The common case, however, is that shapes have more points than the order of the 

symmetry. For symmetry of order n, the folding method can be extended to shapes 

having a number of points which is a multiple of n. A 2D shape P having qn 

points is represented as q sets (Sr)§I§ of n interlaced points Sr = {Piq+r }7,:-ri. The 

Cn-symmetry transform of P is obtained by applying the above algorithm to each set 

of n points separately, where the folding is performed about the centroid of all the 

points (Fig. 6). 
The algorithm described above is general and extends to all symmetry groups in 

any dimension (see Zabrodsky, 1993). Specifically, for mirror-symmetry in 2D, if the 

axis of reflection is not specified, the optimal axis can be determined analytically. 
As presented here, the input to the algorithm is a set of points; however, given a 

contour, an image or a 3D volume, the measure of symmetry can be evaluated by 

selecting points to represent these objects. The selection of the points must be such 

that the division into sets, as described in the above algorithm, can be performed. This 

requires every point in the collection of representation points to be matched, under 

symmetry, to other points in the collection. This is analogous to the correspondence 

Figure 6. Geometric description of the C3-symmetry transform for 6 points. The centroid of the points 
is marked by (D. (a) The original points shown as two sets of 3 points: So = P2, P4) and Sl = 

{P1, P3, P5). (b) The obtained C3-symmetric configuration. 
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problem in stereo matching and motion determination. We deal with the selection of 

points by considering an object in two possible ways for the symmetry procedure with 
the underlying assumptions that (a) all matches of points are in the final collection 
of representation points, i.e. no points are missing nor are points redundant, and (b) 
the order of the points (on a contour for example) are preserved under the symmetry 
transform. 

The two ways of considering an object for symmetry are: 

1. The shape is a contour with no 'special' points, i.e. points at comers or high 
curvature points are not considered salient. Thus under the symmetry transform 
these points are not preserved (comers may round off, protrusions may disappear 
etc.). In these cases a contour sampling procedure is required. There are several 

ways to select a sequence of points to represent continuous 2D shapes; one such 
method is sampling at equal distances; however, contour length is not always 
meaningful, as in noisy or occluded shapes. In such cases, we sample points 
on a smoothed version of the contour and then project the sampled points back 
onto the original contour. The level of smoothing can vary and, for a high level 
of smoothing, the resulting shape becomes almost circular about the centroid in 
which case the sampling is reduced to sampling the original shape at equal angles 
about the centroid of the shape. (For details and examples of the various sampling 
procedures see Zabrodsky, 1993.) For any of the approaches mentioned above, 
it can be shown empirically that, as the density of sampled points increases, the 

symmetry distance obtained asymptotes to some value. 

2. Salient points are considered and should be matched to salient counterparts. In this 
case the special points (vertices of polygons, comer points, etc.) are all chosen to 

represent the object. However, because of the above-mentioned assumptions, no 

spurious points (or unmatched points) are assumed to exist. Future work would 
extend the topological stage of the symmetry procedure to allow points to be 
discarded or added into the collection of representation points, in analogy to the 

correspondence problem, where unmatched feature points would be allowed (see 

Zabrodsky et al., 1992 where this is partially done by deleting the extraneous 

points of occluding boundaries). 

4. CONTINUOUS SYMMETRY AND HUMAN PERCEPTION 

The notion of symmetry was introduced to psychological theorizing and research by 
Mach and later by Gestalt psychologists in the first half of this century. It has since 

been associated with the Gestalt constructs of 'good Gestalt' or 'figural goodness', 

referring to perception of the simplest, most stable figure possible. Given the same 

number and kind of physical components, some stimuli appear to be unique, simple, 

regular, or better organized than other stimuli. Those impressions are captured by the 

quality of 'goodness', the end product of inherent organizational principles that govern 
the perception of form. In that scheme, symmetry contributes to figural goodness. The 

contingency between the subjective experience of goodness and the objective feature 
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of symmetry could not be pursued further, however, because the Gestalt psychologists 
have made no attempt towards an objective, quantitative analysis of figural goodness. 

In a series of seminal papers in the 1950s, Attneave, Hochberg and their associates 

(e.g. Hochberg and McAlister, 1953; Attneave, 1954, 1955; Attneave and Arnoult, 
1957) applied concepts of information theory by way of a more quantitative analysis of 

figural goodness. Good forms contain portions that are repetitive and predictable from 
other portions. Cast in informational terms, good forms are redundant, containing little 
information. A symmetric figure is redundant because parts of it can be predicted 
from other parts. Of all the possible forms of redundancy, symmetry is the easiest 
to quantify (cf. Attneave, 1959). Significantly, as Palmer (1991) has pointed out, the 
informational definition of 'goodness' fully conveys the original Gestalt notions of 

simplicity, order, and singularity. 
Nevertheless, for all its originality and heuristic value, the approach espoused by 

theorists like Attneave, Hochberg or Berlyne (e.g. Berlyne, 1957, 1966) is limited in 

a crucial aspect. These theorists applied the informational analysis to components of 

single stimuli. However, as Palmer notes, such piecewise analysis does not fit well 
with the Gestalt style of explanation, emphasizing global properties and analyzable 
wholes. More seriously, in mathematical information theory itself, redundancy applies 
to sets of stimuli, and is not characteristic of unique stimuli (Garner, 1962). As 

Garner (1974) observed, 'information is a function not of what the stimulus is, but 
rather of what it might have been, of its alternatives' (p. 194). This is the major 
contribution of information theory to psychology: Presented with a stimulus, our 

perception is influenced by other stimuli that could have been presented. Here, too, 
lies the challenge to the theorists; namely, specifying the set of those other stimuli 

or identifying the alternatives that did not appear in any given trial. Gamer's theory 
of Rotation and Reflection (R & R) Subsets was suggested to accomplish that goal 
in a truly Gestalt spirit. Along with Palmer, we believe that Gamer's work has laid a 

solid foundation for future studies of pattern goodness and symmetry, including the 

present endeavor. 
Garner suggested that good patterns are those which have few alternatives. Good 

patterns produce less variance than do 'bad' patterns when spatial transformations are 

applied to the figures. Quantitatively, the perceived goodness of a pattern is inversely 
related to the size of a subset of equivalent patterns that are obtained by applying the 

transformations. In Garner's view, the observer associates the pattern in question with 

the subset of its transformational variants. Good patterns come from small inferred 
subsets and poor patterns come from large ones (cf. Dember and Warm, 1979). 

To test this theory, Garner and Clement (1963) prepared dot patterns, similar to those 
illustrated in Fig. 7 by placing 5 dots in an imaginary 3 x 3 matrix. They applied 
four rotations (angles of 0, 90, 180 and 270 deg) and four reflections (horizontal, 
vertical and two diagonals) to define the R & R set for each pattern. The subset of 

distinguishably different patterns within each set defines the R & R subset (cf. Palmer, 

1991). Garner and Clement had one group of subjects rate the patterns for 'goodness', 
and another arrange the patterns into sets on the basis of perceived similarity. The sets 

did not need to have equal numbers of patterns; indeed, the total number of patterns 

placed in a set was one parameter of interest. Garner and Clement found that the 
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Figure 7. Analysis of figural goodness for dot patterns in terms of R & R subset size, and in terms of 
Symmetry Distance measures developed here. v: vertical mirror symmetry, h : horizontal mirror symme- 
try, hu: diagonal top-left to bottom-right mirror symmetry, uh: diagonal top-right to bottom-left mirror 
symmetry, C2 : rotational symmetry of order two (120 deg), C4 : rotational symmetry of order four (90 
deg). 

higher the rating for goodness, the smaller is the similarity set. In many additional 

experiments (summarized in Garner, 1974), Gamer and his associates confirmed that 

goodness of a figure was inversely related to the size of its R & R subset. 
Garner did not couch his theory in terms of symmetry because he felt that subsets of 

equivalent patterns served better for perceptual explanation than 'the more restrictive 

concept of symmetry' (Garner, 1974, p. 17). In point of fact, however, Gamer's R & R 
sets conform fully to the mathematical definition of symmetry including rotational and 
mirror symmetries (see also Palmer, 1991). Indeed, Palmer developed an alternative 

theory of figural goodness focusing on the transformations over which the patterns 
remain invariant. A figure is symmetrical with respect to a given transformation, if 
that transformation leaves the figure unchanged. One can list all such transformations, 
thus specifying the resulting symmetry subgroups. Garner's R & R theory only defines 
the number of the transformations, whereas Palmer's symmetry subgroup theory also 
refers to the identity of those transformations. The latter, as research has shown, 
does matter to perception (e.g. Royer, 1981; Rock, 1983). For instance, it has been 

repeatedly demonstrated that vertical symmetry influences perception to a greater 
extent than does horizontal symmetry (Rock and Leaman, 1963; Chipman, 1977; 
Palmer and Hemenway, 1978). 

Our theory of continuous symmetry follows in the footsteps of Garner's and Palmer's 

contributions. Palmer's construct of symmetry subgroups is well taken, and our anal- 

ysis provides a rich variety of symmetries, both rotational and reflectional (see again 

Fig. 7). At the same time, we also share Garner's concern with the limited use of 

traditional binary notion of symmetry. Although Palmer's analysis relates to different 

types of symmetry, for any given transformation, a figure is still either symmetric 
or asymmetric. In contradistinction, our theory employs a continuous measure of 
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symmetry, and it applies to any figure or pattern in two or three dimensions. Indeed, 

generality of application is the hallmark of our approach. 
To serve a useful role, of course, one must show that the present definition of 

symmetry is commensurate with perceptual experience. The following study provided 
a preliminary observation using Symmetry Distance for specification of the stimuli. 

We created 4 sets of 9 'random shapes', of which 9 stimuli (comprising a single set) are 

shown in Fig. 8. Within a set, each shape had different values of Symmetry Distance, 
with respect to mirror-symmetry and to rotational symmetry of order 2. The shapes 
were constructed by randomly choosing one of four possible radius lengths for each 

of the twelve points forming the shape, and spacing the points at 2IT /12 deg angles. 

Twenty observers provided ratings of goodness for all 36 shapes on a 20-point scale 

(with 20 and 1 standing for the best and the worst figures, respectively). Following 
Gamer, we left the definition of goodness to the subject's discretion. Despite the 

completely arbitrary fashion of creating the figures and the small number of subjects, 
the results are encouraging. As the scatter plots in Fig. 9 show, the continuous 

measures of mirror symmetry and rotational symmetry covaried with the judgement 
of goodness. The correlation coefficients were -0.689 and -0.570, respectively, for 

reflectional and rotational symmetries. The multiple correlation of these two measures 

with experienced goodness equaled 0.90. In other words, the continuous measures 

Figure 8. Nine of the thirty-six random shapes for which observers provided ratings of goodness. The 

shapes were constructed by randomly choosing one of four possible radus lengths for each of the twelve 

points of the shape and spacing the points at 27T/12 deg angles. The highest, lowest and middle goodness 
ratings, averaged over all observers, are shown. 
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Figure 9. The dependence of perception of goodness on (a) reflectional and (b) rotational measures of 
Symmetry Distance. The plot displays the result for the set of shapes shown in Fig. 8. The judgements 
of goodness for each shape are averaged over all observers. 

of symmetry accounted for over 80% of the variance of the goodness judgements, 

although much of that proportion is attributable to one highly symmetric figure. 

Again, despite the moderating effect of the small number of subjects, these results 

are impressive. Equipped with the present measures, the Garnerian notion of inferred 

equivalence sets readily generalizes to many forms, not just to simple patterns cre- 

ated for the laboratory. So does Palmer's analysis in terms of symmetry subgroups. 
The results provide powerful support for a general perceptual principle: Figures are 

processed in terms of their uniqueness measured in units of symmetry distance. 
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