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bstract. We introduce a novel workflow that will hopefully open
ew directions of processing and improvement in image reproduc-
ion. Existing gamut mapping algorithms can be classified into two
asic categories: image-independent algorithms and image-
ependent algorithms. The latter algorithms produce better repro-
uction; however, because they are time consuming and mathemati-
ally complex, the image-independent approach is commonly used
n most imaging workflows. We suggest a new workflow that at-
empts to approach the image-dependent mapping method without
ncurring significant computational drawbacks nor requiring changes
n the imaging industrial standards. The proposed method attempts
o choose an appropriate gamut mapping per image without recon-
tructing the image gamut itself and without constructing an image-
pecific mapping on the fly, as required by image-dependent gamut
apping methods. Specifically, image characteristics are exploited

or selection of a source gamut and a gamut mapping most appro-
riate for a given input image from a set of available mappings.
ccordingly the proposed method is named image-guided gamut
apping. We show the practicability and advantages of the sug-
ested workflow in several specific cases. We show that better im-
ge quality is achieved for 87% of the tested images when using the
uggested workflow. © 2008 SPIE and IS&T. �DOI: 10.1117/1.2955996�

Introduction
olor gamut is a range of colors achievable on a given
olor reproduction medium. Gamut mapping, which plays
n essential role in color management, aims to transform
ata represented under one device gamut into data repre-
ented under a different device gamut with the goal of en-
uring good correspondence of overall color appearance be-
ween the original and the reproduction.

Most industrial implementations of gamut mappings are
ased solely on input and output device gamuts, i.e., map-
ing is image independent.1–6 In typical workflows, the
apturing device �camera, scanner� has a much larger
amut than the viewing device �printer, monitor�, which
esults in a mapping that performs contraction of the larger
amut into the smaller one. This results in original image
olors being compressed into, and typically not exploiting,
he full destination gamut. Thus, image-dependent gamut

apping, which is dependent on the image gamut �the
ange of colors appearing in the image� and on the destina-
ion gamut, greatly improves image reproduction
uality.2,7–10 However, industrial designers have rejected
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this approach due to the intense computations and extreme
overhead in terms of run time compared to the image-
independent approach.

In the never-ending quest for improving image quality,
the industrial focus in recent years was on the improvement
of the image-independent mapping algorithms. This pro-
duced color quality changes in small increments over the
years.2–6,11 In this paper, we propose an intermediate path
that attempts to approach the image-dependent mapping
method without incurring significant computational draw-
backs nor requiring changes in the imaging industrial stan-
dards. The proposed method attempts to choose an appro-
priate gamut mapping per image without reconstructing the
image gamut itself and without constructing an image-
specific mapping on the fly, as required by image-
dependent gamut mapping methods. Specifically, image
characteristics are exploited for selection of a source gamut
and a gamut mapping most appropriate for a given input
image. Accordingly, the proposed method is named image-
guided gamut mapping.

Current workflow in the imaging industry dictates that
transfer of visual information between imaging devices is
performed through an intermediary representation space
called the profile connection space �PCS�,12 which is a
device-independent color space based on perceived color
sensations, such as the CIEXYZ and the CIELAB.12–14 Ev-
ery imaging device is associated with a unique transforma-
tion between the PCS and the device specific color repre-
sentation �e.g., RGB for digital cameras and scanners and
CMYK for printers�. This transformation does not assume
any knowledge on the color distribution of the input image
nor on the source device gamut and thus must support any
input color �i.e., it must provide a transformation from ev-
ery color coordinate in the PCS representation�. In practice,
the International Consortium of Color �ICC� standard dic-
tates that the PCS to device transformation is a concatena-
tion of an image-independent gamut mapping between the
full PCS space to the subspace of the PCS representing the
device gamut, and a color transformation from the device
gamut �in PCS coordinates� to the device specific color
space. This workflow has been standardized by the ICC
�Ref. 12� and is based on the following two components:

1. The ICC Profile. A standard ICC profile is created for
every imaging device, which includes the transforma-
tion to/from the PCS color representation and the de-
vice specific color space.
Jul–Sep 2008/Vol. 17(3)1
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2. Color Management Module (CMM). The CMM is an
activation mechanism that actually performs the color
transformations using the device ICC profile �Fig.
1�a��. Because color transformations in the ICC pro-
file typically supply values only for points of the
color space sampled at regular grids, the CMM must
implement interpolation for all color values.

The method proposed in this paper conforms to the ICC
tandard and can be easily incorporated into existing work-
ows. It extends the operation of the CMM to perform

mage-guided gamut mapping by including a decision pro-
ess that selects a PCS-to-device transformation from a set
f possibilities all stored within the device ICC profile. We
ote that the current ICC profile standard is defined to al-
ow storage of a number of color transformations; thus, the
uggested workflow is easily implemented without the need
f redefining profiling standards.12 Figure 1�b� shows a
chematic diagram of the changes in the workflow as ex-
ressed in the CMM. The decision process receives as in-
ut, the characteristics of the image that is to be rendered.
ased on these characteristics, one of the available PCS-to-
evice transformations is selected and implemented on the
nput image.

The set of PCS-to-device transformations, which differ
nly in the gamut mapping portion, are precomputed and
tored in the device profile, independent of the input im-
ges. The set of gamut mappings differ in the type and rate
f compression applied to colors in different regions of the
CS color space. The aim of the decision process is to
elect the compression from the set that produces the best
mage reproduction. In general, this correlates with maxi-

izing the preservation of the image colors within the des-
ination gamut.

Image-guided gamut mapping provides improved color
eproduction because it selects a mapping that best approxi-

PCS Space

Input Image

Output Image

Input Device
Profile Transformation

Output Device
Profile Transformation

Chara

D

GM1

GM4

Output

(a)

Fig. 1 Extending the CCM: �a� The ICC defin
image color values using the transformation t
profile. �b� The proposed CMM performs image
cess that selects a gamut mapping transformat
within the device ICC profile. The decision proc
that is to be rendered.
ournal of Electronic Imaging 033004-
mates the optimal image-dependent mapping, in terms of
minimum color loss. Additionally, because the image char-
acteristics used are fast to compute, the improvement in
reproduction quality incurs only a small overhead in terms
of computation.

In support of our approach, we note that the imaging
industry already allows some freedom in choice of gamut
mappings in the form of rendering intents.12 The imaging
expert may set a specific type of mapping �perceptual, satu-
ration, colorimetric�, according to the workflow and gamuts
of the imaging devices. For example, perceptual rendering
intent will compress the full PCS space into the device
gamut, whereas colorimetric intent will preserve all images
colors originally within the destination gamut. The exis-
tence of rendering intents emphasizes the need to tailor
gamut mappings to the visual data.

In this paper, we introduce the novel workflow and de-
scribe the image-guided gamut mapping approach, show
the feasibility and advantages of using the flow, and present
initial results of using the workflow on an image dataset.

2 Image Independent Versus Image Dependent
Gamut Mapping

Consider the case of gamut mapping between a large source
gamut and a smaller destination gamut �e.g., mapping a
digital camera gamut to a printer gamut�. Two common
methods may be considered:

1. Clipping. Maps values that are in the source gamut
but outside the destination gamut onto the closest col-
ors on the boundary of the destination gamut. Source
colors that are originally in the destination gamut are
left untouched.
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M. Given an input image, the CMM maps the
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2. Compression. Maps all colors in source gamut onto
all colors in the destination gamut using a monotonic
mapping. Source colors that are originally in the des-
tination gamut will not map onto themselves.

Each method is associated with common side effects.
sing clipping, different colors in the source image that are
utside the destination gamut may be mapped onto the
ame destination color. This implies that small color varia-
ions in the mapped image may be lost. For example, the
etails in the yellow breast feathers and in the red head
eathers in Fig. 2�a� are lost following clipping as can be
een in Fig. 2�b�. Using compression, all colors in the
ource gamut are mapped to different colors in the destina-
ion gamut. This implies that image colors that are origi-
ally inside the destination gamut �as well as those outside
he destination gamut� will not be preserved. For example,
he saturated colors of Fig. 2�a� are not preserved in Fig.
�c� following compression.

It is obvious that the most appropriate method depends
n the input image. For example, input images whose col-
rs are already within the destination gamut should be
apped mainly using clipping, whereas images with out of

amut details should be mapped using some level of com-
ression. To bypass image dependencies and improve im-
ge quality, gamut mapping algorithms in practice typically
ombine clipping, nonlinear and linear compression in dif-
erent regions of the color space.

a

b

a

b

(a) (b)

ig. 3 Defining an effective source gamut: �a� The full perceptual
olor space �CIELAB, defined by the square boundary in the a-b
rojection of the space� is mapped to the desination gamut �defined
y the enclosed polygon�, �b� A priori knowledge of the colors that
ill never be used allows the mapping to consider only a subset of

he perceptual color space �dashed line� in the gamut mapping. This
roduces, in turn, fewer color errors and a better reproduction of the
olor image on the output device.

(a) (b) (c)

ig. 2 Clipping versus compression artifacts: �a� original image, �b�
amut mapping using clipping �Note the loss of details in close up�
nd �c� gamut mapping using compression. �Not the loss of vivid-
ess in the close up�.
ournal of Electronic Imaging 033004-
Taking into consideration the choice of mapping meth-
ods as described above, an image-dependent approach can
improve reproduction quality by defining the effective
boundaries of the source gamut. Consider a large source
gamut �e.g., the full PCS space� and a smaller destination
gamut. Gamut mapping of the full source gamut, whether
using clipping or compression, will affect many colors in
the source gamut. However, if it happens that the input
image colors are contained within a subset of the source
gamut, then a more efficient gamut mapping could be de-
fined that better preserves the image colors. This can be
done by defining an effective source gamut, which is a
subset of the full source gamut and equal or close to the
image gamut �see Fig. 3�. Mapping is then defined from
this subset alone. Compression artifacts are reduced as the
effective source gamut approaches the destination gamut.

An example is shown in Fig. 4 in which two different
effective source gamuts are used to define two different
gamut mappings. The two gamut mappings are applied to
two images that differ in their image gamut. One effective
source gamut is narrow in both the chroma and the light-

(a)

(b)

(c)

Fig. 4 An example of using two different gamut mappings on two
different images. �a� The original images. �b� Both images mapped
using a gamut mapping with a narrow effective gamut in both light-
ness and chroma dimensions. As a result, image details are lost in
the bright areas of the right image �the monitor and the dog’s head
in the image�. �c� Both images mapped using a gamut mapping with
a wide effective gamut that compresses lightness and chroma val-
ues. It can be seen that the saturated image on the left is displeas-
ingly desaturated.
Jul–Sep 2008/Vol. 17(3)3
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ess dimensions. This effective source gamut is inappropri-
te for images with detailed highlights and shadows as
hese values are clipped. The second effective source gamut
s wide in the chroma dimension and lightness dimension
mplying a mapping that compresses in both directions,
aking it inappropriate for images with color details. The

mages in Fig. 4 indicate that each of the effective source
amuts is better suited for one of the images. The image on
he right is strongly affected in the lightness values, pro-
ucing artifacts �loss of details� in the dark and bright areas
hen using the first of the two mappings �middle row�. The

mage on the left is highly saturated and does not contain
etailed bright and dark areas. The second of the two map-
ing produces an unpleasing desaturation effect on the im-
ge �bottom row�. Thus, there is an advantage in applying
mage-guided gamut mapping using different gamut map-
ings for different images. Using any one of the two map-
ings would result in an inadequate mapping of one of the
wo images.

The advantage of image-dependent gamut mapping is in
he production of better image quality obtained by setting
he effective gamut to equal the image gamut. If the effec-
ive gamut is smaller than the destination gamut, then the

apping can even include image enhancement.8

Although, producing better quality, image-dependent
amut mapping is encumbered by the need to compute the
mage gamut and the gamut mapping specifically for every
nput image. This involves the following steps in some
orm or other:

1. Building the image gamut. This typically involves de-
termining the image gamut boundary by building a
gamut boundary representation.9,15–17

2. Determining the mapping from the image gamut to
the destination gamut. This requires detection of the
intersection of every mapping line with the source
gamut and the destination gamut boundaries.7–10

Note that these two steps, which are highly time con-
uming, are required of any gamut mapping algorithm,
hether dependent or independent. In the image-dependent

pproach, it must be performed for each image, whereas in
he independent approach, it is performed only once in a
reprocess stage and used on all images.

Additionally, an image gamut is not necessarily convex
or continuous, which requires additional gamut closure
omputations or causes the mapping to be very complex.
mage gamut boundary, and accordingly image-dependent
amut mapping, is highly affected by isolated pixels, which
ave a negligible impact on the image gamut volume and
n the mapping quality.

Thus, although capable of producing better image qual-
ty, most devices and color management systems assume an
mage-independent gamut mapping approach. In fact, the
maging Standard assumes image independent gamut map-
ing and, accordingly, ICC Profiles are device-based. Cur-
ent Imaging standard does not support image-dependent
appings. Incorporating image-dependent gamut mapping

n the current standard requires a basic change in the stan-
ard �e.g., there will be no need for an ICC profile per
evice�.
ournal of Electronic Imaging 033004-
3 Image-Guided Gamut Mapping

In this study we introduce a compromise between the
image-independent and image-dependent approaches that
we termed image guided gamut mapping. Rather than cal-
culating the gamut mapping on the fly for each image �as in
the image-dependent approach�, we attempt to determine an
effective source gamut that best represents the image gamut
for each image without incurring significant computational
drawbacks. The approach bypasses the necessity of recon-
structing the exact image gamut boundary and does not
require the computation of the gamut mapping on the fly.
Rather than computing the exact input image gamut, only a
few easy-to-compute image characteristics are determined.
These are used to select the best gamut mapping for the
given image. Specifically, a set of effective gamuts and
associated gamut mappings are designed in advance. Dur-
ing the rendering process, image characteristics are calcu-
lated and used to determine the gamut mapping from the
set, which best suites the input image.

To achieve this goal, careful selection of image charac-
teristics and possible mappings are necessary. A mechanism
that maps the image characteristics to the appropriate map-
ping must be developed. In addition to efficient computa-
tion, the image characteristics should form good indicators
for the mapping of choice.12 The set of possible gamut
mappings should permit a large variability in performance,
allowing improvement in image rendering for a wide vari-
ety of images.

Another advantage of the image-guided gamut mapping
approach is that it can be easily incorporated into the stan-
dard workflow using current imaging standards. Image-
guided gamut mapping is implemented as part of a novel
workflow for image rendering within the color management
workflow defined by the ICC �see Section 1�. The sug-
gested workflow is easily implemented without the need of
redefining profiling standards. The operation of the CMM
is extended to perform image-guided gamut mapping by
including a decision process that selects a gamut mapping
transformation table from a set of possibilities all stored
within the device ICC profile. The decision process re-
ceives as input, the characteristics of the image that is to be
rendered. Figure 1�b� shows a schematic diagram of the
changes in the workflow as expressed in the CMM. We
note that the current ICC profile standard is defined to al-
low storage of a number of gamut mappings, thus the sug-
gested workflow is easily implemented without the need of
redefining profiling standards.7 Technical details are given
in Appendix A.

The image-guided gamut mapping approach differs, in
principle, from previously published approaches. Earlier
studies also suggested the use of image characteristics to
adapt the mapping algorithm itself.8,10 Whether this is in-
corporated into an image-dependent or an image-
independent approach, the mapping development �step 2 in
Section 2� must be performed on the fly for each image. In
the image-guided workflow, image characteristics are used
to choose the mapping rather than design the mapping, be-
cause these mappings are created off-line, independent of
the image.

In Ref. 18, a study was presented in which image char-
acteristics were used to determine which of a given set of
five different gamut mappings best suits an image. Similar
Jul–Sep 2008/Vol. 17(3)4
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o the image-guided gamut mapping approach, their ap-
roach designs a decision mechanism based on training to
erform the selection of appropriate mapping. This ap-
roach inherently differs from the image-guided approach
uggested in this paper, in that the latter aims to estimate
he most appropriate effective source gamut for each image
n an attempt to approach the image-dependent gamut map-
ing scheme, whereas in Ref. 18 the goal is to determine
he mapping that best suits specific classes of images �por-
raits, business graphics, texture-rich images, etc.� with an
mphasis on the spatial informational content in the image.

Image-guided gamut mapping requires three elements: a
ollection of image characteristics, a set of effective gamuts
nd associated gamut mappings, and a mechanism for map-
ing image characteristics to the best gamut mapping. In
he following sections, we describe the specific implemen-
ation of these elements as used in our research.

Image-Guided Gamut Mapping:
Implementations

.1 Image Characteristics
s described above, image characteristics are used to de-

ermine the best gamut and gamut mapping of a given set
or each input image. These characteristics must be infor-
ative yet easily extracted at a low computational cost. The

hosen image characteristics are expected to capture as-
ects of the image that are important to our visual sensation
f image quality and thus are effective in determining the
ptimal gamut mapping. Accordingly, we choose to define
he characteristics in the hue-lightness-chroma �HLC� color
pace.14 The HLC coordinates used in the implementation
f this study are the polar representation of the CIELAB
oordinates.13,14

Because image characteristics must be efficient to com-
ute, they are constrained to values that may be calculated
ith one pass over the image or over samples of the image.

mage histograms can be computed efficiently, and thus, the
mage characteristics that were chosen are based on histo-
rams of the HLC values of an image.

The characteristics were chosen of three types. The first
et consists of basic statistical measures of the chroma and
ightness coordinates. For each coordinate, the following

easures were used: Mean value, standard deviation, mini-
um value, maximum value, 25 percentile, 50 percentile,

nd 75 percentile.
The second type of image characteristics are related to

mage content in terms of shadow and highlight regions as
ell as image contrast. These characteristics are known to

ffect perceived quality of rendered images. Three charac-
eristics were chosen: Shadow strength �defined as the av-
rage of the lowest 4% of the lightness values in the im-
ge�, highlight strength �defined as the average of the
ighest 5% of the lightness values in the image�, and global
ontrast in image �defined as the normalized range of light-
ess values�.

The third type of image characteristics measures the lo-
al spatial behavior of the image. Although these character-
stics do not follow our initial assumption of histogram-
ased features, it has been suggested18–20 that local spatial
haracteristics may relate to image artifacts that appear us-
ng incorrect gamut mapping. Allowing a single convolu-
ion of the image, this characteristic can be evaluated effi-
ournal of Electronic Imaging 033004-
ciently. Local contrast in the image is defined as the
average of local differences between a pixel and its
neighbors.

An additional type of image characteristic was tested
that is dependent on the destination gamut used in the pro-
cess: Out-of-gamut pixels ratio, which is defined as the
percentage of image pixels that are outside the destination
gamut.

4.2 Set of Effective Gamuts and Gamut Mappings
In the suggested approach, a set of mappings is defined. We
assume the source gamut to be the full PCS space in accord
with the ICC standard.12 The destination gamut is a subset
of this space �e.g., a printer gamut�. The mappings differ in
the subset of the PCS used as the effective source gamut. In
general, the mappings can also differ in the transformation
algorithm �e.g., clipping/compression, etc., see Section 2�.
For simplicity, we restrict our mappings to compression in
the form of piecewise linear mappings from the effective
source gamut to the destination gamut.

Similar to the definitions of the image characteristics,
here too it is advantageous to define the gamut mapping
transformation tables in the HLC color space. Defining the
gamut mapping �and, accordingly, the effective source
gamut� in this space will allow us to analyze the selection
of gamut mappings for a given image and to predict its
visual affect on the reproduction. Thus, it is assumed that
all PCS data are first transformed to HLC.

There are infinitely many possibilities for building
gamut mappings. For simplicity and as a systematic ap-
proach, the transformation tables are built based on the fol-
lowing principles:

1. The mapping maintains the hue coordinates.
2. Lightness is mapped first. Lightness is mapped

linearly.
3. Chroma is mapped last. Chroma is mapped linearly.

The different gamut mappings in our collection vary in
the manner in which lightness and chorma are mapped.
Given the first principle, that the hue coordinate is main-
tained in the mapping, we define the gamut mapping within
each hue-constant plane in the HLC space. Consider the
chroma-lightness plane for a specific hue shown in
Fig. 5�a�. The full HLC space is shown for this hue with
lightness in the range 0–100 and chroma in the range
0–181. The destination gamut boundary �which is constant
over all gamut mappings in the designed set� is marked by
the dark line. We denote the minimal and maximal light-
ness values of the destination gamut as LminD and LmaxD
�see Fig. 5�a��. The maximal values of the the chroma co-
ordinates in each-hue plane of the destination gamut are
dependent on the lightness value. Within the hue plane, for
every lightness value L, the maximal chroma value in the
destination gamut is denoted CmaxD

h �L�.
For each gamut mapping, an effective source gamut is

defined. For simplicity, the effective gamut is assumed to
be a convex polygon determined by the minimal and maxi-
mal lightness values denoted LminS and LmaxS �see Fig.
5�a�� and determined by the maximal chroma value within
each hue plane. For simplicity, we assume that the maximal
Jul–Sep 2008/Vol. 17(3)5
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hroma value is constant for all lightness coordinates in all
ue planes and is denoted CmaxS �see Fig. 5�a��.

Following the three principles, the gamut mapping first
inearly maps the lightness values of the effective source
amut to the range of lightness values of the destination
amut �Fig. 5�b��. The chroma coordinates are then simi-
arly mapped. For every lightness value L, the gamut map-
ing linearly maps the chroma coordinates between 0 and
maxS and 0 and CmaxD

h �L� �Fig. 5�c��. Values outside the
ffective source gamut are clipped to its boundary.

Because the destination gamut is assumed constant, ev-
ry gamut mapping is determined only by the parameters
efining the effective source gamut: the maximal and mini-
al lightness values and the maximal chroma value �i.e.,

very gamut mapping is uniquely defined by LminS, LmaxS,
nd CmaxS�.

It is important to understand the effect of these gamut
appings on an image. Note that the lower the value of
maxS, the less compression of colors is performed. Note
lso that when the difference between LmaxS and LmaxD
LminS and LminD� decreases, the compression factor in the
uminance axis decreases as well.

.3 Image Characteristic based Gamut Mapping
Selection

mage-guided gamut mapping requires a decision tool,
hich is embedded in the CMM. Given a set of image

haracteristic values, the CMM must determine the appro-
riate gamut mapping to use from the collection stored in
he ICC profile �see Fig. 1�b��. To build this decision tool, a
upervised classification learning approach is used in which
set of training examples serves to produce a decision rule
y which new test examples can be classified. In our
xperiments, we use the the support vector machine
SVM�,21–23 which is a maximum margin classifier that
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Fig. 5 Building a gamut mapping with an effecti
a plane of constant hue. The corresponding slic
effective source gamut is defined in this plane by
and the maximum chroma value: L minS, L maxS
this study vary in these three parameters. �b� L
between the range of lightness values of the ef
the range of lightness values of the destination
mapped last. Chroma is mapped linearly from
destination gamut chroma range 0–L maxD�L�,
values are mapped independently for each ligh
ournal of Electronic Imaging 033004-
finds a hyperplane within the high-dimensional input fea-
ture space that best separates the classes of data.

A set of training examples, which include numerous im-
ages and their best gamut mappings �determined by the
visual quality of the reproduced image, see Section 5.1�,
were collected. For each image, a vector of image charac-
teristic values was determined and used as input to the
SVM. A leave-one-out training approach was used to deter-
mine a nonlinear decision rule dependent on the image
characteristic values. Details of the training data and result-
ing classification is given in Section 5.

To evaluate the contribution of each image characteristic
to the classification task, a feature selection process was
applied. Nearest-neighbor-based feature selection24 pro-
vides a ranking of the features in terms of their importance
to the classification task. Feature selection involves the
definition of an evaluation function that estimates the qual-
ity of performance for a given subset of features. A search
algorithm is used to search for the subset with the highest
score. The ranking of image characteristics provides nu-
merous insights on the criteria for choosing the appropriate
gamut mapping. This is discussed in Section 5.2.

4.4 Experimental Workflow
As a general goal to show feasibility of the image-guided
gamut mapping approach, we chose the task of printing an
RGB image acquired by a digital camera on an RGB
printer. The images are associated with an SRGB profile
�i.e., the RGB to PCS transformation is according to the
SRGB standard�.25,26 The assumption of an RGB printer
rather than a CMYK printer allows us to work with 3-D
color spaces throughout our workflow.

The workflow transforming the input RGB data to the
printer RGB requires the following steps:
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�1�
n practice, to view the images in the experiments as well
s create figures for this paper, we followed the flow by a
onversion to RGBmonitor.

1. Transform from RGB color space to CIELAB color
space using the standard transformation as defined in
the SRGB color space standard25,26 and in Ref. 14

2. Apply a gamut mapping selected from the available
set. In practice, this step is performed by first map-
ping CIELAB to HLC and then using one of the map-
pings of the set described in Section 4.2 and finally
mapping from HLC representation within the printer
gamut back to CIELAB representation.

3. Transform from CIELAB coordinates to the
RGBprinter representation using a transformation de-
termined from printer measurements.12,27

The printer gamut boundary was determined using the
olar sorting method as described in Ref. 16. Transforma-
ion from CIELAB to RGBprinter coordinates was deter-

ined using standard calibration testing.

Results

.1 Experiment 1: Visual Evaluation
set of 105 RGB images were collected varying in char-

cter. The images included indoor and outdoor scenes,
nder- and overexposed images, images varying in propor-
ion and distribution of highlight and shadow regions, im-
ges with very high or very low chromaticity, etc. The col-
ection includes several test images commonly used in the
olor management industry. Several examples of images in
ur set are shown in Fig. 6.

Using the gamut mapping algorithm described in Sec-
ion 4.2, a set of 21 effective gamuts and associated gamut

appings were created. Table 1 shows the parameters
minS, LmaxS, and CmaxS used to create the gamut and
amut mappings. Note that the effective source gamuts in
ases 1–17 form significant subsets of the workflow source
amut. The 21 different mappings induce 21 different
orkflows �Eq. �1��.
All 105 test images were run through each of the 21

orkflows obtaining 2205 rendered images. Three profes-
ional image evaluators viewed the 105 sets of images. For
ach set they determined which of the 21 rendered versions
roduced the best visible quality. The evaluators are profes-
ional image quality and color quality experts, former em-
loyees of Scitex Corp. Ltd. The images were viewed on a
alibrated monitor. The images in each set were presented
ne at a time in 100% format, in random order. The evalu-
tors were allowed to review and redisplay the images in
ach sequence as they wished, in accord with typical pro-
essional image quality evaluation.

Results of the evaluation are shown in Fig. 7. The plot
hows a histogram of the number of cases for which each
ournal of Electronic Imaging 033004-
of the 21 workflows was chosen as producing the best vis-
ible quality. The results show that for 87% of the images,
the chosen gamut mapping assumes that effective source
gamut is a strong subset of the full workflow source gamut
�mappings numbered 1–17�. This finding implies that the
original image colors do not cover the full source gamut for
most of the images. Thus, mapping the full source gamut to
the destination gamut without considering an appropriate
effective gamut may produce unnecessary compression ar-
tifacts in most images.

The same results can also be interpreted as displaying
the advantage of image-guided gamut mapping over image-
independent approaches. Using an independent approach, a
single effective source gamut and corresponding gamut
mapping must be chosen. Considering any of the 21 map-
pings as the chosen image-independent gamut mapping �for
example, mapping 15 in Table 1�, it would be suboptimal
for 86% of the images at best.

5.2 Experiment 2: Automatic Classification of
Images to Gamut Mappings

As described in Section 3 �and Fig. 1�, in the image-guided
gamut mapping workflow, the CMM contains a decision
tool that selects an appropriate mapping for any given im-
age �based on image characteristics�. In this paper, we dem-
onstrate the construction of a decision tool using a classifi-
cation learning approach, as described in Section 4.3. A set
of training examples serves to produce a decision rule by
which new test examples can be classified. The approach
was implemented using two gamut mappings; however, ex-
tension to a larger set of mappings is straightforward.

The two gamut mapping algorithms chosen for the ex-
periment �mappings 5 and 17 in Table 1� vary in the
amount of compression performed in the lightness and
chroma coordinates. The first of the two mappings com-
presses slightly in the luminance coordinate and strongly in
the chroma coordinates �LmaxS=85, LminS=0, and
CmaxS=90�. The second mapping, compressed strongly in
the lightness coordinate and slightly in the chroma coordi-

Fig. 6 Examples of the test images used in our experiments.
Jul–Sep 2008/Vol. 17(3)7
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ate �LmaxS=100, LminS=0, and CmaxS=63�. All 105 test
mages were run through the two mappings. The ground
ruth was collected by the same professional image evalu-
tors. For each of the images, the mapping that produced
etter reproduction quality was determined.

Each image was associated with a vector of image char-
cteristics �Section 4.1�, which was used as input to the
VM classification tool �Section 4.3�. Training was per-
ormed using 85 of the 105 images. The remaining 20 im-
ges were used as test images. The classification of the 20
est images was compared to the ground truth. This proce-
ure was repeated 100 times.

Results of the classification showed that in 83% of the
ases �on average�, the SVM classifier selected the same
amut mapping as the ground truth determined by the
valuators.

able 1 Set of gamut mappings defined by the minimum and maxi-
um values for lightness and by the maximum Chroma value of the
ffective source gamut �see Section 4.2�.

GM Number
Min-Max Lightness

L minS–L maxS

Max Chroma
C maxS

1 0–85 40

2 0–85 50

3 0–85 63

4 0–85 72

5 0–85 90

6 0–85 105

7 0–85 117

8 5–90 40

9 5–90 50

10 5–90 63

11 5–90 72

12 5–90 90

13 5–90 105

14 5–90 117

15 0–100 40

16 0–100 50

17 0–100 63

18 0–100 72

19 0–100 90

20 0–100 105

21 0–100 117
ournal of Electronic Imaging 033004-
5.3 Experiment 3: Feature Selection

To learn about the importance of each image characteristic
in the classification task and in an attempt to reduce the set
of image features, a feature selection process was applied
using the nearest-neighbor-based feature selection24 as de-
scribed in Section 4.3. This provided a ranking of the fea-
tures in terms of their importance to the classification task.

The feature selection produced the following ranking
�most important to least�: Highlights of luminance, medium
high luminance, mean of chroma, out of gamut pixels ratio,
medium high chroma, highlights and shadows contrast,
mean luminance, medium chroma, shadows of luminance,
standard of luminance, medium low luminance, medium of
luminance, maximum chroma, medium low chroma, global
contrast in image, minimum chroma, standard of chroma,
minimum luminance, maximum luminance, and local con-
trast in the image. It was found that the produced ranking is
compatible with our expected intuition. For example,
“highlights of luminance” is expected to be ranked high in
the list because it is largely affected by the selection of
LmaxS and observers are typically very sensitive to artifacts
in this spectral region. “Out of Gamut pixels ratio” is also
expected to rank high in the list duo to high correlation
with the compression factor that distinguish between the
mappings. On the other hand, minimum/maximum
luminance/chroma values are highly sensitive to image
noise and artifacts; thus, these characteristics can be ex-
pected to rank low in the list.

Using the above ranking, an attempt was made to reduce
the length of the image characteristic vector used in the
classification process described in experiment 2. It was
found that eliminating low-ranking image characteristics
from the input vectors did not significantly deteriorate nor
improve the performance �classification performance was
mostly reduced by 3–7% when characteristics ranging in
the last six entries in the list were removed�. Eliminating
characteristics in mid and high rankings significantly dete-
riorated the performance. It can be concluded that for the
specific classification tool used in this study, the image
characteristics ranked mid and high in the list are valuable
for correct decision in the image-guided gamut mapping
workflow.
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Fig. 7 Histogram displaying the number of images for which a given
gamut mapping performs best. The gamut mappings are enumer-
ated by their index given in Table 1.
Jul–Sep 2008/Vol. 17(3)8



5

T
i
t
t
o
o
i
1

p
s
a
w
a
4
�
i

Golan and Hel-Or: Novel workflow for image-guided gamut mapping

J

.4 Experiment 3: Automatic Classification of
Images to Gamut Mappings II

o further study the relationship between image character-
stics and choice of gamut mapping, a second classification
est was performed. In this case, using pairs of mappings
hat differ in the amount of compression in one of the co-
rdinates alone. The pairs of mappings differ in the amount
f chroma compression �mappings 17 and 21 in Table 1� or
n the amount of lightness compression �mappings 11 and
8 in Table 1�.

All 105 test images were run through the pair of map-
ings in each case. The ground truth was collected by the
ame professional image evaluators. For each of the im-
ges, the mapping that produced better reproduction quality
as determined. As in the previous test, each image was

ssociated with a vector of image characteristics �Section
.1�, which was used as input to the SVM classification tool
Section 4.3�. Training was performed using 85 of the 105
mages. The remaining 20 images were used as test images.

Table 2 Ranking of image characteristics in two
pings �left� and luminance-compressing mappin

Rank Number
Chroma-Compressing
Mappings �GM 15,19�

1 Medium high chroma

2 Mean of chroma

3 Out-of-gamut pixels ratio

4 Highlights of luminance

5 Medium-high luminance

6 Highlight and shadows co

7 Medium luminance

8 Medium-low chroma

9 Maximum luminance

10 Medium chroma

11 Minimum chroma

12 Global contrast

13 Maximum chroma

14 Standard of luminance

15 Minimum luminance

16 Standard of chroma

17 Shadows of luminance

18 Medium-low luminance

19 Mean of luminance

20 Local contrast
ournal of Electronic Imaging 033004-
The classification of the 20 test images was compared with
the ground truth. This procedure was repeated 100 times.

The classification results showed 91% successful classi-
fication for the classification of chroma compressing map-
pings and 85% for the lightness compressing mappings. As
in the previous test, feature selection was applied and a
ranking of the informativeness of the image characteristics
was determined. Results of the ranking are shown in Table
2.

In general, the most informative image characteristics
were those associated with the coordinate that was com-
pressed; for the chroma-compressing mappings, the
chroma-based characteristics were ranked high in the list,
while for the lightness-compressing mappings, the
lightness-based characteristics were ranked high in the list
�an exception is the characteristic ranked fourth in the
chroma-compressing case�. The two experiments were
mostly consistent between them and consistent with the
previous experiment in terms of performance and ranking

fication tests: Using chroma-compressing map-
ht�.

Lightness-Compressing
Mappings �GM 11,18�

Highlights of luminance

Medium-high luminance

Medium luminance

Standard of luminance

Shadows of luminance

Mean of luminance

Medium-low chroma

Maximum chroma

Medium chroma

Maximum luminance

Standard of chroma

mean of chroma

Minimum chroma

Global contrast in image

Highlights and shadows contrast

Minimum luminance

Out-of-gamut pixels ratio

Medium high chroma

Local contrast

Medium-low luminance
classi
gs �rig

ntrast
Jul–Sep 2008/Vol. 17(3)9
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f image characteristics. Although some variations in rank-
ng occur in the low-ranked characteristics �e.g., minimum
uminance and local contrast in the image�, consistency ex-
sts on the whole.

Another point of interesting is the fact that, in general,
he results of this experiment were better than the results of
he previous experiment �Section 5.1�, which implies that
he decision between gamut mappings when assumptions
re made on both luminance and chroma axes, is more
omplex as expected.

Discussion and Conclusion
n this study, we introduce an approach that compromises
etween the image-independent and image-dependent
amut mapping approaches, namely, image-guided gamut
apping. The goal is to approach image-dependent quality
ithout the need to compute image gamut and image-

pecific mappings on the fly. The method attempts to ap-
roximate the image gamut by determining an appropriate
ffective source gamut. Specifically, a few easy-to-compute
mage characteristics were exploited to determine the best
amut and gamut mapping for a given image, from among
finite collection of possibilities. We showed the practica-

ility and advantages of the suggested workflow in several
pecific cases. It was shown that better image quality is
chieved for 87% of the tested images when using a gamut
apping that assumes a smaller input gamut. In this paper,
e also showed the strong connection between the image

haracteristics and the chosen gamut mapping by ranking
he importance of the characteristics in the classification
rocess using a feature selection tool. We showed that the
roduced ranking is meaningful and in most cases
xpected.

We emphasize that this paper introduces a new frame-
ork for color management and does not presume to sug-
est an actual implementation outperforming industrially
esigned gamut mappings. We demonstrated feasibility of
he approach using standardized mappings and assump-
ions. We suggest that using more advanced gamut mapping
lgorithms will enhance even further the distinction be-
ween the current workflow and the image-guided gamut

apping–based workflow presented in this paper.
We further note that additional image characteristics will

mprove the decision efficiency. Specifically, characteristics
hat are spatially dependent are expected to strongly influ-
nce the choice of gamut. For example, existence of con-
inuous colorful regions, details in highlight or shadow ar-
as, and spatial distribution of the illumination in the image
re expected to produce more accurate mapping decisions.
owever, one must still maintain low computation cost of

he characteristics. Additionally, in our tests we assumed a
implified subspace of the HLC space as the effective
ource gamut of the mapping �Section 4.2�. This subspace
as rectangular for every hue, determined by LmaxS,
minS, and CmaxS. This causes a strong compression of
hroma values for HLC colors with high and low lightness
alues. A better representation of the effective source gamut
s to more closely follow the output gamut �e.g., in a cone-
ike representation for the printer gamut�. Additionally, we
sed a standard learning tool �SVM� to map image charac-
eristics to gamut mapping. This is a simplified approach.
ournal of Electronic Imaging 033004-1
Incorporating knowledge and heuristics used by color qual-
ity experts is imperative in order to produce high quality
results.

The image-guided gamut mapping approach is easily en-
compassed in the color management standards and forms a
novel workflow that will, hopefully, open new directions of
processing and improvement in image reproduction.

Appendix A: Incorporating Image-Guided Gamut
Mapping in the ICC Standard
As described in Section 1, current industrial workflow has
been standardized by the ICC �Ref. 12� and requires the
association of an ICC profile with every imaging device.
Device profiles provide color management systems with the
information necessary to convert color data between the
device color space �DCS� and the device-independent color
space, called the profile connection space �PCS�.

The standard allows several standardized algorithmic
flows organized as tags. Each tag comprises a collection of
processing elements, including LUT, matrix, and one-
dimensional input and output curves. Mappings from the
PCS to/from the DCS are coded into the tags where the
type of tag and the use of the processing elements associ-
ated with the tag is chosen by the device profile designer.
An example of a standard algorithmic flow is shown in Fig.
8. The ICC profile of a given device may contain several
optional mappings �coded in several tags� between the
color spaces. The choice of mapping to be used from the
profile is typically determined by the CMM. Figure 9
shows the ICC profile structure.

The profile includes the following elements12

1. Profile header, which provides general information on
the specific profile including profile size, version
number, default CMM type, etc.

2. Profile tag table, which is the table of contents for the
tags and contains a count of the number of tags in the
structure and a pointer to each tag

3. Tagged element data, which comprise a collection of
processing elements in each tag

The current standard supplies ICC profiles with three
standard mappings from the PCS to the DCS, each mapping
is associated with one of the standard rendering intents.12

Each mapping is coded within a tag in the ICC profile. The
image-guided gamut mapping approach is easily incorpo-
rated into the ICC standard by adding additional mappings
from PCS to DCS using the available standard algorithmic
flows �i.e., using standard tag types, such as type LutBtoA,
Fig. 8�. The CMM will determine which of the mappings to
use for each image. Note that the transformation from PCS

Fig. 8 The LutBtoA tag–one of the basic tags allowed by the ICC
profile, supplies processing elements that are required for the stan-
dardized algorithmic flow that is shown as a flow diagram. It defines
a gamut mapping from PCS to DCS. Taken from Ref. 12.
Jul–Sep 2008/Vol. 17(3)0
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o DCS actually involves two stages. The first maps from
he full PCS to the device gamut represented in the PCS
pace. The second maps from the device gamut in PCS
pace to the DCS. The mapping stored in the profile tags is

concatenation of these two transforms. In the image-
uided gamut mapping framework, the PCS to DCS map-
ings all share the same second stage, namely, the mapping
rom device gamut in PCS space to the DCS.
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