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Abstract—A novel approach to pattern matching is presented in which time complexity is reduced by two orders of magnitude

compared to traditional approaches. The suggested approach uses an efficient projection scheme which bounds the distance between

a pattern and an image window using very few operations on average. The projection framework is combined with a rejection scheme

which allows rapid rejection of image windows that are distant from the pattern. Experiments show that the approach is effective even

under very noisy conditions. The approach described here can also be used in classification schemes where the projection values

serve as input features that are informative and fast to extract.

Index Terms—Pattern matching, template matching, pattern detection, feature extraction, Walsh-Hadamard.
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1 INTRODUCTION

MANY applications in image processing and computer
vision require finding a particular pattern in an image.

This task is referred to as pattern matching and may appear in
various forms. Some applications require detection of a set of
patterns in a single image, for instance, when a pattern may
appear under various transformations or when several
distinct patterns are sought in the image. Other applications
require finding a particular pattern in several images. The
pattern is usually a 2D image fragment, much smaller than
the image. In video applications, a pattern may also take the
form of a 3D spatio-temporal fragment, representing a
collection of 2D patterns (see Fig. 1).

The pattern matching task can be regarded as a
degenerated classification problemwhere a nonpattern class
is to be distinguished from a single point in the pattern class
or where the probability distribution of the pattern class is
Gaussian [25]. Nevertheless, this task is required in other
applications beyond the scope of classification. In recently
popular patch-based texture synthesis methods [8], [22], a
massive search for specified patterns is applied for generat-
ing a new texture patch which is perceptually similar to an
example texture. Due to the high complexity and time
consuming requirements of this task, several approximated
search methods were suggested [22], [27]. In other studies,
pattern matching schemes are used in image denoising [39],
image sharpening and resolution enhancement [13], [2],
texture transfer [8], image compression [23], and image-
based rendering [11].

Finding a given pattern in an image is typically
performed by scanning the entire image and evaluating
the similarity between the pattern and a local 2D window

about each pixel. In this paper, we deal with Euclidean
distance; however, our scheme is applicable to any distance
measure that forms a norm. Although there are some
arguments against the Euclidean distance as a similarity
measure for images, it is still commonly used due to its
simplicity and its favorable computational complexity. For
a discussion on the Euclidean distance as a similarity
metric, see [14], [10], [33], [1].

Assume a 2D k� k pattern, P ðx; yÞ, is to be matched

within an image Iðx; yÞ of size n� n. For each pixel location

ðx; yÞ in the image, the following distance is calculated:

d2EðIx;y; P Þ ¼
Xk�1

fi;jg¼0

Iðxþ i; yþ jÞ � P ði; jÞð Þ2; ð1Þ

where Ixy denotes a local k� k window of I at coordinates

ðx; yÞ. The smaller the distance measure at a particular

location, the more similar the k� k local window is to the

pattern. If the distance is zero, the localwindow is identical to

the pattern. In practice, however, windows whose distance

are smaller than a predefined threshold are accepted as a

match (to compensate for noise, digitization errors, small

transformations, etc.). In principle, the distance should be

calculated for every location in the image, hence, it must be

applied n2 times with k2 multiplications and 2k2 additions at

each step. Fortunately, this naive approach can be expedited

using the FFT transform while exploiting the convolution

theorem. This reduces the calculations to 36 logn additions

and 24 logn multiplications for each pixel of the image.

Table 1 summarizes the number of operations for each

approach, including run times for search of different sized

patterns in a 1K � 1K image. Note that, in the naive

approach, the operations may be calculated in integers,

while, for the Fourier approach, calculations must be

performed in float. Despite this, the Fourier approach is

faster and, as the pattern size increases, the advantage of the

Fourier approach becomes even more prominent. However,

as can be seen, even using the Fourier approach, actual

runtimes are still far from real time application requirements.
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In this paper, we present a novel approach which
reduces run-times by almost two orders of magnitude, as
shown in Table 1. The approach is based on a projection
scheme where lower bounds on the distance between a
pattern and image windows are obtained using projections
onto a set of kernels. The projection framework is combined
with a rejection scheme which discards those windows
whose distance bounds indicate that they do not match the
pattern. A central point of this paper lies in the fact that a set
of projection kernels are chosen such that they can be
applied very fast. Therefore, tight lower bounds can be
produced with very few operations, which, in turn, enable
very fast rejection of a large portion of the image. The
method was initially introduced in [17]. We expand this
idea here, as well as introduce intensive experimental
results and insights on the scheme.

The rejection approach has already been introduced (e.g.,
[31], [32]). It has been shown to be very effective in many
applications, such as motion estimation, motion tracking,
texture synthesis, classification, and more (e.g., [5], [26], [18],
[3], [12], [38], [41]).

The projection approach coupled with rejection has been
widely studied, especially in the context of classification.
Such approaches aim to increase classification efficiency by
choosing projection kernels that are optimal with respect to

discrimination abilities [9], [3], [6], [19]. In this paper, a
different scheme is suggested in which efficiency is
achieved by choosing specific projection kernels that are
very fast to apply. Thus, although more projections might
be needed, the overall performance is enhanced. One major
contribution of this paper is the novel method in which very
fast projections can be performed.

The idea of choosing projection kernels that are fast to
apply was also suggested by [38], [28] in the context of
classification. In [38], Viola and Jones use a set of projection
kernels to produce a feature set for a classification system.
The kernels are chosen such that they can be applied very
rapidly using the integral image scheme [7]. This process is
combined with a rejection phase where nonrelevant
windows can be classified as such very efficiently. Viola
and Jones’s scheme is similar in spirit to the method
suggested in this paper, however, in this work, we do not
necessarily deal with classification problems but with a
more general block matching approach. Classification
techniques are impractical when many different patterns
are sought or when the sought pattern is given online, e.g.,
in the cases of patch-based texture synthesis, block
matching in motion estimation, etc. Additionally, the
number of operations required to generate a projection
kernel from an integral image is proportional to the order of
sequency in the generated kernel (the number of sign
changes along rows and columns of the projection kernel).
Thus, taking into account a limited number of operations,
the generated projection kernels are restricted to those with
low sequency order. In some classification problems,
however, such kernels can produce poor results as they
may form noninformative feature inputs. In our method,
this behavior is avoided since the projection kernels form a
complete representation and include both low and high
sequency kernels at various scales.

2 BOUNDING THE EUCLIDEAN DISTANCE USING

PROJECTIONS

Assume a k� k pattern is to be matched against a similarly
sized window at a particular location in a given image.
Referring to the patternp and thewindoww as vectors in<k2 ,
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Fig. 1. Pattern matching in 2D and in 3D: For each pixel location, a local neighborhood is compared with the given pattern.

TABLE 1
A Comparison between Existing Pattern Matching

Approaches and the Proposed Approach



d ¼ p�w is the difference vector between p and w. Then,
the Euclidean distance can be rewritten in vectorial form:

dEðp;wÞ ¼ kdk ¼
ffiffiffiffiffiffiffiffiffi
dTd

p
: ð2Þ

Now, assume that p andw are not given, but only the values
of their projection onto a particular vector u (Fig. 2). Let

b ¼ uTd ¼ uTp� uTw

be the projected distance value. Since the Euclidean
distance is a norm, it follows from the Cauchy-Schwartz
inequality that a lower bound on the actual Euclidean
distance can be inferred from the projection values (see
Appendix A):

d2Eðp;wÞ � b2=kuk2: ð3Þ

If a collection of projection vectors are given u1 . . .um along
with the corresponding projected distance values bi ¼ uT

i d,
the lower bound on the distance can then be tightened (see
Appendix B):

d2Eðp;wÞ � bT ðUTUÞ�1b; ð4Þ
where

U ¼ ½u1 . . .um� and b ¼ ðb1 . . . bmÞT so that UTd ¼ b:

Note that, if the projection vectors are orthonormal, the lower
bound reduces to bTb. As the number of projection vectors
increases, the lower bound on the distance dEðp;wÞ becomes
tighter. In the extreme case when the rank ofU equals k2, the
lower bound reaches the actual Euclidean distance.

An iterative scheme for calculating the lower bound is
also possible; given an additional projection vector umþ1 and
projection value bmþ1, the previously computed lower bound
can be updated without recalculating the inverse of the
entire system ðUTUÞ�1. The iterative scheme is elaborated in
Appendix C.

At first thought, it is unclear why a projection scheme
should be used to calculate the distance between pattern p
and all image windows w, rather than computing the exact
Euclidean distance directly. The answer lies in the appro-
priate selection of projection vectors. A large number of
calculations can be spared if the vectors are chosen
according to the following two necessary requirements:

. The projection vectors should be highly probable of
being parallel to the vector d ¼ p�w.

. Projections of image windows onto the projection
vectors should be fast to compute.

The first requirement implies that, on average, the first
few projection vectors produce a tight lower bound on the

pattern-window distance. This, in turn, will allow rapid
rejection of image windows that are distant from the
pattern. The second requirement arises from the fact that
the projection calculations are performed many times for
each window of the image. Thus, the complexity of
calculating the projection plays an important role when
choosing the appropriate projection vectors.

There are various sets of projection vectors that satisfy
the above two requirements. We chose to demonstrate our
approach using the Walsh-Hadamard basis vectors. It will
be shown that these vectors capture a large portion of the
pattern-window distance with very few projections on
average. Additionally, a technique is presented here to
calculate the projection values very efficiently. In fact, the
presented technique is applicable to a large family of
kernels of which the Walsh-Hadamard is a special case [4].

3 THE WALSH-HADAMARD KERNELS

The Walsh-Hadamard transform has long been used for
image representation under numerous applications. The
elements of the (nonnormalized) basis vectors are orthogo-
nal and contain only binary values (�1). Thus, computation
of the transform requires only integer additions and
subtractions. The Walsh-Hadamard transform of an image
window of size k� k (with k a power of 2) is obtained by
projecting the window onto k2 Walsh-Hadamard basis
vectors [40], [34], [21], [36]. In our case, it is required to
project each k� k window of the n� n image onto the
vectors. This results in a highly overcomplete image
representation, with k2n2 projection values for the entire
image; hence, the distinction between the Walsh-Hadamard
transform of an image (producing n2 projection values) and
the Windowed Walsh-Hadamard transform.

The projection vectors associated with the 2D Walsh-
Hadamard transform of order k ¼ 8 are shown in Fig. 3.
Each basis vector is of size 8� 8, where white represents the
value þ1 and black represents the value �1. In Fig. 3, the
basis vectors are displayed in order of increasing sequency
(the number of sign changes along rows and columns of the
basis vector). A diadic ordering of these vectors is shown by
the overlayed arrows. This diadic ordering is induced by
the algorithm discussed below and, although not exactly
according to sequency, captures the increase in spatial
frequency. The ordering of the basis vectors plays an
important role with respect to the first requirement
mentioned above, namely, that a high proportion of the
window-pattern difference is captured by the first few
projection vectors [20] (see Section 11 for further discus-
sion). In terms of pattern matching, the expected lower
bounds on distances between window and pattern are
shown to be tight after very few projections. Fig. 4a displays
this behavior by plotting the lower bound as a percentage of
the total distance between image window and pattern
versus the number of projection vectors used. It can be seen
that the first 10 (of 256) projections capture over 70 percent
of the distance. For comparison, Fig. 4b shows the same
lower bound when using the standard basis for projection
(delta functions), i.e., when calculating the Euclidean
distance by accumulating squared differences of pixel
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Fig. 2. Projection of p�w onto projection vectors ui produces lower

bounds on the distance kdk ¼ kp�wk.



values. In this case, more than 180 projections were required
to capture 70 percent of the distance.

As discussed above, a critical requirement of the
projection vectors is the speed and efficiency of computa-
tion. An efficient method for calculating the projections of
all image windows onto a sequence of Walsh-Hadamard
vectors is introduced in the following section and is one of
the key points of the pattern matching scheme presented in
this paper.

4 THE PROJECTION SCHEME

We introduce a novel scheme for pattern matching based on
the projection of all image windows onto Walsh-Hadamard
basis vectors. The suggested scheme uses a tree structure to
implement these operations.

Consider first the 1D pattern matching case. Given a
signal vector of length n and a “pattern” vector of length k,
the goal is to find appearances of the pattern in the signal.
Toward this end, we project each window of the signal, of

length k, onto a set of 1D Walsh-Hadamard basis vectors.
These projections can be computed efficiently using the tree
scheme depicted in Fig. 5.

There are log2ðkÞ þ 1 levels in the tree. Every node in the
tree represents a vector of intermediate values used in the
computation. The root node represents the original signal
vector. The ith leaf represents a vector containing the
projection values of all signal windows onto the ith Walsh-
Hadamard basis vector. The values at each tree node are
computed from the values of the father node. The symbolsþ
and � represent the operations performed at a given tree
node. A symbol þ (�) on an edge connecting nodes at level i
and level iþ 1 denotes the computation performed on the
signal at level i in which, for each x, the value of entry xþ�
is added (subtracted) to entry x of the signal, where � ¼ 2i.
Thus, the two signals at level 1 are obtained by adding or
subtracting consecutive entries in the signal of level 0, which
is the original signal. The four signals at level 2 are obtained
by adding/subtracting entries at distance 2 in the signals at
level 1 and so on. Fig. 6 shows an example of computing the
Walsh-Hadamard tree for a 1D signal when the pattern and
window size is 4. Pseudocode for generating the Walsh-
Hadamard tree is given in Appendix D.

The sequence of þ=� along a tree branch determines the
projection vector onto which the image windows are
projected. For example, the first branch shown in the tree of
Fig. 5 calculates the DC component of each image window.
The operations þ=� along the tree branches were designed
to create projections onto Walsh-Hadamard vectors ordered
in increasing diadic sequency (as shown in Fig. 5).

Computations within the tree are typically performed by
descending from a node in the tree to its child. In the
following, we list various types of projections that may be
computed using the tree. The number of operations are
given as well.

. Projecting all windows onto a single projection
vector. This corresponds to evaluating all signal
values at a single leaf of the tree. This is performed
by descending the tree, top-down, from the root to
the appropriate leaf. At each level, all entries at that
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Fig. 3. The projection vectors of the Walsh-Hadamard transform of order
n ¼ 8 ordered with increasing spatial frequency. White represents the
value 1 and black represents the value �1. A diadic ordering of these
basis vectors is shown by the overlayed arrows.

Fig. 4. The lower bound on the distance between image window and pattern as a percentage of the total distance versus the number of projection
vectors used. The values displayed are averaged over 1,000 16� 16 pattern-window pairs chosen randomly from natural images. (a) Projections are
onto Walsh-Hadamard basis vectors. (b) Projections are onto the standard basis vectors (i.e., delta functions).



node are calculated. Note that, due to the tree
structure, every intermediate computation actually
serves many windows. Descending from a node in
the tree to its child requires a single operation per
window, thus, at most log2ðkÞ additions/subtrac-
tions per signal window per projection are required.

. Projecting all windows onto a set of consecutive
projection vectors. This corresponds to evaluating all
entries in a consecutive set of leaf nodes of the tree.
This extends the previously described type of
projection. However, in the top-down descent of
the tree, many nodes are common to several
branches. For example, the first two projection
vectors have log2ðkÞ nodes common to both branches.
Thus, given the branch associated with the computa-
tion of the first projection vector, only one additional
operation per entry is required for the second
projection vector. In general, when computing the
signal values at sequentially ordered leaf nodes, the
Walsh-Hadamard tree is traversed in preorder. The
projection of all windows onto the first l projection
vectors requires m operations per signal window,
where m is the number of nodes preceding the l leaf
in the preorder tree traversal. Thus, projecting all
windows onto all projection vectors requires only
2k� 2 operations per window, which is the number
of edges in the full tree. Note that this requires an

average of only two operations per window per
projection vector, independent of the window size!

. Projecting a single window onto a single projec-
tion vector. This corresponds to evaluating a single
entry in one of the leaves of the tree. To compute this
value, a single branch of the tree must be traversed
—the branch from the root to the leaf associated
with the projection vector. However, since not all
values of all the nodes in the branch are required for
computation, the projection is calculated more
efficiently by recursively ascending the tree bot-
tom-up, from the leaf to the root node, and
calculating only those entries that are missing yet
are required for the computation. To compute an
entry at level i, two entries are needed at level i� 1,
therefore, a total of at most k� 1 operations (addi-
tions/subtractions) are required for this projection.

5 USING THE PROJECTION SCHEME FOR PATTERN

MATCHING

The proposed pattern matching approach uses the Walsh-
Hadamard tree structure and follows the projection scheme
described above. As discussed in Section 2, a lower bound
on the distance between each window and the pattern can
be estimated from the projections. Thus, the complexity and
runtime of the pattern matching process can be significantly
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Fig. 5. The tree-scheme for computing projections of all windows of a 1D signal onto all Walsh-Hadamard kernels of order 8.

Fig. 6. An example of computing the Walsh-Hadamard tree for a 1D signal and windows of length 4.



reduced by rejecting windows with lower bounds exceed-
ing a given threshold value. Rejection of windows implies
that many signal values at the tree leaves need not be
computed.

In the pattern matching process, projections are per-
formed onto vectors in the order determined by sequen-
tially traversing the leaves. At all times, only a single branch
of the Walsh-hadamard tree is maintained. This branch
includes all nodes from the root to the current leaf. The
algorithm proceeds as follows:

PatternMatchingAlgorithm.
Assume the sought pattern p is projected (in a preproces-

sing stage) onto the set of k Walsh-Hadamard basis vectors

fuigki¼1, resulting in k values: p̂pi ¼ uT
i p.

1. The first branch of the tree is computed, obtaining
the projection of all signal windows fwxg of length k
onto the first Walsh-Hadamard projection vector u1:
ŵwx;1 ¼ uT

1wx (Fig. 7a).
2. This projection generates a lower bound on the true

distance between each window wx and the pattern
LB1ðxÞ ¼ ðŵwx;1 � p̂p1Þ2. All windows whose LB value
is greater than the given threshold are rejected.

3. Image windows that have not been rejected are
projected onto the second vector u2: ŵwx;2 ¼ uT

2wx.
This is performed by replacing the maintained tree-
branch associated with the first projection with the
branch associated with the second projection
(Fig. 7b). This produces updated lower bounds:
LB2ðxÞ ¼ LB1ðxÞ þ ðŵwx;2 � p̂p2Þ2.

4. Steps 2 and 3 are repeated similarly for subsequent
projection vectors for those windows that have not
been rejected.

5. The process terminates after all k kernels have been
processed or until the number of nonrejected image
windows reaches a predefined value.

During the matching process, it is possible to compute
the projection values in two manners. The top-down
approach calculates the projections of all windows. This
method is preferable in the initial stages, when the number
of rejected windows is small. However, at later stages, when
the number of rejected windows is sufficiently large, it is

preferable to compute the projection on individual win-
dows, i.e., in a bottom-up manner (see Section 4). In
practice, when only a very few windows remain, it is
preferable to calculate the Euclidean distance directly for
these windows. A rigorous analysis on the conditions for
transitioning between the different forms of projections can
be found in Section 10.

The complexity of the pattern matching process is
calculated as follows: Initially (Step 1), log2ðkÞ operations
per window are required to calculate the projection of all
windows onto the first projection vector.1 In the following
stages of the process (repeated Steps 2-3), every projection
requires only l operations per window, where l is the
number of nodes that differ between the current branch and
the previous branch of the tree. In practice, after very few
projections, most of the signal windows are rejected and the
bottom-up scheme is applied for the remaining windows.
The number of operations per window beyond the first
stage is shown experimentally to be negligible (Section 7).

The efficiency of computation is due to three main
factors:

1. Using the recursive structure of the Walsh-Hada-
mard Tree, calculations applied to one window are
exploited in neighboring windows.

2. Using the structure of the Walsh-Hadamard Tree,
calculations applied to one projection vector are
exploited in the subsequent vectors.

3. As discussed above, the first few Walsh-Hadamard
vectors capture a large portion of the distance
between pattern and window. Thus, in practice, after
a few projections, the lower-bound on the distance is
tight and enables most image windows to be rejected
from further consideration.

In terms of memory demand, the proposed scheme
requires more memory than the traditional approaches.
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Fig. 7. Pattern matching scheme using the Walsh-Hadamard tree of order 4. (a) The initial step computes the first branch of the image associated

with the first Walsh-Hadamard kernel (solid lines). (b) Computing the branch associated with the second kernel exploits the fact that several of the

branch nodes have already been computed.

1. Note that the projection of all image windows onto the first vector can
be performed directly using only two operations per window using a
sliding sum. However, in the approach suggested here, intermediate
computations are maintained that expedite computation of successive
projections. Additionally, these intermediate computations allow flexibility
and generalization of the process to other sets of projection kernels (see
Section 12).



Traditional approaches, performing in-signal computations,
require memory on the order of n (signal size). The
proposed approach maintains a branch of the Walsh-
Hadamard tree at all times, requiring memory of size
n log k. However, considering the fact that floating memory
is required for the naive approach and integer memory for
the new approach and considering the typical scenario
where k (pattern size) is relatively small compared to n

(signal size), we find that this increase in memory is
acceptable.

6 PATTERN MATCHING IN 2D

The pattern matching process described above for 1D signal
easily extends to 2D images (as well as to higher
dimensional data). Searching for a k� k pattern in a
2D image of size n� n, each window of the image is
projected onto a set of 2D Walsh-Hadamard kernels2 using
a Walsh-Hadamard tree. However, for the 2D case, the tree
depth is 2 log2ðkÞ rather than log2ðkÞ and there are k2 leaf
nodes. Fig. 8 depicts such a tree for the Walsh-Hadamard
transform of order 2� 2. Each node represents an
n� n image of intermediate values used in the computa-
tion. The root node represents the original n� n image. The
ith leaf node represents an n� n image containing the
projection values of all image windows onto the ith Walsh-
Hadamard kernel. The operations performed at a given tree
level are represented by the symbols along the edge. As in
the 1D case, the operations performed are additions and
subtractions of pixels at a distance � from each other,
however, in the 2D case, a distinction is made between
operations performed on the rows of the image and on the
columns of the image. This is designated by the arrows in
the symbols. Thus, the symbol þ# on an edge connecting
nodes at level i and level iþ 1 denotes the computation
performed on the image at level i in which, to every pixel
ðx; yÞ of the image, the value of pixel ðx; yþ�Þ is added,
where now� ¼ 2bi=2c. Descending from a node in the tree to
its child image requires a single operation per pixel, thus,

for every kernel, 2 log2ðkÞ operations (additions/subtrac-
tion) per pixel are required.

The order of projection kernels is crucial to the efficiency
of the matching process. The projection used in the tree
structure is that of diadically increasing frequency of the
kernels (as shown in Fig. 3). The order of kernels is
determined by the operations (þ or �) assigned to each
edge. The diadically increasing order is obtained following
the pseudocode given in Appendix D.

The Walsh-Hadamard tree can also be extended to deal
with higher dimensional data (e.g., for spatio-temporal
pattern matching in video sequences). The extension is
straightforward and computations can be performed in a
manner similar to the one and two-dimensional cases.

7 EXPERIMENTAL RESULTS

The proposed scheme was tested on real images and
patterns. The results show that the suggested approach
reduces run-time by almost two orders of magnitude
compared to the naive and FFT approaches.

To illustrate the performance of the suggested approach,
we ran extensive experiments of Pattern Matching. As an
example, Fig. 9 shows an original 256�256 image along
with a 16�16 pattern that is to be matched. Figs. 10a, 10b,
and 10c show the results of one run of the pattern matching
scheme. According to the suggested method, the projection
of all 65; 536 windows of the image onto the first Walsh-
Hadamard kernel were calculated and all windows with
projection values above a given threshold were rejected. In
this experiment, the threshold was set to 168. After the first
projection, only 602 candidate windows remained (Fig. 10a),
i.e., only 0:92 percent of the original windows. Following
the second projection, only eight candidate windows
remained (Fig. 10b) and, following the third projection, a
single window containing the sought pattern remained
(Fig. 10c).

The performance shown in this example is typical and is
attained over many such examples. Fig. 11a shows the
percentage of image windows remaining after each projec-
tion for images of size 256� 256 and patterns of size
16� 16. The results are the average over 1,000 image-
pattern pairs (100 images, 10 patterns each). Using these
results, an estimate of the average number of operations per
pixel can be calculated. Fig. 11b displays the accumulated
number of operations (additions/subtractions) versus the
number of projections. The average number of operations
per pixel for the whole process is 8:0085, which is slightly
over 2 log2ð16Þ, as expected (see Section 6).

Runtime comparison was performed between the naive
approach, the Fourier approach, and the suggested method
using a 1K � 1K image and patterns of size 16� 16,
32� 32, and 64� 64. The experiments were performed on a
PIII processor, 1.8 GHz. The average number of operations
and run times are summarized in Table 1 in Section 1. It
can be seen that the suggested approach is advantageous
over the traditional approaches, especially for small pattern
size. For larger pattern sizes, runtime increases, but still
maintains a speed up of orders of magnitude over the
two other methods.
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Fig. 8. The tree-scheme for computing projections of all 2D image
windows onto all 2� 2 Walsh-Hadamard kernels.

2. The notion “kernels” in 2D replaces the notion “vectors” in 1D.



8 ADDITIONAL ADVANTAGES

8.1 Varying Illumination

The Walsh-Hadamard tree has the additional advantage
that it easily enables pattern matching that disregards the
DC values. This can be used to compensate for illumination
variations. The DC value of all windows is given by their
projection onto the first Walsh-Hadamard kernel. In order to
perform DC invariant pattern matching, the first branch of
the Walsh-Hadamard tree may be skipped and the process
initialized by computing the projections onto the second
kernel. It is also possible to skip a number of tree branches if
low frequency content of the pattern is irrelevant to the
matching. The rest of the process continues as before. As an
example, in Fig. 12a, an illumination gradient was added to
an image. The illumination gradient produces a large
variance in the appearance of a pattern in the image

(Fig. 12c bottom). Using the original approach, the patterns
required a very high threshold for detection and resulted in
many false alarms as well. Performing DC invariant pattern
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Fig. 9. Inputs for the pattern matching example. (a) Original 256�
256 image. (b) 16� 16 pattern shown at large scale.

Fig. 10. Three steps in the pattern matching process. (a) Following the first projection, only 602 candidate windows remain (0:92 percent of the

windows). (b) Following the second projection, only eight candidate windows remain. (c) After the third projection, a single window remains,

corresponding to the correct pattern location.

Fig. 11. (a) Percentage of image windows remaining after each projection. (b) Number of accumulated operations (additions/subtractions) versus the

number of projections. The average number of operations per pixel is 8:0085, which is slightly over 2log2ð16Þ. Results are averaged over 1,000 image-

pattern pairs. Images were of size 256� 256 and patterns of size 16� 16.



matching, the pattern was detected using a very small
threshold and required 8:0445 operations per pixel.

8.2 Multiscale Pattern Matching

One of the characteristics of the Walsh-Hadamard tree is its
inherent recursive nature. The subtrees from root to any level
of the tree are themselvesWalsh-Hadamard trees for smaller
sized image windows. Within the Walsh-Hadamard tree
containing 2log2kþ 1 levels, developed for a window of size
k� k, the first 2log2k� 2 levels of the tree can be used to
match patterns of size k

2 � k
2 . Thus, the scheme presented in

this paper can easily allow multiscale pattern matching with
patterns scaled by powers of 2. This can be performed at
almost no extra cost since the appropriate Walsh-Hadamard
kernels for these scaled patterns are already given at the
intermediate tree nodes. As an example, consider the
recursive image of Fig. 13a. A pattern, shown in Fig. 13b, is
sought within the image at different scales: 32� 32, 16� 16,
and 8� 8. A single Walsh-Hadamard tree is calculated. The
leaves of the tree contain the projection values of all
32� 32 windows of the image. The nodes at level 8 contain
the projections of all 16� 16 image windows and level 6
contains the projection values of all 8� 8 windows. Multi-
scale matching is performed concurrently at all scales. Along
a singleWalsh-Hadamard tree branch, the nodes at levels 10,
8, and 6 are considered and separate lower bounds are
calculated accordingly. Note that, for every projection kernel
at scale 8� 8, four projection kernels at scale 16� 16 and
16 projections at scale 32� 32 can be treated. Fig. 14 shows
several steps in the multiscale matching process. Following
the first projection, 314, 486, and 1,079 windows remain
(0.48 percent, 0.74 percent, and 1.65 percent of all windows)
at scales 32� 32, 16� 16, and 8� 8, respectively. The
32� 32 patterns required four projections, while the 16�
16 and 8� 8 required three projections each, at the appro-
priate scale.

9 ROBUSTNESS

Performance of the pattern matching process, in terms of
false alarms and miss detection rates, is dictated by the

distance measure used, namely, the Euclidean distance. A

discussion of the merits of the Euclidean distance is outside

the scope of this paper, however, matching within a noisy

environment may affect performance in terms of runtime.

In the following, we show the runtime robustness of our

method under nonexact pattern matching.
Appearances of a pattern in an image may vary due to

noise, quantization, digitization, and transformation errors.

In the following experiment, various levels of Gaussian

noise were added to images. Figs. 15a and 15b show an

original image and it’s noisy version with Gaussian noise

level of variance 35. Figs. 15c and 15d show an example of

a pattern randomly selected from the original image and its

associated appearance within the noisy image. Under these

conditions, a higher threshold for rejection is required,

which implies that fewer image windows are rejected after

each projection and that the overall number of required

projections increases. Fig. 16a displays this behavior where

the percentage of image windows remaining after every

projection is shown for various noise levels ranging from 0

to 35. Values are averaged over 100 image-pattern pairs. To

simulate a realistic scenario, only “interesting” patterns
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Fig. 12. (a) Original 256� 256 image with illumination gradient. Pattern location is marked. (b) All nine patterns of varying illuminations were found.

Four projections were required, using 8:0445 operations per pixel. (c) The sought pattern (top) and examples of the pattern as appearing in the image

(bottom).

Fig. 13. (a)Original 256� 256 imagewithmultiscale patterns. (b) A pattern

to be sought within the image at scales: 32� 32, 16� 16, and 8� 8.



were chosen randomly in the image (windows that

responded strongly to the Harris Corner Detector [16]).

The matching process was terminated when less than

0:25 percent of the windows remained. The threshold used

was determined by the noise variance and was set to be

proportional to the noise level. As the noise level increases,

fewer windows are rejected after each projection, however,

the sharp decreasing profile for the various noise levels is

similar. Although the number of required projections

increases with noise level, efficiency of the pattern

matching process is maintained, as shown in Fig. 16b.

The figure shows the average number of operations per

pixel required at every noise level. As can be seen, in this

experimental scenario, there is an increase of 0:78 percent

in runtime for extremely noisy images, which is negligible.

This is due to the fact that, although more projections onto

kernels are required, these are performed on very few

windows.
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Fig. 14. Several steps in the multiscale pattern matching process. (a) Following the first projection, 314, 486, and 1,079 windows remain at scales

32� 32, 16� 16, and 8� 8, respectively. (b)-(f) The scaled patterns required four, three, and three projections at the appropriate scale, respectively,

however, a single Walsh-Hadamard tree was used and projection values for the various sized windows were found within common subtrees.

Fig. 15. (a) Original 256� 256 image. (b) Very noisy version of original with Gaussian noise of variance 35 (see text). (c) Example of pattern (scaled).

(d) The pattern as appearing in the noisy image (scaled).



10 COMPUTATIONAL ASPECTS

As described in Section 4, the pattern matching process

involves three possible methods for evaluating the distance

between image windows and pattern. The computational

advantage of each method depends on the number of

nonrejected windows remaining and on the position of the

current projection kernel within the Walsh-Hadamard Tree.

The first method is the direct distance calculation (DD),

which evaluates the distance between the pattern and a

given window using the naive Euclidean distance. This

method has the advantage that no further calculations are

required since the distance is computed exactly. The

DD approach is preferable when very few nonrejected

windows remain in the image.
At the other end of the scale is the top-down approach,

(TD) where a full branch of the Walsh-Hadamard tree is
explored from the root down to the current leaf. In practice,
the current branch needs to be explored only from a node
level that has not been explored during previous projection
calculations. The more levels that must be explored, the
more expensive this step. Since projection values are
calculated for all windows, this approach is preferable in

the earlier stages of the process, when a large portion of the
windows still remain to be matched. Fig. 17a shows the
computational time (on a PIII processor, 1.8 GHz) for the
DD and the TD approaches using a 1K � 1K image as a
function of the percentage of remaining windows. The time
required for TD is given for various number of tree levels
that must be explored. From the graph, it can be seen that,
in the early stages of the process, when the percentage of
remaining windows is greater than 4 percent, it is preferable
to use the TD approach and, in subsequent stages, it might
be preferable to use the DD approach, depending on the
number of levels that must be explored.

The third approach is the bottom-up method (BU), which
computes the distance between windows and a pattern by
exploring only the necessary values within the tree for each
nonrejected window. Using the BU method, the more
windows that must be evaluated, the more efficient the
computation becomes, since intermediate values are com-
mon to neighboring windows. Fig. 17b shows this behavior,
where average time per pixel rapidly decreases as the
percentage of remaining windows increases. Thus, the BU
method is advantageous at intermediate stages when a large
portion of the windows has already been rejected so that the
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Fig. 16. For the image in Fig. 15a at various noise levels: (a) The percentage of image windows remaining after each projection. (b) The number of

accumulated operations (additions/subtractions) versus the number of projections. The average number of operations per pixel at the highest noise

level is 8:0623. Data was collected over 100 pattern-image pairs.

Fig. 17. (a) The total computation time for the DD and the TD approaches versus the percentage of remaining windows. The time required for TD is

dependent on the number of tree levels that must be explored. (b) The average computation time per pixel for the BU approach versus the

percentage of remaining of windows.



TD approach is not beneficial and yet more than a few

windows still remain so that the DD approach is still

expensive. Fig. 18 shows this behavior for the case where

three levels of the branch must be explored. In this case, it is

preferable to apply the TD method when the remaining

percentage ofwindows is greater than 4 percent.When fewer

than 4 percent remain, the BU is superior. Such a comparison

can be designed for different number of levels. Table 2

summarizes these comparisons by stating which of the three

methods should be used for a different number of levels

when a 64� 64 pattern is sought in a 1K � 1K image. The

table depicts the percentage of remaining windows below

which amethod should be used (assumingTD is always used

initially with 100 percent of the windows). It is interesting to

note that, when traversal of a few levels is required (up to

four levels), it is preferable to use the TD method during the

early stages and the BU method at later stages. If more than
five levels are required, it is preferable to transfer directly
from TD to DD. Only when five levels are required is it
advantageous to use all three methods depending on the
percentage of remaining windows.

11 KERNEL ORDERING

The advantage of rejection schemes as described in this

paper relies strongly on the assumption that very few valid

hypotheses remain after very few rejection steps. In the

context of this paper, the projection kernels should have a

high probability of being parallel to the difference between

the pattern and image windows. This ensures that, after a

few projections, the lower bound is sufficiently tight. The

diadic ordering of kernels induced by the Walsh-Hadamard

tree determines the increase in spatial frequency. This

ordering of kernels is optimal when no a priori information

is given on the pattern or on the images in which the pattern

is sought. In this case, an inherent assumption is made that

the pattern and images originate from natural images. This

can be seen from the following derivations:

Let p and w be random variables representing a pattern

and image window. If no a priori information is given, these

variables are assumed to be associated with the probability

distribution of natural images. Let u be a projection kernel.

In the context of pattern matching, the optimal kernel to be

used is that which maximizes:

u ¼ argmaxuEfkuT ðp�wÞk2g
¼ argmaxuEfuT ðp�wÞðp�wÞTug;

ð5Þ

where E is the expectation value over the distribution of p
and w. The solution of (5) is the eigenvector associated with
the largest eigenvalue of the matrix M

M ¼ Efðp�wÞðp�wÞTg:

Since the distributions of p and w are independent, this can
easily be shown to equal:

M ¼Efðp� EfwgÞðp� EfwgÞTg
þ Efðw� EfwgÞðw�EfwgÞTg:

ð6Þ
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Fig. 18. (a) The total computation time for the TD, BU, and DD approaches versus the percentage of remaining windows when three levels of the

branch must be explored. (b) Scaled version around the origin.

TABLE 2
Pattern Matching Using Three Types of Distance

Computations (TD, BU, and DD—See Text)

The preferable method is dependent on the percentage of remaining
windows and on the number of tree levels that must be traversed to
complete the computation. The percentage of remaining windows below
which a method should be used is given for various numbers of levels
(assuming TD is used initially with 100 percent of the windows). The
values were determined experimentally for a 64� 64 pattern sought in a
1k� 1k image.



When probability distribution of natural images is

assumed for both p and w, then M equals twice the

covariance matrix of natural images. In this case, it is well-

known that the eigenvectors of M associated with decreas-

ing eigenvalues correspond to a sinusoidal basis ordered in

increasing frequency [30], [29]. In terms of the Walsh-

Hadamard kernels, this translates to the order of increasing

sequency which is known to be optimal for array compacti-

zation of natural images [20].

However, if p is a specific pattern known in advance or is

known to originate from a given probability distribution

(e.g., a texture image), the first term in (6) may differ from

the second term. Dependent on the distribution of p, the

eigenvalues of the first term may override those of the

second term and bring about a different optimal order of

the Walsh-Hadamard kernels. For example, consider the

image and “texture” pattern in Figs. 19a and 19b. When

searching for the “texture” pattern within the “natural”

image, one can show that the sequency order of projection

kernels does not perform well. Rather, an order that gives

priority to vertically oriented and midfrequency ranged

kernels is optimal in this case. This is shown in Fig. 19c,

where the percentage of remaining windows after each

projection is given for the sequency order and when using

the optimal order of kernels for this pattern-image pair.
Reordering of the projection kernels is possible with the

Walsh-Hadamard scheme by exchanging branches within
the tree. A more generalized approach to reordering
projection kernels and computing projections efficiently
can be found in [4]. A detailed discussion and analysis of
the ordering of kernels may be found there as well.

12 DISCUSSION AND CONCLUSION

This paper introduced a novel framework for pattern
matching based on an efficient projection scheme. The
proposed approach assumes the Euclidean distance is used
for measuring similarity between pattern and image. Under
this assumption, the suggested approach is advantageous
over the existing traditional approaches first and foremost
due to the reduction in time complexity of two orders of

magnitude. The efficiency due to the projection scheme is
further amplified by the fact that all computations of the
transform coefficients can be performed using integer
additions and subtractions.

The Walsh-Hadamard tree structure used in this paper

provides additional advantages such as the ability to cope

with varying illumination. The scheme also easily allows

multiscale pattern matching, with patterns scaled by

powers of two. This can be performed at almost no extra

cost since the appropriate Walsh-Hadamard kernels for

these scaled patterns are already given at the intermediate

tree nodes. Extending this idea, intermediate nodes of the

tree can be exploited as they represent projection values

onto additional kernels. Optimizing search over all nodes of

the tree can be performed, a process similar to a Best Basis

search within Wavelet Packets [24].

The Walsh-Hadamard tree structure encompasses sev-

eral other transform including the Haar and other wavelet

packets. For example, the windowed Haar transform can be

applied by traversing the first branch of the tree along with

its immediate descendent nodes. In this paper, the Walsh-

Hadamard kernels were chosen since there is then no need

for normalization. This allows computations to remain as

integer operations. The Haar kernels would require a

different normalization factor for each kernel, requiring

noninteger operations and an additional operation per

pixel. However, the Haar kernels might be advantageous in

some cases as they can be evaluated more efficiently in the

bottom-up scheme (Section 10).
The technique explained in this paper was described in

the pattern matching context, however, we emphasize that
this is an example application. The method presented can
be used to efficiently extract features from images. These
can be directly used for classification applications, texture
analysis, and image retrieval applications. The method can
be further extended to deal with block-matching, where the
window most similar to a given pattern is sought (rather
than searching for all the matches—up to a given threshold).
This can be implemented by continuously updating the
threshold to equal the actual distance between the pattern
and the window with the lowest bound found so far. Thus,
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Fig. 19. (a) Original 256� 256 “natural” image. (b) “Texture” pattern (scaled). (c) Percentage of remaining windows after each projection for the

sequency order (dashed) and for the optimal order of kernels (solid).



applications such as texture synthesis and block matching

for motion estimation can take advantage of this technique.
Although the pattern matching approach described here

was presented for the Euclidean norm, extensions to other
norms are currently being developed. In principle, this can
be done by applying the equivalence relation between
norms such that the L2 norm forms a lower and upper
bound when multiplied by specific constants [15]. The
method has already been extended to deal with normalized
gray-scale correlation distance, which allows matching of
patterns of any size by spatial masking and allows linear
gray-scale deformations [37].

The proposed scheme requires more memory than the

naive approaches. Naive approaches perform convolutions

on the image, requiring the process to allocate and maintain

memory size on the order of n2 (the size of the image). The

proposed approach maintains a branch of the Walsh-

Hadamard tree at all times, requiring memory of size

2n2 log k. However, considering the fact that floatingmemory

is required for the naive approach and integer memory for

the newapproach and considering the typical scenariowhere

k, the pattern size, is relatively small compared to the image

size, we find that this increase in memory is acceptable. In a

concurrent study [4], we use a novel technique that requires a

memory size of only 2n2 and uses only two operations per

pixel in order to calculate all window projections onto a

kernel regardless of pattern (kernel) size and dimension. This

new technique also allows more flexibility in the possible

ordering of the projection kernels.
Finally, we emphasize that we do not aim at introducing

a new classification technique or distance measure, rather,
we assume a normed distance evaluation is used to
determine whether a window is similar to the given
pattern. Given that this distance measure is used, we
showed a method that improves runtime and efficiency
over other known techniques.

Software implementing the pattern matching scheme

presented here is available and can be downloaded from:

http://www.faculty.idc.ac.il/toky/Software/software.htm.

APPENDIX A

DISTANCE LOWER BOUND FOR A SINGLE

PROJECTION VECTOR

Lemma 1. Given three vectors in Rn, p, w, and u, the Euclidean

distance between p and w satisfies the following:

dEðp;wÞ � kuTp� uTwk=kuk: ð7Þ

Proof. Define d ¼ p�w. Using Cauchy-Schwartz inequal-

ity for norms, it follows that:

kuk kdk � kuTdk:

This implies:

dEðp;wÞ ¼ kp�wk ¼ kdk � kuT ðp�wÞk
kuk ¼ kuTp� uTwk

kuk :

ut

APPENDIX B

DISTANCE LOWER BOUND FOR A SET oF
PROJECTION VECTORS

Lemma 2. Given an unknown vector d in Rn which satisfies the

matrix equation:

UTd ¼ b; ð8Þ

where U ¼ u1 � � �um½ � and b ¼ ðb1 � � � bmÞT for some m � n.

The Euclidean norm of d is bounded from below by:

kdk2 � bT ðUTUÞ�1b:

Proof. Let the SVD decomposition of matrix U be:
U ¼ ASBT , where A and B are n�m and m�m
orthogonal matrices satisfying ATA ¼ BTB ¼ Im and S
is an m�m diagonal matrix. The minimum norm
solution for (8) is a vector d̂d satisfying [15]:

d̂d ¼ AS�1BTb:

This implies:

d̂dT d̂d ¼ bTBS�1ATAS�1BTb ¼ bTBS�2BTb:

Similarly, we have:

ðUTUÞ�1 ¼ ðBSATASBT Þ�1 ¼ ðBS2BT Þ�1 ¼ BS�2BT :

Since d̂d is the minimum norm solution, it follows that:

kdk2 � kd̂dk2 ¼ bTBS�2BTb ¼ bT ðUTUÞ�1b:

ut

APPENDIX C

ITERATIVE DISTANCE LOWER BOUND FOR A SET OF

PROJECTION VECTORS

The iterative scheme for calculating lower-bounds on the
Euclidean distance is based on a sequence of projections
onto vectors. At every step, a projection vector is applied to
each image window and updated distance lower-bounds
are calculated accordingly. The basic idea is to orthogona-
lize each projection vector in a manner similar to the
Grahm-Schmidt process [35] so that only directions that are
orthogonal to previously spanned directions are taken into
account.

Assume that a set of m orthonormal vectors u1 � � �umf g
have been applied so that

UT
md ¼ bm;

where Um ¼ u1 � � �um½ � and bm is composed of m projected

differences bi ¼ uT
i ðp�wÞ. Since the m projection vectors

are orthonormal, the distance lower bound after m projec-

tions can be calculated using (4):

LB2
mðp;wÞ ¼ bT

mðUT
mUmÞ�1bm ¼ bT

mbm:

Given a new projection vector v, along with its

associated projected distance vTd ¼ �, the component of v

in the null space of U is calculated:

HEL-OR AND HEL-OR: REAL-TIME PATTERN MATCHING USING PROJECTION KERNELS 1443



vN ¼ v�UmU
T
mv

so that UT
mvN ¼ 0. Dividing vN by its norm � ¼ kvNk yields

a normalized vector:

v̂vN ¼ vN

�
:

Projecting d onto v̂vN gives:

v̂vT
Nd ¼ 1

�
ðv�UmU

T
mvÞ

Td ¼ 1

�
ð�� vTUmbmÞ ¼: bmþ1:

Since v̂vN is also orthogonal toUm, we can update matrixUm

to be: Umþ1 ¼ Um v̂vN½ � and the vector bm to be bmþ1 ¼
½bT

m bmþ1�T . Using (4) again, an updated lower-bound is

calculated:

LB2
mþ1ðp;wÞ ¼ bT

mþ1ðUT
mþ1Umþ1Þ�1bmþ1 ¼ bT

mþ1bmþ1

¼ LB2
mðp;wÞ þ 1

�2
ð�� vTUmbmÞ2:

Note that the term vTUm is calculated only once at each

projection step.

APPENDIX D

PSEUDOCODE FOR GENERATING THE

WALSH-HADAMARD TREE

Following is pseudocode for generating the 1D Walsh-

Hadamard tree described in Section 4. For convenience,

nodes in the tree are indexed from 1 (root) to 2k� 1 along

tree levels (breadth first order). Levels in tree are indexed

from 0 (root) to log2k� 1, where k is the window length.

node(1) = <original signal>

for nodeNum = 2 to 2k-1

level = floor(log2(nodeNum))

delta = 2^ level

fatherNode = floor(nodeNum/2)

op = even(nodeNum) * even(fatherNode)

node(nodeNum) = node(fatherNode)

+ op * shift(node(fatherNode),delta)

end;

The function even returns þ1 for even numbers and �1 for

odd. To generate the 2D Walsh-Hadamard tree, replace

fatherNode with grandfatherNode:

grandfatherNode ¼ floorðnodeNum=4Þ:
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