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Abstract

Symmetry is treated as a continuous property and a Continuous Symmetry Measure (CSM)

of structures is de�ned. The CSM of a structure is de�ned to be the minimummean squared

distance required to move points of the original structure and change it to a symmetrical

structure. This general de�nition of a symmetrymeasure enables a comparison of the amount

of symmetry of di�erent shapes and the amount of di�erent symmetries of a single shape. We

describe a general method of obtaining the minimal distance to the desired shape and apply

it to any symmetry element or symmetry group in two or three dimensions. Various exam-

ples of the application of the CSM approach to structural chemistry are presented. These

include symmetry analysis of distorted tetrahedra and of rotating ethane, symmetry analysis

of contours of equi-property such as molecular orbital representations, reconstruction of in-

complete structural data and symmetry analysis of structures with uncertain point-location,

such as encountered in x-ray data analysis.



1 Introduction

A traditional working-tool in structural chemistry has been symmetry analysis. Symmetry

point groups and space groups have been used as reference con�gurations which either exist

or not in the structure under study. We have argued recently1;2 that this traditional approach

fails to capture the richness of shapes and structures, both static and dynamic, which is found

in the molecular and supramolecular domains. Most of these are not symmetric. At most

they are approximately symmetric, either permanently or if the time-resolution of observation

is su�ciently narrow. Consider, for instance, the very weak (�max � 200) forbidden � ! �
�

transition to the lowest-lying singlet in benzene (A1
g
! B

1
2u) and compare it with the carbon

skeleton of toluene: The D6h symmetry of the benzene hexagon changes to a distinctly

di�erent point group, C2v, yet the extinction coe�cient increases only to �max = 225. Current

wisdom of accounting for the discrepancy between the major symmetry change and the

small e�ect in the \allowedness" of the transition is to use such arguments that \the methyl

perturbs the � system only to a small extent", i.e., the day is saved by resorting to \local"

symmetry. Another example is the vibrating water molecule. This is a C2v molecule and its

�1 and �2 vibrational modes preserve this symmetry. But what about �3? This vibrational

mode distorts the C2v symmetry and again, a legitimate question is by how much does the

molecule deviate from C2v after 1% of one cycle, after 10% of it and so forth. Yet another

example is the well known phenomenon of removal of the degeneracy of energy levels of a

chemical species whenever contained in an environment of symmetry other than its own (a

certain arrangement of ligands or a certain packing in the crystal). The degree of removal of

degeneracy is directly linked to the \decrease" in the symmetry of the environment, compared

to the isolated chemical species. Traditionally, this problem is treated in terms of jumps in

the symmetry point group. For instance, the splitting of the degenerate p-orbitals increases

from a2u+ e
u
in a D4h environment to a1+ b1+ b2 in a C2v environment3. Our next example

is the principle of conservation of orbital symmetry which has caused a quantum leap in

the understanding of reaction pathways in organic chemistry. It su�ces to take one very

basic problem to illustrate our point: Consider two ethylenes approaching each other for a

[2+2] reaction. The answer to the question of whether that reaction is allowed thermally or

photochemically, or whether a suprafacial or antarafacial process will take place, or whether

the reaction will take place at all, is very much dependent on the symmetry of alignment of

the two reacting molecules or moieties. The extremes are D2h for a parallel approach and

C2 for an orthogonal approach, and it is predicted successfully4 that the former is needed

for a suprafacial photochemical formation of cyclobutane. Most of the time, however, the

two ethylenes are not in an ideal D2h arrangement: This may be due to an intramolecular

frozen conformation of the two double-bonds, to non-symmetric sterical hindrance caused

by substituents on the double bond, and to the dynamical nature of the system (rotations

and translations, especially in viscous media).

These are but few examples which illustrate the need for a continuous scale of symmetry. A

general approach answer this need was layed out in ref.s' 1,2. Here we summarize its main
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features, show how the above mentioned examples are approached and extend our theory of

continuous symmetry measures (CSM) to three new applications:

1. The CSM of (e.g. molecular orbital) contours.

2. The symmetry of occluded shapes, such that appear in microscopy studies of materials.

3. The CSM of points with uncertain locations, such as can be found in x-ray di�raction

analyses in molecular structure determinations.

Several previous studies were led by the need to relax the current strict language of symme-

try. Hargittai and Hargittai, emphasize repeatedly in their book5 the limitations of exact

symmetry in the description of many structural problems in chemistry. P.Murray-Rust et.

al.6 and more recently R. Cammi and E. Cavalli7, have suggested the use of symmetry

coordinates to describe nuclear con�gurations of MX4 molecules that can be regarded as

distorted versions of the T
d
symmetrical reference structure. P.G. Mezey and J. Maurani

8;9 extended the point symmetry concept for quasi-symmetric structures by using fuzzy-set

theory (terming it \syntopy" and \symmorphy") and provided a detailed demonstration of

its application for the case of the water molecule. In another recent study10, P.G. Mezey

used a resolution based similarity method of polycube �lling to measure approximate sym-

metry of molecular distributions. Other relevant contributions are perturbation analyses in

spectroscopy11, and measures on convex-sets12. As will be evident below, our approach to

the problem of non-ideal symmetry is quite di�erent, being guided by three principles:

1. Non-symmetric shapes should not be treated as a perturbation of an ideal reference.

Such shapes, as well as perfectly symmetric ones, should appear on a single continuous

scale with no built-in hierarchy of subjective ideality.

2. Assessing symmetry should be detached from referencing to a speci�c shape; yet the

shape of the nearest con�guration with the desired symetry, should be obtainable.

3. It should be possible to evaluate the symmetry of a given con�guration with respect

to any symmetry group, such as the closest one.

These guidelines are implemented as described in the following section.

2 A Continuous Symmetry Measure - De�nition

We de�ne the Continuous Symmetry Measure (CSM) as a quanti�er of the minimum

e�ort required to turn a given shape into a symmetric shape. This e�ort is measured by

the sum of the square distances each point is moved from its location in the original shape
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to its location in the symmetric shape. Note that no a priori symmetric reference shape is

assumed.

Denote by 
 the space of all shapes of a given dimension, where each shape P is represented

by a sequence of n points fP
i
gn�1
i=0 . We de�ne a metric d on this space as follows:

d : 
� 
! R

d(P;Q) = d(fP
i
g; fQ

i
g) = 1

n

n�1X
i=0

kP
i
�Q

i
k2

This metric de�nes a distance function between every two shapes in 
.

We de�ne the Symmetry Transform ST as the symmetric shape closest to P in terms of

the metric d.

The Continuous Symmetry Measure (CSM) of a shape is now de�ned as the distance

to the closest symmetric shape:

S = d(P; ST (P ))

The CSM of a shape P = fP
i
gn�1
i=0 is evaluated by �nding the symmetry transform P̂ of P

and computing: S = 1

n

�n�1

i=0 kPi � P̂
i
k2.

0P̂

1P̂
2P̂

P̂2

P’2

P’
0

P̂0

P̂1

P’
1

1P

0P

2P

0
P’

2P’

1
P’

transform
symmetry

S(C  ) = 12.803

normalize

a. b. c.

d.

Figure 1: Calculating the CSM of a shape:

a) Original shape fP0; P1; P2g. b) Normalized shape fP 0

0; P
0

1; P
0

2g, such that

maximum distance to the center of mass is one. c) Applying the symmetry

transform to obtain a symmetric shape fP̂0; P̂1; P̂2g. d) S(C3) =
1

3
(kP 0

0�P̂0k2+
kP 0

1
� P̂1k2 + kP 0

2
� P̂2k2). CSM values are multiplied by 100 for convenience

of handling.

This de�nition of the CSM implicitly implies invariance to rotation and translation. Nor-

malization of the original shape prior to the transformation additionally allows invariance
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to scale (Figure ??). We normalize by scaling the shape so that the maximum distance

between points on the contour and the centroid is a given constant (in this paper all ex-

amples are given following normalization to 1, however CSM values are multiplied by 100

for convenience of handling). The normalization presents an upper bound of on the mean

squared distance moved by points of the shape. Thus the CSM value is limited in range,

where CSM=0 for perfectly symmetric shapes (see Appendix ??).

S(   )= 0.66σS(C  ) = 1.872 S(C  ) = 1.643 S(C  ) =  2.536

Figure 2: Symmetry Transforms of a 2D polygon and corresponding CSM

values.

The general de�nition of the CSM enables evaluation of a given shape for di�erent types of

symmetries (mirror-symmetries, rotational symmetries and any other symmetry-groups - see

Section ??). Moreover, this generalization allows comparisons between the di�erent sym-

metry types, and expressions such as \a shape is more mirror-symmetric than rotationally-

symmetric of order two" is valid. An additional feature of the CSM is that we obtain the

symmetric shape which is `closest' to the given one, enabling visual evaluation of the CSM.

An example of a 2D polygon and it's symmetry transforms and CSM values are shown in

Figure ??.

In the next Section we describe a geometric algorithm for deriving the Symmetry Transform

of a shape. In Section ?? we deal with the initial step of representing a shape by a collection

of points.
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3 Evaluating the Symmetry Transform

In this Section we describe a geometric algorithm for deriving the Symmetry Transform of

a shape represented by a sequence of points fP
i
gn�1
i=0 . In practice we �nd the Symmetry

Transform of the shape with respect to a given point-symmetry group (see Appendix ?? for

a review of algebraic de�nitions). For simplicity and clarity of explanation, we describe the

method by following some examples. Mathematical proofs and derivations are detailed in

Section ??.

P0
^ P0

P1

P2

2π
33

2π

3
2π

^

^

^

P2
P1

P0 P0

P2

P1

d.a. b. c.

~

~

~

Figure 3: The C3-symmetry Transform of 3 points: a) original 3 points fP
i
g2
i=0.

b) Fold fP
i
g2
i=0 into f ~Pig2i=0. c) Average f ~Pig2i=0 obtaining P̂0 = 1

3

P
2

i=0
~P
i
. d)

Unfold the average point obtaining fP̂
i
g2
i=0

.

Following is a geometrical algorithm for deriving the symmetry transform of a shape P

having n points with respect to rotational symmetry of order n (C
n
-symmetry). This method

transforms P into a regular n-gon, keeping the centroid in place.

1. Fold the points fP
i
gn�1
i=0 (Fig. ??a) by rotating each point P

i
counterclockwise about

the centroid by 2�i=n radians (Fig. ??b).

2. Let P̂0 be the average of the points f ~Pign�1i=0 (Fig. ??c).

3. Unfold the points, obtaining the C
n
-symmetric points fP̂

i
gn�1
i=0 by duplicating P̂0 and

rotating clockwise about the centroid by 2�i=n radians (Fig. ??d).

A 2D shape P having qn points is represented as q sets fS
r
gq�1
r=0 of n interlaced points

S
r
= fP

rn+ign�1i=0 . The C
n
-symmetry transform of P is obtained by applying the above

algorithm to each set of n points separately, where the folding is performed about the centroid

of all the points (Fig. ??).
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Figure 4: Geometric description of the C3-symmetry transform for 6 points.

The centroid of the points is marked by �. a) The original points shown as

two sets of 3 points: S0 = fP0; P2; P4g and S1 = fP1; P3; P5g. b) The obtained
C3-symmetric con�guration.

The procedure for evaluating the symmetry transform for mirror-symmetry is similar: Given

a shape represented by m = 2q points and given an initial guess of the symmetry axis, we

apply the folding/unfolding method as follows (see Figure ??):

1. for every pair of points fP0; P1g:

(a) fold - by re
ecting across the mirror symmetry axis obtaining f ~P0; ~P1g.
(b) average - obtaining a single averaged point P̂0.

(c) unfold - by re
ecting back across the mirror symmetry axis obtaining fP̂0; P̂1g.

2. minimize over all possible axis of mirror-symmetry.

The minimization performed in step 2 is, in practice, replaced by an analytic solution (deriva-

tion and proof can be found in Appendix ??).

This method extends to any �nite point-symmetry group in any dimension, where the

folding and unfolding are performed by applying the group elements about the center of

symmetry (see derivations in Section ??). The minimization is over all orientations of the

symmetry group. In 2D the minimization is performed analytically, in 3D a minimization

process is used. A detailed description of the extension to 3D and to any symmetry-group

appeared in Ref.2 and two illustrative examples are given in Section ??.

We brie
y mention the case where the number of points m is less than n i.e. less than the

number of elements in the symmetry-group G with respect to which we measure symmetry.

In this case m should be a factor of n such that there exists a subgroup H of G with n=m

elements. In this case, we duplicate each point n=m times and fold/unfold the points with

elements of a left coset of G with respect to H. Following the folding/unfolding method, the

relocated points will align on symmetry elements of G (on a re
ection plane or on a rotation

axis for example). Further details of this case and proof can be found in Ref.2.
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P0

^
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1
mirror axis
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P
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θ
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c.a.

1
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1P
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P0
=

P
~

~
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Figure 5: The mirror-symmetry transform of a single mirror 2-association for

angle �: a) mirror-fold the 2-association fP0; P1g obtaining f ~P0; ~P1g. b) The
transformed-P0 denoted P̂0 is the average of ~P0 and ~P1. c) The transformed-P1
denoted P̂1 is P̂0 re
ected about the symmetry axis. Center of mass of the

shape is assumed to be at the origin.

4 Proof of the Folding Method

As described in Section ??, the CSM of a set of points with respect to a given symmetry

group G, is evaluated by �rst �nding the set of points which is G-symmetric and which is

closest to the given set in terms of the average distance squared. We must thus prove that

the folding method indeed �nds the closest symmetric set of points.

The group-theory de�nitions which are used in this section, are brie
y reviewed in Ap-

pendix ??.

Given a �nite point-symmetry group G centered at the origin and an ordering of its m

elements fg1 = I; : : : ; g
m
g and given m general points P1; : : : ; Pm, �nd m points P̂1; : : : ; P̂m

and �nd a rotation matrix R and translation vector w such that P̂1; : : : ; P̂m form an ordered

orbit under G0 (where G0 is the symmetry group G rotated by R and translated by w) and

bring the following expression to a minimum:
mX
j=1

kP
j
� P̂

j
k2 (1)

Since G has a �xed point at the origin and G
0 has the centroid of orbit P̂

i
as a �xed point

(see Lemma ?? in Appendix ??) we have that w is the centroid of orbit P̂
i
:

w =
1

m

mX
i=1

P̂
i

(2)

(Note that in the cases where the �xed points of G form an axis or plane, w can be any

vector moving the origin to the (rotated) axis or plane passing through the centroid of orbit

P̂
i
. Thus also in these cases w can be considered the centroid of orbit P̂

i
).

The points P̂1; : : : ; P̂m form an orbit of G0, thus the following must be satis�ed:

P̂
i
= g

0

i
P̂1 = R

t

g
i
R(P̂1 � w) + w i = 1 : : :m (3)
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where g0
i
is the matrix representation of the ith symmetry element of G0 and is equal to the

ith symmetry element g
i
of G rotated by R and translated by w.

Using Lagrange multipliers with Eq.s ??-?? we must minimize the following:

mX
j=1

kP
j
� P̂

j
k2 +

mX
j=1

�
t

j
(P̂

j
�R

t

g
j
R(P̂1 � w) + w) + "(w � 1

m

mX
j=1

P̂
j
)

where "; �
j
for j = 1 : : :m are the Lagrange multipliers.

Equating the derivatives to zero we obtain:

mX
j=1

(P
j
� P̂

j
) = 0 (4)

and using the last constraint (Eq. ??) we obtain:

w =
1

m

mX
j=1

P
j

(5)

i.e. the centroid of P1; : : : ; Pm coincides with the centroid of P̂1; : : : ; P̂m (in terms of the

symmetry measure de�ned in Section ??, the centroid of a con�guration and the centroid of

the closest symmetric con�guration is the same for any point symmetry group G).

Noting that g0
j
are isometries and distance preserving, we have from the derivatives:

mX
j=1

g
0

j

t

(P
j
� P̂

j
) =

mX
j=1

R
t

g
t

j
R(P

j
� P̂

j
) = 0

Expanding using the constraints we obtain:

mP̂0 =
mX
j=1

R
t

g
t

j
RP

j
�

mX
j=1

R
t

g
t

j
Rw

or

P̂1 � w =
1

m

mX
j=1

R
t

g
t

j
R(P

j
� w) (6)

The geometric interpretation of Eq. ?? is the folding method as described in Section ??,

thus proving that the folding method results in the G-symmetric set of points closest to the

given set.

Given n = qm points (i.e. q sets of m points) fP i

1
; : : : ; P

i

m
g i = 1 : : : q we obtain the result

given in Eq. ?? for each set of m points separately, i.e. for i = 1 : : : q:
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P̂
i

1 � w =
1

m

mX
j=1

R
t

g
t

j
R(P i

j
� w) (7)

where w = 1

n

P
q

i=1

P
m

j=1 P
i

j
is the centroid of all n points. The geometric interpretation

of Eq. ?? is the folding method as described in Section ?? for m = qn points.

5 Examples of Measuring Symmetry in 3D: Tetra-

hedricity and Rotating Ethane

5.1 Tetrahedricity of Phosphates

We return now to the general question: given any number of vertices in space, what is its

symmetry measure with respect to any symmetry group, subgroup or class. As explained in

the previous section, the generalized approach is to divide the given points into sets and to

apply the folding/unfolding method separately on each set, while evaluating the CSM value

over all the given points. For example, let us analyze the tetrahedricity of a tetrahedron

with a branched connected set of 5 points P1 : : : P5 as shown in Figure ??a, which models a

tetrahedron with a central atom and apply the CSM folding/unfolding method to evaluate

its T
d
symmetry. The connectivity constrains the division of points into sets (Part 4; in

preparation) and restricts the center point (P5) to be a one-point set. We thus divide the

points into 2 sets: fP1 : : : P4g and fP5g. The closest symmetric con�guration will have point

P5 relocated to a position where all 24 of the T
d
-symmetry group elements leave it in place.

The only such position is at the origin (centroid of the con�guration marked as an open

circle in Figure ??) where all symmetry planes and axes intersect. Points P1 : : : P4 will be

relocated to form a perfect T
d
-symmetric con�guration of four points, i.e. each point will lie

on a C3-rotation axis (see Fig. ??b). S(T
d
) (or any S(G)) is then calculated by considering

the full set of P̂1 : : : P̂5.

To illustrate it, we now analyze the distorted phosphate tetrahedron Cd2P2O7
6 using our

method. We �rst recall that our method evaluates the distance from tetrahedricity and not

from a speci�c tetrahedron; and that rather than reporting the deviation in terms of a table

of many coordinates (as done in reference 6), we provide a single (S(T
d
)) value. To obtain

it, the 3D position coordinates of the four oxygens and phosphorus were taken from ref.13

(also used by B�urgi et. al., p. 1790 in their paper) as:

P1 = ( 0:0 0:0 1:645)

P2 = ( 0:0 1:518860 �0:347028)
P3 = ( �1:286385 �0:700083 �0:391603)
P4 = ( 1:179085 �0:755461 �0:372341)
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a. b.

Figure 6: A distorted tetrahedron with a central atom, analyzed as a con-

nected con�guration of 5 points. The open circle marks the centroid of the

con�guration; b) the closest T
d
-symmetric con�guration.

with an additional center point 0:0. By applying the folding method as described above,

the symmetry measure obtained in this example is S(T
d
) = 0:17 and the closest symmetric

shape is a regular tetrahedron with arm length 1.537�A. (By comparison, a set of 10 symmetry

displacement coordinates is used in ref. 6 to report the deviation of this tetrahedron from

ideality). In a further example Murray-Rust et. al. used the symmetry coordinates to

evaluate the threefold axes of 1-methyl-1-silabicycloheptane (Section 5 in ref. 6). They found

that the distorted SiC4 structure (Fig. 5 in ref. 6) is better described with the three-fold axis

passing through one vertex (point C1 in their notation) rather than through another (C2

in their notation). Using the CSM method with respect to C3v-symmetry we easily support

their conclusion as follows:

Given the coordinates:

P1 = C1 = ( 0:0 0:0 1:645)

P2 = C2 = ( 0:0 0:87461971 �0:48480962)
P3 = C3 = ( 0:75128605 �0:39338892 �0:52991926)
P4 = C4 = ( �0:75128605 �0:39338892 �0:52991926)

with Si at the origin, the S(C3v) of the con�guration was calculated by the method described

in Section ?? and found to be S(C3v) = 0:02 when the threefold axis passes through point

C1, compared to S(C3v) = 1:16 when the threefold axis is constrained to pass through point

C2. Using the folding method we can also measure the C3v-symmetry of the con�guration

with the constraint that three of the con�guration points are equatorial. In this case the S

value increases to 5.26, with the three-fold axes passing through point C2.

5.2 The Rotating Tetrahedra of Ethane1

1This section is also Erratum to Section 4.4 in ref. 2. We thank A. Cotton and Y. Pinto for drawing our

attention to an error.
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Figure 7: Modeling the C-C rotation in ethane.

a) Only the right hand tetrahedron moves; b) the cycle starts with the eclipsed

D3h rotamer; c) one of the six chiramers (see text); d) the D3d staggered

rotamer.

Another mechanism which strongly a�ects molecular symmetry is intramolecular rotation.

Consider, for instance, one of the most basic examples, namely, the rotation of the two

ethane tetrahedra around the C-C bond (Fig. ??a). Current wisdom allows an exceedingly

poor description of that process from the symmetry point of view: Ethane is D3d when

staggered (Fig. ??d), D3h when eclipsed (Fig. ??b) and D3 anywhere in between, including

the rotamer which is only 1� away from any of the extremes. Doesn't physical intuition

dictate that it is more natural to ask about that 1� rotamer, how much D3h or D3d it

contains? Or for that matter, how much D3h and D3d exists at any point in a full 360�

cycle? As has already become evident throughout this paper, the CSM method allows one

to select any symmetry group and follow its gradual changes along such a full 360� cycle of

rotation. We demonstrate it on two perfect tetrahedral structures connected along one of

the tetrahedral arms and rotating with respect to each other around the connecting arm. We

model this by stabilizing one of the tetrahedra and rotating the other, beginning the cycle

with the two tetrahedra perfectly aligned (eclipsed) and rotating the second tetrahedron

anti-clockwise. For simplicity in evaluating the S value, we considered only the tetrahedral

arms not invloved in the C-C bond. Fig. ?? displays the result where the S value is given as

a function of the cycle. (Fig. ??a shows a full 360� cycle and Fig. ??b shows a detail). The

following observations are made:

� The D3h pro�le of the rotation and the D3d pro�le are similar, but shifted from each

other by 60�. That is, there is as much D3d-ness in the eclipsed structure as there

is D3h-ness in the staggered structure. This is intuitive since the distance (rotation

or projection) from an �
� position to the 0� position (eclipsed) which determines the
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S(D3h) value, is equivalent to the distance (rotation or projection) from a 60� + �
�

position to the 60� position (staggered) and which determines the S(D3d) value.

� The maximal S(D3h) value is at the 60
� staggered rotamer which is the farthest away

from the perfect D3h eclipsed rotamer (0�, S(D3h) = 0). Three such maxima are

observed in a full cycle, corresponding to the three staggered rotamers. Similarly, the

maximal S(D3d) value is for the eclipsed rotamer at 0�, and again, there are three

maxima in a full cycle corresponding to the three eclipsed rotamers.

� Fig. ?? points to a rotamer (Fig. ??c) which is neither eclipsed nor staggered, but in

between, at 30� + n � 60�. We term these special chiral (!) rotamers at 30� + n � 60� -
chiramers (Fig. ??c). There are six of these in a full cycle, compared to three eclipsed

and three staggered (which are, of course, achiral). These six chiramers, which are at

the crossing of the continuous D3h and D3d pro�le lines, are also the six maxima of the

contuinuous C3v pro�le line. Note that the C3v line (which is equivalent to the �-line)

coincides with either the D3h line (0
�-30�, 90�-120�, : : :) or with the D3d line (30

�-90�,

150�-210�, : : :), whichever gives the lower S value. To understand this, we note that

C3v is a sub-group of both D3h and D3d and that in ethane, the nearest C3v object

at any point of the full cycle must be either of the two achiral rotamers. Thus, the

chiramer, is also the most chiral rotamer of ethane.

Finally, we wish to make a brief preliminary comment on what seems to us an important

application of our approach: Many thermodynamic and kinetic quantities vary cyclically

with internal rotations. A commonly presented quantity is the (repulsion) potential. It is

then interesting to see, how this property varies with the symmetry rather than with the

traditional torsion angle. The results for a model sinusoidal potential (Fig. ??a) are shown

in Fig. ??b. Let us �rst detail how the potential follows this new process coordinate: The

D3h potential line varies smoothly with S, starting at the eclipsed S = 0 value and dropping

to zero potential at the staggered S = 22:22 value, then it reverses and climbs back up to the

maximum potential completing 120� of the cycle. This drop and rise in potential along the

symmetry coordinate is repeated continuously, completing a full 360� cycle. The behaviour

of D3d is a mirror image, starting with the maximal potential at the eclipsed S = 22:22

value and dropping to zero potential at the staggered S = 0 value. The behaviour of C3v is

interesting: up to S = 5:95 it follows the D3h line, but then it continues to drop along the

D3d line back towards the S = 0 value (the line then climbs back up). Perhaps most notable

is that the lines of the two symmetry groups bifurcate at the 30�-chiramers. What does such

symmetry/potential bifurcation mean? In general, it may mean that for symmetry governed

processes, such a crossing point is where the process may select to proceed one way or the

other depending on which symmetry is prefered.
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Figure 8: D3h (|{), D3d

(- - - -) and C3v (- - - -) for rotating ethane. a) a full cycle b) a detail of one

third of the cycle.
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6 Point Selection for Representation of Contours

a b.

Figure 10: Dividing m selected points into interlaced sets: a) C
n
-symmetry -

one possibility. b) D
n
-symmetry - one of the m=2n possibilities

As symmetry has been de�ned on a sequence of points, representing a given shape by points

must precede the application of the symmetry transform. Thus, for the case of equi-property

contours, such as electronic orbital contours, one represents it as a string of equally spaced

points (as dense as one wishes) and then perform the CSM folding-unfolding procedure as

usual. As described in Section ??, when a multiple of n points are given (where n is the

number of elements in the symmetry group), the points must be divided into sets of n points.

In general, this problem is exponential. However when the points are cyclically connected or

ordered such as along a contour, the ordering of the points restricts the possible divisions into

sets. For example in 2D, points along the contour of a C
n
-symmetric shape form orbits which

are interlaced as shown in Figure ??a for C3-symmetry. Thus, given a set of m = nq ordered

points there is only one possible division of the points into q sets of n points - the q sets must

be interlaced (as was shown in Fig. ??). In the case of D
n
-symmetry the m = 2nq ordered

points, form q orbits which are interlaced and partially inverted as shown in Figure ??b for

D4-symmetry. Thus, given a set of m = 2nq ordered points there are m=2n = q possible

division of the points.

In Figure ?? we demonstrate the application of the contour CSM analysis on the lone-pair

orbital of a distorted water molecule (perhaps a frozen moment of a vibration, or a water

molecule in a matrix of amorphous ice, or a water molecule trapped in a micropore). The

ratio of length of the two O-H bonds is 0.9 (instead of 1.0) and the H-O-H angle is 104�.14

Two contours are shown, each of which has been represented as a string of about 200 points.

The CSM with respect to mirror symmetry was evaluated by the above mentioned m = nq

pairing. It is seen quantitatively (Fig. ??) that the distortive e�ects of the unequal bonds,

fades away from the inner to the outer contours.

17



σS(  ) = 0.116

σS(  ) = 0.213

b.a.

a.

b.

Figure 11: Two equi-amplitude contours of the wave function of the lone-pair

orbital of distorted water molecule are shown14;15. The two contours are spaced

by 0.05 Bohr�3=2, and the value of the outer one is 0.576 Bohr�3=2. S(�) values

are indicated in the �gure.
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7 Symmetry of Occluded Shapes

Here we address a problem which is commonly encountered in microscopy studies of particu-

late materials: Given a collection of similar objects, such that the individual shapes occlude

each other, how can the symmetry of these objects be extracted using methods of automated

image analysis. The method we apply to solve the problem is to evaluate the symmetry of

the occluded shapes, locate the center of symmetry and reconstruct the symmetric shape

most similar to the unoccluded original.

8
2π

Figure 12: Selection at equal angles: points are distributed along the contour

at regular angular intervals around the centroid.

As described in Section ??, a shape can be represented by points selected at equal distances

along the contour. Another method of representing a shape is by selecting points at regular

angular intervals (selection-by-angle) about a point (Fig. ??). Angular selection is usually

about the centroid of the shape. However, angular selection of points about a point other

than the centroid will give a di�erent symmetry measure value (Fig. ??). We de�ne the

center of symmetry of a shape as that point about which angular selection gives the

minimum symmetry measure value. When a symmetric shape is not occluded the center

of symmetry aligns with the centroid of the shape. However, the center of symmetry of

truncated or occluded objects does not align with its centroid but aligns with the (unknown)

centroid of the unoccluded shape. Thus the center of symmetry of a shape is robust under

truncation and occlusion.

To locate the center of symmetry, we use an iterative procedure of gradient descent that

converges from the centroid of an occluded shape to the center of symmetry. Denote by

center of selection, that point about which points are selected using angular selection. We

initialize the iterative process by setting the centroid as the center of selection. At each step

we compare the symmetry value of points angularly selected about the center of selection and

about points in its immediate neighborhood. That point about which angular selection gives

minimum symmetry value, is set to be the new center of selection. If center of selection does

not change the neighborhood size is decreased. The process is terminated when neighborhood

size reaches a prede�ned minimum size. The center of selection at the end of the process is

taken as the center of symmetry.
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Figure 13: The symmetry value obtained by angular selection about the center

of mass (marked by +) is greater than the symmetry value obtained by angular

selection about the center of symmetry (marked by �).

The closest symmetric shape obtained by angular selection about the center of symmetry

(Fig. ??c) is visually more similar to the original (Fig. ??a) than that obtained by angular

selection about the centroid of the occluded shape (Fig. ??b). We consider the former a

reconstruction of the unoccluded shape.

a. b. c.

Figure 14: a) Original occluded shape, its centroid (+) and its center of

symmetry(�). b,c) The closest C5-symmetric shapes following angular se-

lection about the centroid (b) and about the center of symmetry (c).

The process of reconstructing the occluded shape can be improved by altering the method

of evaluating the symmetry of a set of points. As described in Section ?? the symmetry

of a set of points is evaluated by folding, averaging and unfolding about the centroid of the

points. We alter the method as follows:

1. The folding and unfolding (steps 1 and 3) will be performed about the center of selection

rather than about the centroid of the points.

2. Rather than averaging the folded points (step 2), we apply a more robust clustering

method: we average over the folded points, drop the points furthest from the average

(this is justi�ed by noticing that such points are due to occlusion) and then reaverage

(see Figure ??).
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b.a. c. d.
Figure 15: Improving the averaging of folded points:

a) An occluded shape with points selected using angular selection about the

center of symmetry (marked as �). b) A single set (orbit) of the selected points

of a) is shown. c) folding the points about the centroid of the shape (marked

as +), points are clustered sparsely. d) folding the points about the center of

symmetry of the shape, points are clustered tightly. Eliminating the extremes

(the two furthest points) and averaging will result in smaller averaging error

and better reconstruction.

a. b. c.
Figure 16: Reconstruction of an occluded almost symmetric shape. The orig-

inal shape is shown as a dashed line. The reconstructed shape is shown as a

solid line.

a) The closest symmetric shape following angular selection about the centroid.

b) The closest symmetric shape following angular selection about the center of

symmetry. c) The closest symmetric shape following angular selection about

the centroid and altered symmetry evaluation (see text).

The improvement in reconstruction of an occluded shape is shown in Figure ??. This method

improves both the shape and the localization of the reconstruction.
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8 Symmetry of Points with Uncertain Locations

Information obtained from any analytical instrument has a certain degree of uncertainty. In

structural chemistry, the uncertainty may be in the location of the atoms, as obtained by,

e.g. di�raction methods, due to all known causes (crystal imperfections, thermal motion,

etc.)16. We address ourselves now, to this problem, again focusing on symmetry issues.

Quite often the data is given as a collection of probability distribution functions of point

locations. Given points with such uncertain locations, the following questions are of interest:

� What is the most probable symmetric shape represented by the data.

� What is the probability distribution of symmetry measure values for the given data.

8.1 The Most Probable Symmetric Shape

Figure ??a shows a con�guration of points whose locations are given by a normal distribution

function (marked as rectangles having width and length proportional to the standard devi-

ation). In this section we show a method of evaluating the most probable symmetric shape

closest to the data. For simplicity we derive the method with respect to rotational symmetry

of order n (C
n
-symmetry). The solution for mirror symmetry is similar (see Appendix ??).

Given n points in 2D whose positions are given as normal probability distributions:

Q
i
� N (P

i
;�

i
) i = 0 : : : n � 1, we �nd the C

n
-symmetric con�guration of points fP̂

i
gn�10

which is most probable.

Denote by ! the center of mass of P̂
i
: ! = 1

n

P
n�1

i=0 P̂i.

Having that fP̂
i
gn�10 are C

n
-symmetric, the following must be satis�ed:

P̂
i
= R

i
(P̂0 � !) + ! (8)

for i = 0 : : : n� 1 where R
i
is a matrix representing a rotation of 2�i=n radians.

Thus, given the measurements Q0; : : : ; Qn�1 we need to �nd the most probable P̂0 and !.

We �nd P̂0 and ! that maximize Prob(fPign�1i=0 j !; P̂0) under the symmetry constraints of

Eq. ??.

Considering the normal distribution we have:

n�1Y
i=0

k
i
exp(�1

2
(P̂

i
� P

i
)t��1

i
(P̂

i
� P

i
)
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where k
i
= 1

2
� j �

i
j1=2. Having log being a monotonic function, we maximize:

log
n�1Y
i=0

k
i
exp(�1

2
(P̂

i
� P

i
)t��1

i
(P̂

i
� P

i
)

Thus we need to �nd those parameters which maximize:

�1

2

n�1X
i=0

(P̂
i
� P

i
)t��1

i
(P̂

i
� P

i
)

under the symmetry constraint of Eq. ??.

Substituting Eq. ??, taking the derivative with respect to P̂0 and equating to zero we obtain:

(
n�1X
i=0

R
t

i
��1

i
R
i
)

| {z }
A

P̂0 +
n�1X
i=0

R
t

i
��1

i
(I �R

i
)

| {z }
B

! =
n�1X
i=0

R
t

i
��1

i
P
i

| {z }
E

(9)

Note that R0 = I where I is the identity matrix.

When the derivative with respect to ! is zero:

(
n�1X
i=0

(I �R
i
)t�

i
R
i
)

| {z }
C

P̂0 +
n�1X
i=0

(I �R
i
)t��1

i
(I �R

i
)

| {z }
D

! =
n�1X
i=0

(I �R
i
)t��1

i
P
i

| {z }
F

(10)

Notice that when all �
i
are equal (i.e. all points have the same uncertainty, which is equiva-

lent to the cases in the previous sections where point location is known with no uncertainty),

Eqs. ??-?? reduce to Eqs. ??-?? in Section ??.

Reformulating Eqs. ?? and ?? in matrix formation we obtain: 
A B

C D

!
| {z }

U

 
P̂0

!

!
| {z }

V

=

 
E

F

!
| {z }

Z

Noting that U is symmetric we solve by inversion V = U
�1
Z and obtain the parameters !

and P̂0, and obtain the most probable C
n
-symmetric con�guration, given the measurements

fQ
i
gn�1
i=0 .

Similar to the representation in Section ??, given m = qn measurements fQ
i
gm�1

i=0 , we con-

sider them as q sets of n interlaced measurements: fQ
iq+jgn�1i=0 for j = 0 : : : q � 1 (see

Figure ??). The derivations given above are applied to each set of n measurements sepa-

rately, inorder to obtain the most probable C
n
-symmetric set of points fP̂

i
gm�1

i=0 .

Thus the symmetry constraints that must be satis�ed are:

P̂
iq+j = R

i
(P̂

j
� !) + !
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Figure 17: A con�guration of 6 measurements represented as two interlaced

sets of three measurements. One set is marked by the solid lines and the other

set is marked by the dotted lines.

for j = 0 : : : q � 1 and i = 0 : : : n� 1 where, again, R
i
is a matrix representing a rotation

of 2�i=n radians and ! is the centeroid of all points fP̂
i
gm�1

i=0 .

As derived in Eq. ??, we obtain for j = 0 : : : q � 1:

(
n�1X
i=0

R
t

i
��1

iq+jRi
)

| {z }
Aj

P̂
j
+

n�1X
i=0

R
t

i
��1

iq+j(I �R
i
)

| {z }
Bj

! =
n�1X
i=0

R
t

i
��1

iq+jPiq+j| {z }
Ej

(11)

and equating to zero, the derivative with respect to !, we obtain, similar to Eq. ??:

q�1X
j=0

(
n�1X
i=0

(I �R
i
)t�

iq+jRi
)

| {z }
Cj

P̂
j
+

q�1X
j=0

n�1X
i=0

(I �R
i
)t��1

iq+j(I �R
i
)

| {z }
D

! =
q�1X
j=0

n�1X
i=0

(I �R
i
)t��1

iq+jPiq+j

| {z }
F

(12)

Reformulating Eqs. ?? and ?? in matrix formation we obtain:0
BBBBBBB@

A0 B0

A1 B1

. . .
...

A
q�1 Bq�1

C0 C1 � � � Cq�1 D

1
CCCCCCCA

| {z }
U

0
BBBBBBB@

P̂0

P̂1
...

P̂
q�1

!

1
CCCCCCCA

| {z }
V

=

0
BBBBBBB@

E0

E1

...

E
q�1

F

1
CCCCCCCA

| {z }
Z

Noting that U is symmetric we solve by inversion V = U
�1
Z and obtain the parameters !

and fP̂
j
gq�1
j=0, and obtain the most probable C

n
-symmetric con�guration, fP̂

j
gm�1

j=0 given the

measurements fQ
i
gm�1

i=0 .
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a. b. c. d. e.

Figure 18: a) A con�guration of 6 measurements given by a normal distribution

function (marked as rectangles having width and length proportional to the

standard deviation). The most probable symmetric shapes with respect to: b)

C2-symmetry. c) C3-symmetry. d) C6-symmetry. e) mirror-symmetry.

Several examples are shown in Figure ?? where for a given set of measurements (Figure ??a),

the most probable symmetric shapes are shown (Figure ??b-e for C2, C3, C6 and mirror

symmetry respectively)

a. b. c. d.

Figure 19: The most probable C2-symmetric shape for a set of measurements

after varying the probability distribution of the bottom measurement. Distri-

butions are normal distributions marked as rectangles having width and length

proportional to the standard deviation.

Figure ?? shows an example of varying the probability distribution of a measurement on the

resulting symmetric shape. Figure ??a shows the most probable C2-symmetric shape for the

set of measurements of Figure ??a. Figures ??b-d show the most probable C2-symmetric

shape after varying the distribution of the bottom measurement.
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8.2 The Probability Distribution of Symmetry Values

Here the question of interest is not the closest symmetric con�guration, but rather the

symmetry measure or the probability distribution of the symmetry measure values given the

probability distributions of the point locations.
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Figure 20: a) A con�guration of 6 measurements Q
i
. b) Each measurement

Q
i
was rotated 2�i=6 radians about the centroid (marked as '+') obtaining

measurement ~Q
i
.

Consider the con�guration of measurements in 2D given in Figure ??a. Each measurement

Q
i
is a normal probability distribution Q

i
� N (P

i
;�

i
). W.l.g. we assume the centroid of

the con�guration is at the origin. In order to evaluate the C
n
-symmetry distribution (in our

case n = 6) we rotate each measurementQ
i
by 2�i=n radians about the origin obtaining the

con�guration of measurements ~Q
i
as in Figure ??b.

Denote by X
i
the 2-dimensional random variable having a normal distribution equal to that

of measurement ~Q
i
i.e.

E(X
i
) = R

i
P
i

Cov(X
i
) = R

i
�
i
R
t

i

where R
i
denotes (as in Section ??) the rotation matrix of 2�i=n radians.

Denote by Y
i
the 2-dimensional random variable:

Y
i
= X

i
� 1

n

n�1X
j=0

X
j

in matrix notation: 0
BB@

Y0
...

Y
n�1

1
CCA

| {z }
Y

= A

0
BB@

X0

...

X
n�1

1
CCA

| {z }
X
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or Y = AX where Y and X are of dimension 2n and A is the 2n � 2n matrix:

A = 1

n

0
BBBBBB@

n� 1 0 �1 0 �1 � � �
0 n� 1 0 �1 0 � � �
�1 0

. . . 0 �1 � � �
. . .

. . .
� � � n� 1

1
CCCCCCA

And we have

E(X) =

0
BB@

E(X0)
...

E(X
n�1)

1
CCA Cov(X) =

0
BB@
Cov(X0)

. . .

Cov(X
n�1)

1
CCA

E(Y) = AE(X) Cov(Y) = ACov(X)At

The matrix ACov(X)At, being symmetric and positive de�nite, we �nd the 2n � 2n matrix

S diagonalizing Cov(Y) i.e.

SACov(X)At

S
t = D

where D is a diagonal matrix (of rank 2(n � 1)).

Denote by Z = (Z0; : : : ; Zn�1)
t the 2n-dimensional random variable SAX.

E(Z) = SAE(X)

Cov(Z) = SACov(X)At

S
t = D

Thus the random variables Z
i
that composeZ are independent and, being linear combinations

of X
i
, they are of normal distribution.

The symmetry measure, as de�ned in Section ??, is equivalent, in the current notations, to

s = YtY. Having S orthonormal we have

s = (SAX)tSAX = ZtZ

If Z were a random variable of standard normal distribution, we would have s being of a

�
2 distribution of order 2(n � 1). In the general case Z

i
are normally distributed but not

standard and Z cannot be standardized globally. We approximate the distribution of s as a

normal distribution with

E(s) = E(Z)tE(Z) + traceDt

D

Cov(s) = 2trace(Dt

D)(Dt

D) + 4E(Z)tDt

DE(Z)

In Figure ??e we display distributions of the symmetrymeasure as obtained for the examples

in Figure ??a-d.

Application of the method described here to thermal ellipsoids in x-ray analysis, is in

progress.
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Figure 21: a-d) Some examples of con�gurations of measurements. e) Proba-

bility distribution of symmetry values (with respect to C6-symmetry) for the

con�gurations a-d.
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Appendices

A The Bounds of S values

Following the de�nition of the CSM in Section ??, the CSM values are limited to the range

0 : : : 1 (where 1 is the normalization scale). The lower bound of the CSM is obvious from the

fact that the average of the square of the distances moved by the object points, is necessarily

non-negative. The upper bound of the average is limited to 1 since the object is previously

normalized to maximum distance of 1 and by translation of all vertex points to the center

of mass, a symmetric shape is obtained.

The upper bound on the CSM can be tightened for speci�c cases. For instance in 2D one

can show that the maximum S' value for a triangle, with respect to C3 is 1/3: Consider the

3 vertices of a normalized triangle P1; P2; P3 in 2D (the centroid is at the origin). W.l.g. as-

sume P1 = (0; 1) and that P2 has a positive x-coordinate and denote by (x; y) the coordinates

of P2. Given the constraint that the centroid is at the origin, one has P3 = (�x;�1 � y).

In fact P2 is limited to a circle sector due to the centroid constraint and the normalization

constraint (limiting all P
i
's to be in the unit circle). Given these notations, we have that the

S
0 value of the triangle with respect to C3-symmetry, is given by:

1

3
(1 + y

2 + y �
p
3x+ x

2)

Considering the limited range of the P2 coordinates, the maximum value is obtained when

P2 = (0; 0) or P2 = (0;�1) (which are equivalent cases) and the maximumCSM value is 1/3.

The maximum CSM value is actually obtained for extreme cases such as a polygon of m

vertices (m = qn) whose contour outlines a regular q-gon (i.e. every q-th vertex of the

m-gon coincides with a vertex of a regular q-gon). For details, see Appendix in Part I1.

B Orbits

We �rst review some basic de�nitions required for our proofs and derivations.

The orbit of x under a group G is the set fgx j g 2 Gg.
x and y belong to the same orbit if y = gx for some g 2 G.

Given a �nite group G and given an ordering of its elements: g1; g2; : : : ; gm, the orbit

under G of a point x in Euclidean space is x1; : : : ; xm such that x
i
= g

i
x for i = 1 : : : m. If
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g1 = e (the identity element of G) then x
i
= g

i
x1 i = 1 : : :m.

Lemma 1 The centroid of an orbit of �nite point-symmetry group G is invariant under G.

A point x 2 X is a general point (or is in general position) with respect to G if for all

g 2 G; g 6= e (where e is the identity in G) we have gx 6= x.

Lemma 2 If x is a general point with respect to G then all points in the orbit of x are

general points. Furthermore for g1; g2 2 G g1 6= g2 ) g1x 6= g2x.

Thus if x is a general point its orbit contains N(G) di�erent points (N(G) is the number of

elements in group G).

Lemma 3 If the orbit of x has a point in common with the orbit of y under G, then the two

orbits are equal.

For any x 2 X the group G
x = fg 2 G j gx = xg is called the isotropy subgroup of G at

x and it contains all elements of group G that leave x invariant. If x is a general point, its

isotropy subgroup contains a single element of G - the identity i.e. Gx = feg.

Lemma 4 If G is �nite, the number of di�erent points in the orbit containing x is N(G)=N(Gx).

(proof is immediate from the 1-1 relationship between points in the orbit of x and the left

cosets of Gx . Each left coset of Gx consists of all elements of G that map x to a speci�c

point y).

C Finding the Optimal Orientation in 2D

Following the derivation in Section ?? we derive, here, an analytic solution to �nding the

orientation (rotation matrix R) which minimizes Eq. ?? under the constraints given in

Eq.s ??-??. In Part I1 (Appendix A.2) we gave the derivation for the speci�c case of the D1

group having the two elements: fE; �g.
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In 2D there are 2 classes of point symmetry groups: the class C
n
having rotational symmetry

of order n and the class D
n
having rotational symmetry of order n and n re
ection axes. The

problem of �nding the minimizing orientation is irrelevant for the C
n
symmetry groups and

R is usually taken as I (the identity matrix). We derive here a solution for the orientation

in the case where G is a D
n
symmetry group.

The 2n elements of theD
n
-symmetry group (g1; : : : ; g2n) are the n elementsE;C1

n
; C

2
n
; : : : ; C

n�1
n

(g1; : : : ; gn respectively) and the n elements obtained by applying a re
ection � on each of

these elements: �; �C1
n
; �C

2
n
; : : : ; �C

n�1
n

(g
n+1; : : : ; g2n respectively). We denote the orienta-

tion of the symmetry group as the angle � between the re
ection axis and the y axis. Thus

R =

 
cos � sin �

� sin � cos �

!

W.l.g. we assume the centroid (w) is at the origin. The matrix representation of the

rotational elements of D
n
is then g0

i
= R

t

g
i
R = g

i
for i = 1 : : : n. The matrix representation

of the operation � is given by:

R
f
= R

t

g
n+1R =

 
cos � � sin �

sin � cos �

! 
�1 0
0 1

! 
cos � sin �

� sin � cos �

!
=

 
� cos 2� � sin 2�

� sin 2� cos 2�

!

and g
0

i
= R

f
g
i�n for i = n+ 1 : : : 2n. Thus from Section ?? we must minimize the following

over �:

2nX
j=1

kP
j
� P̂1k2 =

2nX
j=1

kg0
j

t

P
j
� P̂1k2

=
2nX
j=1

kg0
j

t

P
j
� 1

2n

2nX
i=1

g
0

j

t

P
j
k2

=
2nX
j=1

k
nX
i=1

g
t

i
P
i
+

2nX
i=n+1

R
f
g
t

i
P
i
� 2ng0

j

t

P
j
k2 (13)

Denoting by x
i
; y

i
the coordinates of the point g0

i

t

P
i
and taking the derivative of Eq. ?? with

respect to � we obtain:

tan 2� =

P
n

i=1

P
2n

j=n+1(xiyj + x
j
y
i
)P

n

i=1

P
2n

j=n+1(xixj � y
i
y
j
)

(14)

which is an analytic solution for the 2D case of orientation. However in higher dimensions a

minimization procedure is used.
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D The Most Probable Mirror Symmetric Shape

In Section ?? we described a method for �nding the most probable rotationaly symmetric

shape given measurements of point location. The solution for mirror symmetry is similar. In

this case, given m measurements (where m = 2q), the unknown parameters are fP̂
j
gq�1
j=0; !

and � where � is the angle of the re
ection axis. However these parameters are redundant

and we reduce the dimensionality of the problem by replacing the 2 dimensional ! with

the one dimensional x0 representing the x-coordinate at which the re
ection axis intersects

the x-axis. Additionally we replace R
i
the rotation matrix with R =

 
cos 2� sin 2�

sin 2� � cos 2�

!
the

re
ection about an axis at an angle � to the x-axis. The angle � is found analyticaly (see

ref. 1) thus the dimensionality of the problem is 2q+1 (rather than 2q+ 2) and elimination

of the last row and column of matrix U (see Section ??) allows an inverse solution as in the

rotational symmetry case.
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