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Abstract

Estimation of Scene Illumination from a single image or an image sequence has been

widely studied in computer vision. The approach presented in this paper, introduces

two new issues: 1) Illumination classi�cation is performed rather than illumination

estimation. 2) An object based approach is used for Illumination Evaluation. Thus

pixels associated with an object are considered in the illumination estimation process

using the object's spectral characteristics. Simulation and real image experiments, show

that the Object Based approach indeed improves performance over standard Illumination

classi�cation.

Keywords: Illumination estimation, Color correction, Face, Color, Classi�cation

1 Introduction

Scene estimation is a basic problem in image understanding: given an image obtained from

an acquisition system, estimate the spectral distribution of the scene illuminant. A classic

model for image acquisition states that light from a source impinges on a surface and is

partially reected from it. The reected light is measured by the camera sensors and the

acquired image is produced from the sensor outputs. The light source is given as a wavelength



dependent intensity function - the spectral distribution function (SPD) E(�). The surface

reectance is the proportion of incident light which is reected as a function of spectral

wavelength, and is given by the surface reectance function S(�) (with values between 0 and

1). The surface reectance function is characteristic of the surface material and is associated

with the color appearance of the surface. The light reected from the surface is denoted the

color signal and is given by (assuming a Lambertian model):

C(�) = E(�)S(�) (1)

The camera sensors, which measure the color signal, supply a single output computed as a

weighted integral over the spectral wavelengths of the color signal. The weights correspond

to the sensor sensitivity at each spectral wavelength. There are typically three types of

sensors commonly referred to as R, G and B corresponding to their spectral sensitivities.

The acquired image is composed of pixels, each of which contains the output values of

the camera sensors at the pixel position. The pixel value pi corresponding to the surface

reectance S(�) viewed under illuminant E(�) and acquired by the i-th camera sensor Ri(�)

is given by:

pi =

Z
�
C(�)Ri(�)d� =

Z
�
E(�)S(�)Ri(�)d� (2)

where the integration is performed over the visible spectrum (electromagnetic radiation at

wavelengths approximately 400nm to 700nm).

Equation 2 provides the basis for Illumination Estimation and Illumination Classi�cation

algorithms. By sampling (using N� samples) the SPDs associated with the illuminant and

the surface reectances, Equation 2 can be rewritten in vector notation as:

pj = RESj (3)

where pj is the 3-vector of sensor outputs at pixel location j, Sj is the surface reectance

corresponding to pixel location j represented as an N�� 1 vector, E is the illuminant of the

scene represented as a N� � N� matrix with the sampled E(�) on the diagonal, and R is a

matrix with rows corresponding to the sampled camera sensor sensitivities.

The problem of illumination estimation is to determine the SPD E(�) of the scene illuminant

given the image pixel values. The diÆculty in estimating the illuminant originates from the
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confounding nature of the color signal: many illuminant-surface pairs can explain a given

color signal. Additionally, the acquisition system produces sensor outputs and not SPDs,

thus metameric pairs (color signals producing the same sensor output) add to the confusion.

The importance of estimating scene illumination is demonstrated in Figure 1. A surface is

viewed under two di�erent illuminations. Following Equation 1, the color signal is calculated

from the surface reectance function (Figure 1a) and the illuminant SPD (Figures 1b and

1c). The two color signals (Figures 1d and 1e) are then measured by the camera sensors and

the sensor responses (Figures 1f and 1g) are computed using Equation 2. As can be seen,

the color signal, and accordingly the sensor outputs, produce two di�erent responses for the

same surface. However the Human Visual System (HVS) is inconsistent with this behavior.

A characteristic of the HVS is to correct for the illumination and produce a stable color ap-

pearance regardless of illumination. This characteristic is known as Color Constancy. Thus,

an apple appears red whether it is viewed under red-biased indoor tungsten illumination or

blue-biased sunlight illumination. Given that observers demand realistic reproductions of a

scene (as determined by the HVS), photo developers and printers must correct the e�ects

of the illumination before producing the �nal image (else an outdoor image of an apple will

have a blue tint). This correction is known as Color Correction. With the introduction

of digital cameras, in which images are directly viewed on the computer monitor following

acquisition, color correction must be performed automatically in the camera or driver. This

promotes the need for eÆcient algorithms for scene illumination estimation.

Various approaches to Illumination Estimation have been previously suggested. Typically the

image acquisition model is considered for each pixel, supplying a single equation (Equation 2).

The set of equations is then solved for the illuminant and the reectance functions. Usually,

this system of equations is under-determined so that additional constraints and assumptions

must be made. Previous approaches are distinguished by the assumptions and constraints

imposed on the image, scene or acquisition model [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
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2 Our Approach

In estimating scene illumination, the fact that color values of an acquired image originate

from a natural scene, must be taken into account. We suggest that information about the

scene obtained from the acquired image will greatly increase performance of the illumination

estimation process. In other words, illumination estimation is dependent on the objects

appearing in the given image. This approach is strongly supported by the fact that color

constancy has been shown to improve when well known objects appear in the scene (compared

to scenes of color patches etc) [13].

Our approach ([14]) introduces two new issues:

1. Illumination classi�cation is performed rather than illumination estimation.

2. Illumination evaluation is object dependent.

Illumination Classi�cation

Rather than estimating the exact spectral distribution of the scene illumination, we perform

Illumination Classi�cation. The problem then reduces to: Given a �nite set of illuminant

classes, determine which of the classes is most probable as the illuminant of a given image.

Classi�cation is suÆcient for color correction since eÆcient algorithms use look-up tables

(rather than closed form solutions or computations). The look-up table to be used is deter-

mined by the estimated scene illuminant. A �nite number of look-up tables are used in the

process, corresponding to a �nite number of illuminant classes. Illumination Classi�cation

rather than Illumination Estimation, simpli�es the problem at hand: the exact illuminant

need not be recovered. The solution space is �nite and the solution becomes more robust.

Content Dependent Illumination Estimation

Previous approaches to illumination estimation consider the sensor outputs as a set of values,

irrespective of the pixel source. The estimation process considers the sensor outputs at each

pixel as contributing equally to the �nal solution. In our approach, subsets of pixel values

are considered di�erently. Speci�cally, subsets of pixels are extracted or segmented from
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the image and the associated sensor outputs are exploited more eÆciently in the estimation

process. As will be discussed in Section 4, the estimation process we assume is Object Based.

Thus, pixels associated with an object are considered in the illumination estimation process

using the object's spectral characteristics.

3 Illumination Classi�cation

Given an illuminant, we consider the set of all surface reectances viewed under the illumi-

nant by a known set of camera sensors. A large set of possible sensor outputs is obtained

forming a cluster of points in the 3D sensor output space. Given a �nite number of illu-

minants, several such clusters are obtained, one for each illuminant. Figure 2a shows two

Illuminant Clusters obtained by plotting the Munsell surfaces as imaged by the three Ko-

dak DCS-20 camera sensors under two illuminants - tungsten bulb (CIE illuminant A) and

typical daylight (CIE illuminant C).

An image of a scene, is assumed to be a subset of the set of surfaces imaged by the camera

sensors under one of the illuminants. As such, the image pixels form a cluster of points in 3D

which is a subset of one of the illuminant clusters de�ned above. Thus, given the cluster of

3D points of the image pixel values, the scene illumination can be determined by classifying

the image cluster to one of the illuminant clusters.

Intuitively, the image cluster should be classi�ed to the "closest" illuminant cluster. Some

metric must be used to measure the "distance" between the image cluster and each illuminant

cluster. Given several illuminant clusters, it is obvious that the greater the "distance"

between the clusters, the better the illumination classi�cation will perform.

3.1 Cluster Distance Metric

The distance metric used in this work is the Mahanalobis Distance [15] which is de�ned

between two Gaussian distributed clusters as:

d = (M1 �M2)
t(�1 + �2)

�1(M1 �M2)
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Where Mi and �i are the mean vector and the covariance matrix of cluster i, respectively.

As a degenerate case this metric can also measure the distance between a single 3D point P

and a cluster:

d = (P �M1)
t��1

1
(P �M1)

Note that the Mahanalobis distance decreases with the decrease in distance between the

means and with the increase in cluster covariance.

Using this metric, several statements can be deduced from the simple simulation of illumi-

nation of Munsell surfaces (see Figure 2b). Given the two reectance clusters of Figure 2a,

the Mahanalobis distance between the cluster means is 1.79, whereas the distance between

the means of the 30% brightest points is 5.57 and the 30% darkest points is 1.41. Intuitively,

this is reasonable: The dark surfaces reect very little light so that discrimination between

the clusters is diÆcult. The bright surfaces, on the other hand, reect a large percentage of

the illuminant. Since the illuminants are easily distinguishable, so are the brightest points

and, accordingly, classi�cation is eÆcient [16]. This can also explain the motivation behind

several approaches to illumination estimation where only bright pixels are considered and

dark pixels are rejected.

The brightest colors in an image and the mean color of the image do not always produce

satisfactory illumination estimation results since the brightest pixels in the scene may not

be bright enough to distinguish between the illuminant clusters. Similarly when consid-

ering the mean of all colors in the image, the large variability (large spread of the image

cluster), reduces the Mahanalobis distance to all illuminant clusters, producing unreliable

classi�cation.

As mentioned above, to improve performance of illumination classi�cation, the distance be-

tween illuminant clusters should be maximized. In the following section we describe how this

is performed using the Object Based illumination estimation method. A di�erent approach

to increasing inter-cluster distance, is by varying the camera sensors, which essentially varies

the projection of the high dimensional color signal space to the lower dimensional camera

sensor space. Using the cluster notation, optimal �lters for illumination classi�cation can be

calculated. This approach is outside the scope of this paper and will be described elsewhere.
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4 Object Dependent Illumination Classi�cation

Previous approaches to illumination estimation consider the sensor outputs provided by the

image as a set of values. Each pixel location j in the image provides an equation of the

form de�ned by Equation 3. The origin (in terms of spatial location in the image) of each

equation is lost, and the estimation process considers each equation, and accordingly each

pixel in the image, as contributing equivalently to the �nal solution (Figure 3a).

In our approach, subsets of pixel values are considered di�erently. Subsets of sensor outputs

are exploited more eÆciently and provide additional information for the Illumination Clas-

si�cation process (Figure 3b). The subset approach suggested in this section provides better

classi�cation as follows:

The set of pixel values, pj, extracted from an image is a subset of one of the illumination

clusters (e.g. Figure 2a). That is, each pj can be any point in the illumination clusters,

since the corresponding surface reectance Sj, may be any one of the surface reectances

used to create the illumination cluster. However, given apriori spectral information about

the surface reectance Sj, the set of points of the illuminant cluster from which pj may

originate is constrained. Figure 4 shows two Illumination Clusters obtained as described in

Section 3. Previous approaches assume pj may originate from any one of the points in the

clusters. Apriori knowledge on Sj constrains pj to originate from a subset of cluster points,

marked with an ellipse for each Illumination Cluster. If the distance between these subsets

of cluster points is greater than the distance between the Illumination Clusters themselves,

then classifying using the apriori knowledge on Sj provides better classi�cation.

4.1 Object-Based Illumination Classi�cation

In order to provide apriori spectral information on the surface reectance Sj associated with

the pixel values pj, we use an Object Based approach. Thus using spatial information in

the image, pixels associated with an object can be segmented, extracted and used in the

illumination estimation process while exploiting the object's spectral characteristics.

Most classes of material are constrained in terms of their spectral reectance characteristics.

Associating certain material with objects found in the scene provides the apriori spectral in-
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formation that we exploit. For example, sky, foliage, grass, skin etc have constrained surface

reectance characteristics. Computer Vision techniques can be used to �nd object pixels in

an image on which the Object Based Illumination Classi�cation technique can be applied.

In this paper we examine the use of Human Skin spectral reectance to improve Illumination

Classi�cation. Speci�cally, pixels associated with faces are used in the classi�cation process.

The choice of faces as the objects for our technique was made for the following reasons.

First, a large proportion of photographs and images contain faces. Additionally, the rela-

tively small variability in skin tones (see Section 5) produces a tight apriori constraint on the

pixels which is advantageous for the classi�cation . Finally, being such a dominant object

in our visual world and in images speci�cally, many Computer Vision techniques have been

developed to detect faces in images (e.g. [17, 18, 19, 20, 21]). These face detection tools

have reached a relatively high rate of success, promising successful automatic detection of

face pixels.

5 Results

The spectral reectance characteristics of Human Skin has been studied and measured. We

consider the skin spectral reectance data given in [22] and shown in Figure 5a. Figure 5b

shows the distribution of all surface reectances (Munsell) vs skin surface reectances as

viewed under CIE illuminant A (tungsten) using the Kodak DCS-200 camera sensors. The

points in the cluster associated with the skin surfaces form a small subset. Given two Illu-

minations (CIE-A and CIE-C) The Mahanalobis distance between the Illumination Clusters

associated with all surface reectances is shown in Figure 6a. The Mahanalobis distance be-

tween the Illumination Clusters associated with the skin surfaces is shown in Figure 6b. As

expected, the inter-cluster distance is greater between the Illumination Clusters associated

with the skin surfaces.

Illumination Classi�cation - Simulation

Four illuminants were chosen (Figure 7a). For each illuminant, the Illumination Clusters
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associated with all Munsell surface reectances (Figure 7b) and skin surface reectances

(Figure 7c) was created.

The simulation was performed as follows: Given an image containing a human face which

was acquired under white illumination (Figure 8a), we chose one of the four illuminants,

added zero mean Gaussian noise to the illuminant and created a new image containing

the same scene as the original but viewed under the new illuminant (an example is shown

in Figure 8b). The pixel values of the new image were then used to determine the scene

Illuminant by classifying according to the four original illuminant clusters using all image

pixels and using only the skin pixels which were extracted manually. The process was

repeated 40 times (10 times for each illuminant). Simulation results are given in Table 1.

As expected, Illumination Classi�cation according to skin pixels out performs classi�cation

according to all image pixels with no apriori spectral information.

Illumination Classi�cation - Real Images

A set of 12 calibrated images containing a human face was obtained under 8 di�erent illu-

minants. The illuminants of the scene were measured for each acquired image. Figure 9

shows several of the images and their scene illuminants. The 8 illuminant clusters associated

with all surface reectances and associated with the skin surface reectances are shown in

Figure 10a and 10b respectively. Illumination Classi�cation was applied to the 12 images

using all image pixels and using the skin pixels (which were manually extracted). Results of

the classi�cation are shown in Table 2.

Results show that Illumination Classi�cation according to skin pixels out performs classi�-

cation according to all image pixels with no apriori spectral information.

6 Conclusion

In this paper a new approach to Illumination Estimation has been suggested. We have con-

sidered how one might integrate illuminant estimation and object estimation. In general,

pixels associated with an object will provide a more secure basis for illuminant estimation.

Given that it should prove possible to regularly identify faces in images, and that faces fre-
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quently are present in images, we evaluated how much improvement might be expected from

performing illuminant estimation based on human skin. Simulation and real image experi-

mentation showed an advantage for such an object-based illuminant estimation approach.

The results presented, deal with skin surfaces, however other classes of pixels can be used

(foliage, sky, etc). Apriori information on the scene can similarly be exploited without

considering objects in the scene (for example speci�c scene types such as agricultural �elds,

city scenes involving roads and pavements etc). Finally, if no pixels are found with which

apriori information can be associated, the technique reverts back to the simple classi�cation

using voting. Thus, the Object Based Illumination Classi�cation technique can be viewed as

a general classi�cation technique with weighted votes. Votes arising from pixels associated

with apriori information are weighted more heavily than other votes.

A parameter that was not dealt with in this paper, nor in previous studies, is the number of

Illumination Classes. For color correction, evaluation of the sensitivity of the HVS to changes

in scene illumination is necessary to determine the number of Illumination Classes and,

accordingly, the number of LUTs to be used in the correction process. The more sensitive

the HVS, more Illumination Classes must be used, and the classi�cation becomes more

diÆcult, increasing the need for approaches such as the Object Based approach suggested in

this paper. This evaluation is outside the scope of this paper.

Acknowledgment The authors thank Joyce Farell and HP Labs, for providing the
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Figure Captions

Figure 1: A single surface viewed under two di�erent illuminations.

Figure 2: The set of Munsell surfaces imaged by three sensors under the two illuminants: tungsten

(CIE-A) and typical daylight (CIE-C). a) For each illuminant, the set of surfaces forms

a cluster of points in the 3D sensor output space (marked + and Æ respectively). A 2D

projection of the sensor space is shown (the R and B camera sensors). b) The Mahanalobis

distance is computed between subsets of the cluster points shown in a): Between the two

clusters d=1.79 (middle). Between the 30% brightest points of the two clusters d=5.57

(top). Between the 30% darkest points of the two clusters d=1.41 (bottom). The means of

the subsets are represented as + and Æ. The spread of each subset is shown as an ellipse with

width and length proportional to the covariance matrix. Insets show the illuminants and the

camera sensors.

Figure 3: Two approaches to Illumination Classi�cation.

a) Classic approach b) Image content dependent approach.

Figure 4: Two Illumination Clusters obtained for illuminants CIE-A and CIE-C. Classic approaches

assume the sensor output originate from any one of the points in the clusters. Apriori

knowledge on the surface constrains the associated sensor output to originate from a subset

of cluster points, marked with an ellipse for each Illumination Cluster.

Figure 5: a) Spectral reectance functions of Human Skin. b) Distribution of Munsell surface re-

ectances (Æ) vs skin surface reectances (+).

Figure 6: The Mahanalobis distance between: a) Illumination Clusters associated with all surface re-

ectances. b) Illumination Clusters associated with the skin surfaces.

Figure 7: Illumination Classi�cation - Simulation.

a) Four illuminants. b) The Illumination Clusters associated with all Munsell surface re-

ectances. c) The Illumination Clusters associated with the skin surface reectances.

Figure 8: a) A face image acquired under white illumination. b) The image in a) transformed so that

the scene is illuminated under CIE-A.

Figure 9: Images under di�erent scene illuminants.
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Figure 10: The 8 illuminant clusters associated with: a) all Munsell surface reectances b) the skin

surface reectances.
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Mode of Number Percentage

Classi�cation of Hits of Hits

All Pixels 26 65%

Skin Pixels 37 92.5%

Table 1: Illumination Classi�cation Results
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True Classi�cation Classi�cation

Illuminant using using

Class All Reectances Skin Reectances

1 6 1

2 2 2

3 3 3

3 2 3

4 2 4

5 6 5

6 1 1

6 6 6

7 7 7

8 8 8

8 8 8

8 8 8

Errors: 5 1

Table 2: Illumination Classi�cation Results
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Figure 1: A single surface viewed under two di�erent illuminations.
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Figure 2: The set of Munsell surfaces imaged by three sensors under the two illumi-

nants: tungsten (CIE-A) and typical daylight (CIE-C). a) For each illuminant, the set

of surfaces forms a cluster of points in the 3D sensor output space (marked + and Æ re-

spectively). A 2D projection of the sensor space is shown (the R and B camera sensors).

b) The Mahanalobis distance is computed between subsets of the cluster points shown

in a): Between the two clusters d=1.79 (middle). Between the 30% brightest points

of the two clusters d=5.57 (top). Between the 30% darkest points of the two clusters

d=1.41 (bottom). The means of the subsets are represented as + and Æ. The spread of

each subset is shown as an ellipse with width and length proportional to the covariance

matrix. Insets show the illuminants and the camera sensors.
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Figure 3: Two approaches to Illumination Classi�cation. a) Classic approach b) Image

content dependent approach.
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Apriori knowledge on the surface constrains the associated sensor output to originate

from a subset of cluster points, marked with an ellipse for each Illumination Cluster.
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Figure 5: a) Spectral reectance functions of Human Skin. b) Distribution of Munsell

surface reectances (Æ) vs skin surface reectances (+).
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Figure 6: The Mahanalobis distance between: a) Illumination Clusters associated with

all surface reectances. b) Illumination Clusters associated with the skin surfaces.
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Figure 7: Illumination Classi�cation - Simulation.

a) Four illuminants. b) The Illumination Clusters associated with all Munsell surface re-

ectances. c) The Illumination Clusters associated with the skin surface reectances.
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a. b.
Figure 8: a) A face image acquired under white illumination. b) The image in a)

transformed so that the scene is illuminated under CIE-A.
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Figure 9: Images under di�erent scene illuminants
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Figure 10: The 8 illuminant clusters associated with: a) all Munsell surface reectances

b) the skin surface reectances.
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