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Abstract

We extend the treatment of symmetry as a continuous molecular structural property (J. Am.

Chem. Soc. 1993, 115, 8278) to chirality. Rather than labeling objects as being either chiral

or achiral, we provide an exact quantitative measure of this property, which allows one to

distinguish (chiral) molecules from each other by their degree of shape-chirality. The contin-

uous scale is based on the minimal distances that the vertices of a shape must move in order

to attain the nearest achiral symmetry point group (in most cases, Cs, reection symmetry).

A detailed description of the methodology and the practical implementation of the Continu-

ous Chirality Measure (CCM) are given. Its generality and versatility are then demonstrated

on a wide variety of chirality related issues and in various chirality measurements. These

include the identi�cation of the most chiral objects (the most chiral ethane rotamer, the most

chiral tetrahedron, etc.), the chirality evaluation of equicontour-representations of molecular

orbitals, the calculation of the continuous changes in chirality along racemization pathways

(including an all-chiral racemization pathway), the evaluation of chirality of structures with

uncertain point locations, the extension of the CCM to diastereomerism (with a comment on

prochirality and other stereochemical identi�ers), the measurement of the chirality of vari-

ous phosphates, of a fullerene, of helicenes, of knots, M�obius strips, catenanes and of a large

random object (a di�usion limited aggregate), and the calculation of dynamic continuous

changes in chirality during uxional (Walden-type) inversion and in rotating ethane (with a

comment on continuous chirality changes along concerted reaction pathways).
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Thema: The vast majority of molecules are chiral, not achiral; to realize it, one only needs

a su�ciently �ne spatial or temporal resolution of measurement.

1 Background

In a recent citation analysis
1
the dominance of chirality as a central stream in modern

chemistry seems more solid than ever. This paper is devoted to the quantitative evaluation

of geometric chirality as a continuous property of molecular structure.

In previous parts
2�4

we advanced the notion of treating symmetry as a continuous rather

than a descrete structural property. Our main argument has been that the static and dynamic

structures of the ten million known molecules are so rich and diverse, that much is lost

by allowing the assignment of a point-symmetry group to only a small fraction of these

molecules and by trying to de�ne correlations between symmetry and various molecular

properties only in some strict limited cases. We have proposed that a more natural approach

to symmetry issues would be to allow for gradual scaling of this structural property. We have

developed this proposition into a working tool which allows one to evaluate quantitatively,

on a continuous scale, how much of any symmetry element or symmetry group, exists in any

con�guration in any dimension. This tool also allows one to identify the symmetry which is

nearest to the given con�guration; and it allows one to obtain the nearest object with any

desired symmetry - all these without reference to a speci�c ideal shape, but only to a speci�c

symmetry.

The essence of our approach is the general de�nition of the Continuous Symmetry Measure

(CSM) as

S0(G) =
1

n

nX

i=1

kPi � P̂ik
2 (1)

where G is a given symmetry group, Pi are the points of the original con�guration, P̂i are the

corresponding points in the nearest G-symmetric con�guration, and n is the total number of

the con�guration points. The meaning of Eq. 1 is: Find a set of points P̂i, which possesses the
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desired symmetry (G-symmetry), such that the total (normalized) distance from the original

shape Pi, is minimal. S0 is bounded between 0 (the object has the desired symmetry) and

1. For convenience, the expanded scale is:

S = 100 � S0 (2)

Eq. (1) de�nes a metric on the space of all sets of n points, satisfying the requirements

of being positive, commutative and ful�lling the triangle inequality. The main practical

problem, then, is how to �nd the set of P̂i which would lead to a minimal S(G) value. In

Part I
2
we solved this problem for symmetry elements, then generalized it in Part II

3
to

any symmetry group in any dimension, and extended the approach to contours (orbitals)

and to uncertain structural data (e.g. x-ray data) in Part III
4
. The algorithm (the \folding-

unfolding" method) is general and easy to implement. It is redescribed below in the context

of the chirality problem treated in this report. We have provided rigorous mathematical

proofs
3
that the method indeed provides the minimal solution for Eq (1).

A natural outcome of our general approach to symmetry is that S serves also as a continuous

measure of chirality: Since chirality is de�ned as a lack of certain symmetries (the improper

elements)
5
, and since the CSM method allows one to evaluate how much of any of these

symmetries is lacking in a given chiral con�guration, one has to screen over all G
achiral

's to

�nd the one that provides the minimal distance to achirality. For a given set of structures,

the one with the largest S(G
achiral

) value is the most distant from having an improper sym-

metry element, and hence the most chiral; and vice-versa: as S(G
achiral

) approaches zero,

the structure under study is minimally or negligibly chiral. In practice, since the minimal

requirement for an object to be achiral is that it posseses, either a reection mirror (� � S
1
),

an inversion center (i � S
2
) or higher order improper rotation axes S

2n, one has to screen S

over the symmetry groups having these elements. In the majority of cases, one �nds (below)

that the continuous chirality measure is simply S(�), i.e. the distance of a chiral object from

having a reection mirror. In Section 2 we show how to �nd the minimal S(G
achiral

).

It is in order to emphasize here that, at the moment, we are interested in chirality as a
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geometric property, of either a collection of nuclear coordinates, or of equicontours of any

molecular property; we return to this point in Section 3.2.

It is interesting to note that chirality as a special case, and not symmetry which is the general

encompassing property, attracted most of the attempts to design a scale. This, we believe,

is a manifestation of the central role of the former in the very phenomenon of life, and of

the consequent major place that assymmetric synthesis
1
has occupied in chemistry over the

years
6
. Next, then, we briey list previous propositions for the quantitative evaluation of

geometric chirality.

Perhaps the most succesful attempt has been the chain of papers by Kitaigorodskii
7
, Gilat

8
,

Meyer and Richards
9
, and Seri-Levi and Richards

10
, which started with a raw idea by the

�rst, and ended with correlations between chirality and chemical properties of real molecules,

identi�ed by the last. The idea here is that when left and right enantiomers are maximally

overlapped, then the normalized non-overlapping volume is a measure of molecular dis-

similarity, and hence also of chirality
7;8

. Gilat indicated the di�culty of performing this

calculation
8
, but then Meyer et al devised a simple algorithm for an optimal overlap

9
, and

good correlations between this measure and the pharmacological Pfei�er rule
11

were shown

for various drug molecules
10

(it should be noted that the overlapping procedure suggested

in ref. 9,10 is optimal for the speci�c applications indicated there, but not necessarily

maximal). The overlapping idea was adapted by several other groups, e.g. by Buda et al for

the analysis of the chirality of triangles
12

. Also based on the overlapping concept, Kuzmin

et al designed dissymmetry functions
13

for the evaluation of the di�erence between two

enantiomers, using the tensor of inertia as a descriptor.

Another approach which gained much activity is that of \chirality functions" introduced by

Kauzmann et al in 1961
14

and further developed by Ugi
15

by Ruch et al
16

and by King
17

.

A basic idea here has been the attachment of chiral ligands to an achiral skeleton, assign-

ing ligand-speci�c parameters for each such attachment. Deringer reviewed this approach

recently
18

, detailing both its achievements and its di�culties. We note here that our ap-

proach allows both the analysis of sub-sets of vertices (i.e. various ligands) and the analysis
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of the full con�guration as a whole.

Mezey et al have contributed to the understanding of the problem of chirality measures

by applying a number of di�erent approaches: One is based on the principle of energy

weighted fuzzy achirality resemblence
19

, which was based on the Syntopy model of Mezey

and Maurani
20

. The other applies the principle of resolution based similarity measures,

tailored to mimic visual perception of this property
21

.

Rassat introduced the evaluation of the smallest Haussdorf distance between chiral objects

as a chirality measure
22

and his approach was applied by Buda et al for the tetrahedron
23

.

An important source of discussion of chirality issues is Sokolov's book which became available

to Western countries recently
6
. Of particular relevance here is his original algebraic analysis

of chiral sets
6;24

. Other important contributions to the �eld of chirality measures are due

to Chauvin
25

who introduced a pairing constant of equilibria between enantiomers as an

index of topographical chirality for skeletal analogs with di�erent ligands; to Walba
26

and

Flapan
27

who introduced a hierarchical topological classi�cation of chirality; to Harary

and Mezey who introduced the concept of the degree of Jordan curves
21;28

; to Zimpel
29

who disscused topological vs metric descriptors of chirality (c.f. also Mezey's discussion of

this topic
30

); and to Luzanov et al
31

who developed a quantitative measure of molecular

dissymilarity, based on a quantum-mechanical approach.

Chirality measures were also developed in sub-atomic physics. Thus Donoghue et al used

chiral Lagrangians to provide a measure of chirality of the strong atomic interactions as

manifested in kaon decays
32

.

Finally we mention earlier propositions of chirality scales made in our research group. One

approach was based on a rotational dynamic property of chiral objects
33

: If an achiral

object is rotated in a viscous medium, then the force exerted on the object upon clockwise

rotation is exactly the same (except for sign) as the force exerted upon counterclockwise

rotation. Yet, simple chiral objects will be rotated with greater ease in one direction than

in the opposite direction. The di�erence between left and right rotations is then used as

a measure of the degree of chirality. In another attempt we suggested to use the shape
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distortion exerted in a reference molecule upon substitution
34

. Despite the fact that shape

distortion can preserve achirality, (which is a weakness of that approach), it succeeded in a

mode�ed form to correlate nicely a shape distortion parameter of chiral halogenated alkanes

with their optical molecular rotations
35

.

The approach and method we report on here, are di�erent in many aspects from previously

suggested chirality scales (including our own earlier studies), by o�ering the following ad-

vantages:

A) The chirality measure is an integral part of a most general method of measuring the sym-

metry content of any con�guration in any dimension towards any symmetry group. Thus, a

full pro�le of the symmetry properties of a molecule can be given, including its chirality.

B) The method, as will be seen below, is easily applied to virtually all sorts of known chiral

structures: distorted tetrahedra, helicenes, fullerenes, frozen rotamers, knots, equiproperty

contours, chiral reaction coordinates, and so on.

C) Chirality is measured without making reference to an ideal speci�c shape; the reference

is only to the nearest � or S
2n. Thus, the chirality of completely di�erent structures can be

compared.

D) The shape of the nearest achiral object is obtained, and the method is capable of selecting

whether it is �, i or any other S
2n.

E) The scale is well behaved from the point of view that its values can change continuously

within the bounds of zero (achiral objects) and one.

2 Continuous Chirality Measure (CCM)

2.1 The General De�nition and Approach

We de�ne the Continuous Chirality Measure (CCM) as follows: Given a con�guration of

points fPig
n

i=1
, its chirality content is determined by �nding the nearest con�guration of

points fP̂ig
n

i=1
which has an improper element of symmetry, and by calculating the distance
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between the two sets, using Eq. 1. The S0(G
achiral

) thus obtained is the minimal chirality

measure of the given con�guration, on a continuous scale of 0 � S0
� 1 or 0 � S � 100.

P1

P2

P1

P2

P1
^

P1
^

P̂2

~
P2

P = ~
P1 1

P , P21

c. d. e. f.

~

~

b.a.

mirror axis

Figure 1: Unfolding and Folding of a pair of points. a) Given a single point, one

treats it as a coinciding cluster of two points P
1
and P

2
. b) Unfolding the pair

of points by applying the identity transformation to P
1
and reecting P

2
across

the mirror plane, a mirror-symmetric pair of points, ~P
1
and ~P

2
, is obtained.

c) A non mirror-symmetric pair of points. d) Folding the pair of points shown

in (c) results in a non-coinciding cluster of two points, ~P
1
; ~P

2
. e) The non-

coinciding cluster is averaged to P̂
1
and f) unfolded to a mirror-symmetric pair

P̂
1
; P̂

2

As mentioned in Section 1, following this general de�nition, one has to devise a tool for
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locating the set of P̂i's. Such a tool, termed the Folding-Unfolding procedure, was developed

for the general case of continuous symmetry
3
, and is based on the very method of construct-

ing a symmetric object. This was described in great detail in ref. 3; here we summarize it

using the case of mirror-symmetry, �:

Suppose we wish to construct a con�guration which is symmetric with respect to the mirror-

symmetry group fE; �g from a given point, P
1
, and a given reection axis �, as shown in

Fig. 1a. Unless the point is on the reection axis, the minimal number of points needed to

obtain a con�guration having the required symmetry , is 2 (the number of elements in the

symmetry group). Let us therefore treat the given point as a coinciding cluster of two points

P
1
and P

2
(Fig. 1a). To obtain a �-symmetric con�guration we unfold the cluster by applying

E on P
1
(being the identity element, E leaves P

1
in place, i.e., ~P

1
= P

1
) and by applying �

on P
2
obtaining the reected point ~P

2
(Fig. 1b). A mirror-symmetric con�guration has been

unfolded from the given point. The symmetric points can undergo a reversed procedure, and

can be folded into a cluster of two coinciding points fP
1
; P

2
g. This is achieved by applying

the inverse operation ��1 on ~P
2
and E�1 on ~P

1
. Notice that, whereas, folding of 2 mirror-

symmetric points results in a coinciding pair of points, the folding of two non-symmetric

points (Fig. 1c) results in a non-coinciding cluster where some distance exists between the

two folded points (Fig. 1d). If the mirror axis is not pre-determined, then the minimization

of this distance through the search of an optimal mirror-alignment is the key step in the

evaluation of the minimal S(�). Once this minimum is found, the coordinates of the folded

points are averaged obtaining the coordinates of a single average point P̂
1
(Fig. 1e) and the

average point is then unfolded into a �-symmetric con�guration (Fig. 1f).

Most objects of interest have, however, more than two points and since in a �-symmetric

object, each point on one side of the mirror axis or plane has a counterpart on the opposite

side, the other essential step in the process is to divide the points into pairs, each of which

is to be symmetrized around a chosen mirror-axis or mirror plane. For instance, the four

non-symmetric points in Fig. 2a can be divided into pairs such as: fP
1
; P

2
g; fP

3
; P

4
g or

fP
1
; P

3
g; fP

2
; P

4
g etc. It is possible, however, for a point in a �-symmetric object to have no
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counterpoint, whenever that point lies on the mirror-axis. Therefore, the division of points

must allow for sets of pairs and sets of single points. For instance, the four points in Fig. 2a

can also be divided into sets: fP
1
; P

3
g; fP

2
g; fP

4
g. In the symmetrized object, P̂

2
and P̂

4

must fall on the mirror-axis, whereas P̂
1
and P̂

3
will be reections of each other. In this

stage of the procedure, all possible divisions into sets must be found. This is a topological

problem, the solution of which is detailed in Section 2.3.

Having explained the two key steps - the topological step and the folding/unfolding, we

proceed next to show how these steps are practiced in the full procedure.

2.2 The CCM of a Set of Points in 2D with Respect to Reection

P2

P1

~
P3

~
P2

P2

P = ~
P1 1

1P̂ 1P̂

^
3P

P̂ P̂

P3
P3

b.a. c. d.

P̂2 P̂2

P P ~
P4 4

44 4

mirror axis

Figure 2: Obtaining the closest mirror symmetric set of points using the fold-

ing/unfolding method. a) The original con�guration of points P
1
; : : : ; P

4
. The

points are divided into sets: fP
1
; P

3
g; fP

2
; P

2
g and fP

4
; P

4
g. b) Each pair of

points is folded by applying the identity transformation to one point and by

reecting the other point across the mirror plane. The folded points f ~Pig are

obtained. c) Each pair of folded points f ~Pi; ~Pjg is averaged, obtaining a single

averaged point P̂i. d) Each average point P̂i is unfolded by reecting back ac-

cross the mirror plane, obtaining the point P̂j . The points fP̂ig
4

i=1
are mirror

symmetric.
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We demonstrate the evaluation of the chirality content on a set of points (Fig. 2a) in 2D,

with respect to reection. The following steps are carried out:

1. Normalization of the non-symmetric con�guration: a) Determine the centroid

of the con�guration of points. This is done by averaging the coordinates of the set of

points. b) Translate the object so that its centroid coincides with the origin. c) Scale

the con�guration so that the maximum distance between the centroid and the farthest

point is one
36

.

2. Select a symmetry group and translate it so that all its operations pass through

the origin. In our example the relevant groups contain only two elements: the identity

(E) and �. Thus, the reection plane (line in 2D) should pass through the origin.

3. Select a reection plane or line (passing through the origin) from amongst all

possible alignments of this element.

4. Select a division of the points into sets of pairs and single points (the topological

step - Section 2.3). If a set contains one point, duplicate that point. One possible

division, used in the example of Fig 2 is fP
1
; P

3
g; fP

2
; P

2
g and fP

4
; P

4
g.

5. Fold each set of points fPi; Pjg by applying the identity transformation to one point

Pi and by reecting the other point Pj across the mirror plane. The folded points

f ~Pi; ~Pjg are obtained (Fig. 2b). Applying E and � on fP
2
; P

2
g results in an unchanged

P
2
and in a reected ~P

2
. fP

4
; P

4
g is folded similarly. The pair fP

1
; P

3
g is folded by

applying E on P
1
and � on P

3
: P

1
remains in place (P

1
= ~P

1
) and a reected ~P

3
is

obtained. (The order of operations in this case is not important. This however, is not

the case for other symmetry groups, such as S
2n having more than 2 elements

3
).

6. Average each pair of folded points f ~Pi; ~Pjg obtaining a single averaged point P̂i for

each pair (Fig. 2c). In our example, averaging the pair fP
2
; ~P

2
g, point P̂

2
is obtained

and averaging fP
4
; ~P

4
g, point P̂

4
is obtained. Note that both these averaged points

must lie on the reection line �, by de�nition. The pair f ~P
1
; ~P

3
g averages to P̂

1
.
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7. Unfold each averaged point P̂i by reecting back accross the mirror plane, obtaining

the point P̂j (Fig. 2d). If the original set fPi; Pjg consists of a single duplicated point,

then the two unfolded points P̂i and P̂j are at the same location and are considered as

a single point P̂i (Fig. 2d). The points fP̂ig
n

i=1
are mirror symmetric.

8. Calculate S(G�) according to Eq.s (1) and (2).

9. Minimize the chirality value obtained in Step 8 by repeating Steps 3-7 with all pos-

sible division of points into sets and for all possible reection planes. In practice, the

minimization is greatly simpli�ed: in 2D the optimal axis of reection is found an-

alytically (Appendix A.3 in ref. 3), and in 3D we use a closed form solution which

replaces steps 5-7 and is detailed in Section 2.4. The division of points into sets is also

greatly simpli�ed when the con�guration of points is connected (as is usually the case

in chemistry. See Section 2.3).

Rigorous mathematical proof that the procedure outlined here, indeed provides the minimal

S value, was detailed in ref. 3. The procedure outlined here is applicable to 3D as well (Sec-

tions 3-4). The procedure for symmetry groups having improper axes of rotation (including

inversion) is similar and is outlined in Section 2.5.

2.3 Further Comments on the Division of Points into Sets - The

Topological Stage

As described above, this stage corresponds to dividing the points in the given con�guration

into sets, so that for every possible division into sets one �nds the closest achiral con�gu-

ration. Although the coordinates of the points in the set change upon symmetrization, we

impose that all other features and characteristics associated with the points (connectivity,

mass, atomic number, etc) remain invariant under this transformation. Therefore, the con-

nectivity of the points in the original con�guration, namely, the topology of the con�guration,
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determines the division of points into sets. We concentrate in this Section on connectivity

and comment on other physical features in Section 3.2.

P3

P2

P
8

P1

4P

P5
P9 P

11

P
7

P6P
12 P10

P1

P
11 P

12 P10P3

P2
P8

P4
P

9

P5

P
6

P7

a. b.
Figure 3: Connected con�gurations of points. The graph shown in a) is iso-

morphic to the graph shown in b) (see text).

As an example, let us analyse the \2D branched alkane" skeleton shown in Fig. 3a
26;33

.

Points P
1
; : : : ; P

7
are leaf nodes and can be paired between them. Points P

8
; : : : ; P

10
have the

same valency (the number of edges converging at a point) of three and can be paired. Points

P
11

and P
12

stand alone in their valency of 4 and 2 respectively, and will form single-point

pairs (degenerate pairs). Thus a possible division of the points into pairs for measuring

mirror-symmetry and for transforming the con�guration into a mirror-symmetric con�gura-

tion, is: fP
2
; P

5
g; fP

3
; P

4
g; fP

8
; P

9
g; fP

1
g; fP

11
g; fP

10
g; fP

6
; P

7
g; fP

12
g. However the valency

of a point is insu�cient for determining the division into sets. Consider for example points

P
8
and P

10
which have the same valency (3) but obviously cannot be geometrically moved

to be mirror-symmetric, because they are not equivalent in their second order connectivity

(i.e. in the valency of their neighboring points). Thus point P
8
has two neighbors of valency

1 and one neighbor of valency 4, whereas point P
10

has two neighbors of valency 1 and one

neighbor of valency 2. This reasoning does not stop at the second order connectivity (in

Fig. 3a points P
4
and P

6
do not agree in their third order connectivity) but must be taken

to the maximal connectivity of the con�guration (which is equal to the width of the graph).

Thus, the topological stage of evaluating the chirality measure of a connected con�guration

of points, lists all possible division of the points into pairs, by taking into account only

the topology (the connectivity of the points). When considering a con�guration of points

as a graph
37

, the problem of dividing the points into pairs (proper and degenerate pairs)
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reduces to the classical question of listing all graph isomorphisms of order 2
38

. A graph

isomorphism is a permutation � of the graph vertices which leaves the graph topologically

equivalent; i.e. given a graph composed of the set of vertices - V and the set of edges - E,

G = fV;Eg, replacing each vertex i 2 V with its permutated vertex �(i) results in a graph

G
0 = fV 0; E0

g such that the set of edges E0 equals E. Note that if � is an isomorphism of G

then if (i; j) 2 E also (�(i);�(j)) 2 E. A graph isomorphism of order 2 is an isomorphism

where �(�(i)) = i (i.e. either �(i) = i, or, �(i) = j and �(j) = i). For example, the 12

isomorphisms of order two of the graph G shown in Figure 3a are listed in Table 2.3. Thus

Table 1: All possible isomorphic con�gurations of order two of the branched structure shown

in Fig. 3a.

�(P
1
) �(P

2
) �(P

3
) �(P

4
) �(P

5
) �(P

6
) �(P

7
) �(P

8
) �(P

9
) �(P

10
) �(P

11
) �(P

12
)

a P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

b P
1

P
2

P
3

P
4

P
5

P
7

P
6

P
8

P
9

P
10

P
11

P
12

c P
1

P
2

P
3

P
5

P
4

P
6

P
7

P
8

P
9

P
10

P
11

P
12

d P
1

P
2

P
3

P
5

P
4

P
7

P
6

P
8

P
9

P
10

P
11

P
12

e P
1

P
3

P
2

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

f P
1

P
3

P
2

P
4

P
5

P
7

P
6

P
8

P
9

P
10

P
11

P
12

g P
1

P
3

P
2

P
5

P
4

P
6

P
7

P
8

P
9

P
10

P
11

P
12

h P
1

P
3

P
2

P
5

P
4

P
7

P
6

P
8

P
9

P
10

P
11

P
12

i P
1

P
4

P
5

P
2

P
3

P
6

P
7

P
9

P
8

P
10

P
11

P
12

j P
1

P
4

P
5

P
2

P
3

P
7

P
6

P
9

P
8

P
10

P
11

P
12

k P
1

P
5

P
4
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replacing every point with its permuted point of isomorphism (l), for example, we obtain the

graph G0 of Figure 3b which is topologically equivalent to graph G.
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Graph isomorphisms is a widely studied area (see ref. 37-38 for a review) and has many

theoretical results. There are several ways to �nd all graph isomorphisms of order two
38

,

but we use a simple recursive algorithm developed by us
39

.

2.4 Further Comments on the Folding/Unfolding Procedure

P = ~
P1 1

P̂2

P2

~
P1

P̂1

~
P2

mirror axis

~

Figure 4: The conversion of kP
1
� P̂

1
k
2 + kP

2
� P̂

2
k
2 to 1

2

kP
1
� ~P

2
k
2 or to

1

2

k
~~P
1
� P

2
k
2. See text (Section 2.4).

We recall that the general de�nition of S (Eq. 1), requires minimization of the Pi � P̂i

distances, and that according to our procedure, the P̂i's are obtained at the unfolding stage

(Section 2.1, Fig. 1c-f). However, for the case of S(�), the problem can be reformulated so

that only the folded points are considered. Let us demonstrate it on the pair of points P
1
; P

2

in Fig. 4. We show that kP
1
� P̂

1
k
2 + kP

2
� P̂

2
k
2, can be expressed in terms of the folded

points ~P
1
; ~P

2
(Fig. 4): Since P

1
= ~P

1
, the term P

1
� P̂

1
can be replaced by ~P

1
� P̂

1
; and since

~P
2
is a reection of P

2
and P̂

2
is a reection of P̂

1
, the term kP

2
� P̂

2
k can be replaced by

k ~P
2
� P̂

1
k, obtaining k ~P

1
� P̂

1
k
2 + k ~P

2
� P̂

1
k
2. Next, since P̂

1
is the center point (average)
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of ~P
1
; ~P

2
, we have: k ~P

1
� P̂

1
k = k ~P

2
� P̂

1
k = 1

2

k ~P
1
� ~P

2
k. Therefore

kP
1
� P̂

1
k
2 + kP

2
� P̂

2
k
2 = 2(

1

2
k ~P

1
� ~P

2
k)2 =

1

2
k ~P

1
� ~P

2
k
2 =

1

2
kP

1
� ~P

2
k
2 (3)

Denoting by
~~P
1
, the reection of P

1
and noting that P

2
is the reection of ~P

2
, we have that

the last term of Eq. 3 is equal to: 1

2

kP
1
� ~P

2
k
2 = 1

2

k
~~P
1
� P

2
k
2

Thus, in order to minimize the distance between P
1
and P̂

1
and between P

2
and P̂

2
(over all

orientations of �), one may minimize 1

2

kP
1
� ~P

2
k
2 or minimize 1

2

k
~~P
1
� P

2
k
2. Equivqlently,

one can minimize

k
~~P
1
� P

2
k
2 + k

~~P
1
� P

2
k
2 (4)

over all orientations of �. The meaning of Eq. 4 is that all points are reected, and

the sum of distances between all reected points and their matching unreected points

is minimized. Suppose, for instance, that the pairing of the four points in Fig. 5a is

fP
1
; P

1
g; fP

2
; P

4
g; fP

3
; P

3
g. The points are reected into ~Pi (Fig. 5b), and the sum kP

1
�

~P
1
k
2 + kP

2
� ~P

4
k
2 + kP

3
� ~P

3
k
2 + kP

4
� ~P

2
k
2 is minimized over all reections and rotations

of the set ~Pi. the best arrangements` is shown in Fig. 5c.

c.b.a.
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P

~
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~
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P1
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4
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1
1

2

2
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3
3

Figure 5: a) The pairing of the four points is, for instance,

fP
1
; P

1
g; fP

2
; P

4
g; fP

3
; P

3
g. b) The reected points ~Pi. c) The minimal dis-

tance between the original and reected set of points.

Given two sets of points and given a matching between points of the two sets, the problem of

�nding the optimal rotation and translation which minimizes the sum of squared distances
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between the corresponding points is a classic problem of pose estimation
58

. Several methods

have been suggested to solve this problem analytically
59

. We follow the method of Arun et

al
59a

which is summarized in the Appendix.

2.5 Improper Axes of Rotation

The above described procedure for S
1
� � can be straightforwardly extended to �nd the

closest S
2n-symmetric con�guration for any n. Here the points are divided into sets having

either 2n ordered points, 2 points, or having a single point (in the last two cases the points

will lie in the symmetrized object, on the improper rotation axis or at its intersection with the

plane, respectively). The folding and unfolding are performed by applying rotation-reection

rather than reection.
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~
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~
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~
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d.c.
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^
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^
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^
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^

^
^

^

^
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Figure 6: The steps of determining the continuous chirality measure with

respect to an improper axis of rotation (S
2
� i, in this case). See Section 2.5

for details.
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The procedure for S
2n is thus as follows (Fig. 6, demonstrated for S

2
):

1. Normalize the con�guration, as in Step 1 in Section 2.2.

2. Select an improper rotation axis, passing through the origin (Fig. 6a).

3. Select a division of the points into ordered sets (a permutation of the points)

where each set contains either 2n points, 2 points or a single point (in our exam-

ple the �rst two cases are equivalent). If a set contains a single point, that point

is multiplied 2n times. If the set contains 2 ponits, each of the two points is mul-

tiplied n times. For example in Figure 6a a possible division with respect to S
2
is:

fP
1
; P

8
g; fP

2
; P

5
g; fP

3
; P

6
g; fP

4
; P

7
g; fP

9
g.

4. Fold each of the sets of points by applying an element from the ordered set of ele-

ments, E;S
2n; S

2

2n
: : :, to each point in the ordered set. Except for the case fE;S

2
g, an

ordering of elements must be selected here. For the example of Fig. 6b, the identity

transformation is applied to points P
1
; P

2
; P

3
; P

4
; P

9
, and a �=n rotation-inversion is

applied to points P
8
; P

5
; P

6
; P

7
; P

9
. The folded points f ~Pig

2n

i=1
are obtained (Fig. 6b).

5. Average each set of folded points f ~Pig
2n

i=1
obtaining a single averaged point P̂

1
for

each set (Fig. 6c).

6. Unfold each average point P̂
1
by applying E�1; S�1

2n : : : as in step 4, on the averaged

point. The unfolded points obtained are fP̂ig
2n

i=1
. Thus, P̂

1
is the identity applied to

P̂
1
, point P̂

8
is obtained by applying a �=n backward rotation-inversion to point P̂

1
,

point P̂
5
is obtained by applying a backward proper-rotation of 2�=n to point P̂

2
and

so on (Fig. 6d). The points fP̂ig
2n

i=1
are S

2n-symmetric.

7. Calculate S(S
2n) according to Eq.s 1 and 2.

8. Minimize the chirality value obtained in Step 7 by repeating Steps 2-6 with all possible

division of points into sets and for all possible improper-rotation axes.
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As in the mirror-symmetry case, the division of points into sets is greatly simpli�ed when

the con�guration of points is connected (or partially connected). In the case of S
2
, the

topological stage as described in Section 2.3 is applicable, since both the mirror-symmetry

group and the inversion-symmetry group have two elements and the possible divisions into

sets reduces to �nding isomorphisms of order two (see Section 2.3). In all other cases of

S
2n-symmetry, the topological stage as described in Section 2.3 is applicable with slight

modi�cations: the topological stage �nds all isomorphisms of order 2n of the given graph.

This is performed by relieving the restriction that match(i) = j () match(j) = i (which

is equivalent to the restriction: match(match(i))= i).

3 Further Properties of the Continuous ChiralityMea-

sure

3.1 Maximal Chirality Values and the Most Chiral Objects

a. b.
Figure 7: The achiral object nearest to the spiral (a) coincides with the nearest

mirror axis (b). The CCM value for this spiral is 8.83.

The upper bound of S0 (Eq. 1), namely 1.0, is attained in cases where the nearest symmetric

object requires all of the Pi vertices to move the maximal distance of 1 towards P̂i (recall

the normalization step, Section 2.2). This condition is ful�lled, for instance, if one asks how

much C
7
-ness exists in a perfect hexagon (not allowing any addition of vertices): Since the
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object nearest to a hexagon and having C
7
-symmetry, is a single point located at the centroid

of the hexagon, one obtaines for the hexagon S(C
7
) = 1:0 (for an additional example see

Fig. 18 in ref. 2).

By the same token, if one imposes the determination of the chirality of a perfect hexagon

with respect to S
8
symmetry rather than with respect to the obvious S

1
� � element, then

again, the nearest S
8
-achiral object is the centroid with S(S

8
) = 1:0. In the majority of

cases, however, the nearest achiral object possesses a � element, and with such objects the

maximal value of 1 is not reached: The maximal distance moved in this case by the set

of Pi's is not the collapse to the centroid but the distance to P̂i's located on the reection

line(2D) or plane (3D). Thus, since
X

i

kPi � P̂i(centroid)k
2 <
X

i

kPi � P̂i(plane)k
2 one has

that S0(�) < 1. Fig. 7 shows one such case where the nearest achiral object is the original

con�guration colapsed to a reection line (the CCM value is 8.83).

a. b. c.-1 -1 -1

+1

(x,y)

(0,1)

(-x,-y-1)

Figure 8: By parametrizing the space of all triangles in 2D (a), the most chiral

triangle (b) and the nearest achiral triangle (c) are found.

Next we evaluate the maximal chirality value of the classical Pythagorean tetraktys
40

,

namely, one point, 2 points - a line, 3 points - a triangle and 4 points - a tetrahedron.

The chirality of the �rst two cases is zero for obvious reasons (and we note that this value

is obtained by following the protocol of our procedure as well). For the evaluation of the

maximal chirality of the triangle we employ a search program as follows: We denote the

three vertices as (0:0; 1:0); (x; y) and (�x;�1:0 � y). The sum of coordinates is zero, and

thus the centroid is at the origin (0:0; 0:0) (Fig. 8a). Following Step 1 in Section 2.2, the

values of x,y are taken so that no vertex is outside the unit circle. A rigorous search is
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performed by densely sampling the x and y values in the range [�1 : : : 1] and verifying that

no vertex is outside the unit circle. The CCM is evaluated for every sampling and those

values of x and y which maximize the CCM value, are found. We �nd that the CCM

is maximized when x = 0:220183 and y = �0:719058 representing a triangle with vertex

coordinates (0:0; 1:0); (0:220183;�0:719058) and (�0:220183;�0:280942). Thus, the most

chiral triangle, a scalene, has an edge (angle) ratio of 1 : 0:75 : 0:36 and its CCM value

is S0

max
(�) = 0:030259; it is shown in Fig 8b. Fig 8c shows the closest achiral triangle to

the most chiral one (an isosceles triangle). In a previous report
2
we evaluated the S0

max
(C

3
)

of a triangle and obtained 1=3. The result S0

max
(�) < S0

max
(C

3
) is expected: it reects the

situation that in order to attain a C
3
con�guration, one has to search for near speci�c points,

whereas in order to attain achirality one has to search for the shortest distance to a reection

line; hence also the rather small value of S0

max
(�).

The search for the most chiral tetrahedron (3D simplex) is carried out similarly: We denote

the vertices as (0:0; 0:0; 1:0); (x
1
; 0:0; z

1
); (x

2
; y

2
; z

2
) and (�x

1
�x

2
;�y

2
;�1:0�z

1
�z

2
), which

places the centroid at the origin (0:0; 0:0; 0:0) (Fig. 9a). As in the triangle case, a rigorous

search is performed by densely sampling the range [�1 : : :1] for the values of x
1
; z

1
; x

2
; y

2
and

z
2
. For every set of parameter values the points of the tetrahedron are veri�ed to be in the

unit sphere and the CCM value is evaluated. We �nd that the CCM is maximized when x
1
=

0:394532, z
1
= 0:252185, x

2
= �0:136945, y

2
= �0:298958 and z

2
= �0:333343 representing

a tetrahedron with vertex coordinates (0:0; 0:0; 1:0); (0:395; 0:0; 0:252); (�0:137; 0:299;�0:333)

and (�0:258;�0:299;�0:919). Thus, the most chiral tetrahedron has an edge ratio of

1 : 1 : 1 : 1:6 : 1:6 : 2:3 and for each of its 4 constructing triangles the ratios are: 1 : 1 : 1:6,

1 : 1 : 1:6, 1 : 1:6 : 2:3 and 1 : 1:6 : 2:3. Its CCM value is S0

max
(�) = 0:040544, and it is

shown in Fig 9b. Very interestingly, the most chiral tetrahedron is, perfectly C
2
symmetric

(The C
2
axis bisects the edges 14 and 23). Unlike the case of the triangle, the closest achiral

structure is colapsed to a plane (Fig. 9c).

For the maximal chirality of ethane rotamers, see Section 4.2 (c.f. ref. 13c). See also Gilat

and Gordon who recently obtained the theoretical upper bounds for their chiral coe�cients
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a.

b. c.
Figure 9: By parametrizing the space of all tetrahedra (a), the most chiral

tetrahedra is found. b) The most chiral tetrahedron is a C
2
simplex (the C

2
-

axis is the dashed line). c) The closest achiral con�guration is the tetrahedron

colapsed to a plane (shown as coinciding with the plane of this page).

of convex sets
41

: 0:3954 and 0:6977 for 2D and 3D respectively. Buda's result for maximal

chirality of a triangle
12a

is paradoxical
12b

. See also ref 23 for an application of Rassat's

approach
22

to the question of maximal tetrahedral chirality.

3.2 Some Comments on Chirality Assesment of Physical Prop-

erties: The Chirality of Equiproperty Contours

It is in order to re-iterate here that the CCM analysis as described so far has delt purely

with shape
42

. Thus, the most chiral tetrahedron obtained above, refers to vertex coordinates

only, while this is directly applicable to, say, vibrational distortions of CX
4
, the question
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arises as to how can one approach chirality issues of molecules, for which chirality is initially

linked with di�erent atoms (CWXY Z)
13

?

We suggest that since virtually all chemical properties and many of the molecular physical

properties are determined by the (frontier) orbitals and by the ensuing molecular charge

distributaions, equi-property contours unify the representation of heteronuclear molecules

into a homogeneous continuous representation, on which the CCM can then be applied. Thus,

although F and Cl cannot be symmetrized, charge density distributions induced by these

atoms, can. To implement this solution one has, therefore, to extend the CCM analysis to

continuous surfaces or contour lines
4;21

. This is performed by representing the contour as a

string of equally spaced points (as dense as one wishes) and then performing the CCM folding-

unfolding procedure on the dense polygon as described in Section 2.2. As a preliminary

example of how this is done, we evaluate the chirality of the contours of the lone-pair orbital

of a distorted water molecule (perhaps a frozen moment of a vibration, or a water molecule

in a matrix of amorphous ice, or a water molecule trapped in a micropore) as shown in

Figure 10. The ratio of lengths of the two O-H bonds is 0.9 (instead of 1.0) and the H-O-H

angle is 104�.
43

. Each of the two shown contours is represented as a string of about 200

points and the CCM with respect to mirror symmetry evaluated. It is seen quantitatively

(Fig. 10) that the distortive e�ects of the unequal bonds, fades away from the inner to the

outer contours.

It is also in order to recall here that our method evaluates the CCM by identifying the

minimal distances, regardless of whether motion along the shortest-distance line is possible

physically. S(G) values which are not minimal, but which correspond to physical pathways

of symmetrization, are of great interest by themselves. We leave for the moment further

extensions of these comments and return to the main theme of this report, namely pure

shape chirality of collections of connected vertices.
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S(  ) = 0.213

b.a.

a.

b.

σS(  ) = 0.116σS

σS

Figure 10: Two equi-amplitude contours of the wave function of the lone-pair

orbital of distorted water molecule are shown43. The two contours are spaced

by 0.05 Bohr�3=2, and the value of the outer one is 0.576 Bohr�3=2. S(�) values

are indicated in the �gure. The CCM value for the next inner contour (not

shown) is 0.248.

3.3 The Continuous Change in Chirality along Racemization

Pathways

Given a pair of enantiomers, one can racemize from one to the other by various routes. Stan-

dard intuition would, perhaps, dictate that at a certain point along the racemization pathway,
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an achiral intermediate should be encountered, namely a structure with S(G
achiral

)=0, where

left changes to right. Remarkably, this, by and large, need not be the case: The transition

from left to right can take such a pathway that never passes through S(G
achiral

)=0
6;13c;26

.

An example is shown in Fig. 11 for the racemization pathway (1). It is seen in the CCM

analysis of this racemization pathway (Fig. 11b) that the S value does not reach zero at any

point. One must conclude, that somewhere along this pathway there exists a structure that

is neither left nor right and yet is chiral. Its location is intimately linked to the speci�c de�ni-

tion of left and right handedness. A detailed analysis of this most interesing phenomenon and

of the tentativeness of the very concept of left/right are treated in a subsequent report. (It

is this tentativeness which prompts us not to assign, left-handedness or right-handedness to

the chiral objects in this report, whenever such assignment is not needed for the discussion).

3.4 The Chirality of a Set of Vertices With Uncertain Locations

Information obtained from any analytical instrument has a certain degree of uncertainty of

both inherent and experimental origin. In x-ray crystallographic analysis, for instance, the

uncertainty in the location of atoms as obtained by di�raction is due to crystal imperfections,

thermal motion, etc.
16

. We address ourselves now, to this problem
4
, focusing on chirality.

Quite often the data is given as a collection of probability distribution functions of point

locations. Given points with such uncertain locations, the following questions are of interest:

� What is the most probable closest achiral shape represented by the data?

� What is the probability distribution of the chirality measure values for the given data?

Let us begin our discussion with the �rst of these questions. Fig. 12a shows a con�guration

of two points whose locations are given by normal distribution functions. The dot represents

the expected location of the point and the rectangle represents the standard deviation where
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Figure 11: a) A chiral (1) and achiral (2) racemization pathway. b) The

Continuous Chirality Measure of the two pathways. The abscissa represents

a single cycle of evolution along the pathways. Pathway (1) never drops to

S(G
achiral

) = 0.

the width and length are proportional to the standard deviation. In evaluating the most

probable achiral shape, we apply the Maximum Likelihood criterion
61

.

Let us consider, then, a simple case where two measurements Q
1
; Q

2
in 2D are given

(Fig. 12a), assumming their locations are given as normal probability distributions with

expected location Pi and covariance matrix �i, i.e Qi � N (Pi;�i) i = 1; 2. We aim at �nd-

ing the mirror-symmetric con�guration of points at locations fP̂ig
2

i=1
which is optimal under
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a. b.

θ θ

θθ

c. d.
Figure 12: The folding-unfolding procedure, applied on two uncertain locations

Q
1
; Q

2
: a) Original data; b) the folding; c) averaging; and d) unfolding - a �-

symmetric pair is obtained. Compare with Fig.1c-f

the Maximum Likelihood criterion which, maximizes the posteriori probability distribution.

Denote by ! the centeroid of the most probable mirror-symmetric set of locations P̂i: ! =

1

2

(P̂
1
+ P̂

2
). The point ! is dependent on the location of the measurements (Pi) and on the

probability distribution associated with them (�i). Intuitively, ! is positioned at that point

about which the folding (described below) gives the tightest cluster of points with small

uncertainty (small standard deviation). We assume for the moment that the centroid ! is

given. A method for �nding ! is included in the detailed derivation of this method in ref. 4.

Given the angle � of the reection axis, we use the following variant of the folding method
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Figure 13: a) A con�guration of 6 measurement points Q

1
; : : : ; Q

6
. b)

The measurements fQig
6

i=1
, are divided into 3 pairs of measurements

(fQ
1
; Q

6
g; fQ

2
; Q

5
g; fQ

3
; Q

4
g) and the folding is applied seperately to each

pair obtaining the measurements f ~Qig
6

i=1
. Averaging and unfolding are then

carried out as in Fig. 12.

(Section 2.2):

1. The two measurementsQi � N (Pi;�i) are folded by reecting one of the measurements

(Q
2
) about the reection axis and leaving the other measurement (Q

1
) as is. A new

set of measurements ~Qi � N ( ~Pi; ~�i) is thus obtained (Fig. 12b).

2. The folded measurements are averaged using a weighted average based on the distri-

bution of the measurement, and a single point P̂
1
is obtained (Fig. 12c). Averaging is

performed by considering the two folded measurements ~Q
1
; ~Q

2
as two measurements

of a single point and P̂
1
represents the most probable location of that point under the

Maximum Likelihood criterion.

P̂
1
� ! = (~��1

1
+ ~��1

2
)�1(~��1

1
( ~P

1
� !) + ~��1

2
( ~P

2
� !))

3. The average point P̂
1
is unfolded as described in Section 2.2, obtaining points fP̂ig

2

i=1

which are perfectly mirror-symmetric with respect to the mirror-axis passing through

! at an angle � (Fig. 12d).
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Whenm = 2q measurements are given, themmeasurements fQig
m�1

i=0
, are divided into q pairs

of measurements, and the folding method as described above is applied seperately to each

pair of measurements following the general procedure of Section 2.2 (Fig. 13). Derivations

and proof of this case are also found in ref. 4. Several examples are shown in Figure 14,

where for a given set of measurements, the most probable mirror-symmetric shapes were

found.

a. b. d.c.
Figure 14: Examples of con�gurations of six measurements (dashed lines)

given by a normal distribution function (marked as rectangles having width

and length proportional to the standard deviation) and the most probable

�-symmetric shapes (solid lines).

Next, let us treat the second general question, namely, the probability distribution of chi-

rality values. Consider again the con�gurations of 2D measurements given in Fig. 14 where

each measurement Qi is a normal probability distribution Qi � N (Pi;�i). The probability

distribution of the chirality values of the original measurements is equivalent to the proba-

bility distribution of the location of the \average" point given the folded measurements as

obtained in Step 1 and Step 2 of the algorithm. It is shown in ref. 4 that this probability

distribution is a �2 distribution. In Figure 15 we display distributions of the chirality value

for the various measurements of Fig. 14. As expected, the distribution of chirality values

becomes broader as the uncertainties (the variance of the distribution) of the measurements

increase.
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Figure 15: Probability distributions of the chirality measure, given for the sets

of measurements in Fig. 14a-d. In this example the reection line (the y-axis)

and the pairing were pre-determined.

3.5 Chirality-Related Stereochemistry: Diastereomerism and Prochi-

rality

The general approach of continuity can be extended to other stereochemical concepts as

well. Here we comment on two chirality-related concepts, distereomerismand prochirality
44

.

Consider the 2D diastereomeric pairs in Fig. 16 with the two chiral centers at positions 1

and 2: R
1
R
2
;S

1
S
2
(2D-threo) and R

1
S
2
;R

2
S
1
(2D-erythro) (here we follow the notation in

ref. 33).

The chirality content of the threo pair must be di�erent than that of the erythro pair (it is

S(�) = 2:45 and 3:16, respectively). We can then de�ne DE = kS(�)
1
� S(�)

2
k where DE

is the diastereometric excess and S(�)
1
, S(�)

2
are the CCM values of the diastereomers. Its
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Figure 16: The application of the CCM to diastereomers.

bounds are 0 � DE � 100. For the pair in Fig. 16, DE = 0:71. Note that the distance from

one enantiomer to each of the two diastereomeric enantiomers, is not equal: The grounds

of comparison between the two pairs is the minimal distance to chirality. Note also that

for the case of a meso-RS pair, DE = S. Similarly, the diaseteromeric interactions between

one chiral species and the R and S forms of another one, can be quanti�ed continuously

from the point of view of the chirality content. Various possible mutual alignments in such

diastereometric interactions will show up in di�erent chirality measures.

For diasterometric pairs, and actually for molecules containing more than two chiral centers,

one may wish to analyse the chirality of each of the centers. A natural way to do so would be

to replace the subtituents on the chiral center with the centroids of each of the substituents.

Thus, the chirality of center 1 in Fig. 16 would be calculated using two substituents: 3,

and the centroid of 4,2,5 (� 20); and the chirality of center 2, using the three substituents

4,5, and the centriod of 1,3 (� 10). We obtain for center 1, S(�) = 3:37 and for center 2

S(�) = 0:285, a di�erence which agrees with intuition.

Finally we comment on prochiral molecules, namely, achiral molecules which carry enan-

tiotopic atoms or groups. This term deals with the potential of an achiral molecule to become

chiral. Following the theme of this report, the degree of prochirality can also be analysed

as a continuous property
44

. One can evaluate it by either replacing an enantiotopic group
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with other groups, or by analysing the shape distortion exerted on the prochiral molecule,

when placed in a chiral environment. We likewise notice, that stereotopism and homotopism

(exchange by a Cn operation) are open to be analysed on a continuous scale as well, following

the CCM and CSM procedures.

4 A Compendium of Chiral Structures and their Chi-

rality Measures

The CCM method can be easily applied to virtually any chiral molecule, structure or process.

We regard this property of our approach as an important advantage of it. The purpose of

this section is to demonstrate the virsatility of the tool we developed. Needless to say, a next

stage in such an investigation is to identify correlations between the CCM values of molecules

and measurable physical and chemical properties; indeed our current research focuses on such

issues in several of the following examples.

4.1 Static Structures

� Phospates: Following the Thema of this work, we recall the �nding that practically

all phosphates are not tetrahedral in their crystaline state
45

, a problem delt with by

Dunitz et al
46

. (The tetrahedricity of one such distorted phosphate was evaluated in

ref.3). It follows that unless the tetrahedral distortion is symmetric itself (for instance

one of the vertices is pulled out into a C
3v tetrahedron), phosphates are, by and large,

chiral. Table 2 collects the CSM and CCM analysis of a number of phosphates from

a compilation of phosphate-coordinates
45

. Measures of tetrahedricity, C
3v-ness and

chirality are shown. Notice that S(Td) values are typically larger than S(C
3v) values,

which in turn, are larger than the chirality S(�) values. This is a reection of the

fact that Cs is a subgroup of C
3v which is a subgroup of Td; that is, it is \easier"

for the distorted tetrahedron to \�nd" a near-by reection plane (in order to attain
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a. c.

b. d.
Figure 17: A chiral fullerene having 28 carbon atoms and its closest achiral

con�guration. a,c) The fullerene from two view points. b,d) The closest chiral

con�guration from the same view points. Notice that due to the connectiv-

ity, the closest achiral structure is the original fullerene collapsed onto the

symmetry plane.

b.a.

Figure 18: The structure of hexahelicene (a) and undecahelicene (b), as ob-

tained from crystalography data.

achirality), than to shift all vertices to a perfect tetrahedron position. Note that none

of the measured S(�) values exceeds the S
max

(�) of a tetrahedron (4.054) evaluated in

Section 3.1.
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a. b.

c. d.
Figure 19: Some topological structures which give rise to chirality: a) M�obius

strip and b) its' nearest achiral structure c) tilted catenanes (the two planes are

tilted at 25.6� to each other), and c) knots. Their CCM values are respectively:

1.9470, 0.4113 and 0.5299.

a. b.
Figure 20: a) A Chiral di�usion limited aggregate (DLA). b) The nearest

achiral �gure. The chirality measure of the DLA in (a) is 3.40.

� Fullerenes: some members of this fascinating group of molecules, are chiral
47

(and an

enantiomeric resolution was acheived recently
48

). Our method is capable of evaluating

the degree of chirality of these molecules. As an example, let us take the C
28
-fullerene

shown in Fig. 17a,b. The symmetry of this fullerene is D
2
(achiral point group), and

it is one of two topologically distinct C
28

cages (the other being of Td symmetry)
49

.

The nearest achiral structure of the D
2
isomer, which obeys our crucial restriction of
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preservation of topology, is the planar collapsed network shown in Fig. 17c,d. The

chirality measure of the D
2
-C

28
fullerene is 24.943.

� Helicenes: Helical compounds from the smallest twisted molecules up to DNA, comprise

a major class of chirality in chemistry
50

. A classical group of molecules in this class

are the helicenes
51

. The CCM approach is capable of evaluating the chirality content

of this type of molecules as well. Fig. 18 shows the structure of hexahelicene and

undecahelicene, as obtained from crystalography data
52

. The chirality values of these

two molecules are 5.645 and 10.154 respectively: The larger helicene is more chiral

than the smaller one
53

.

� Knots, M�obius Strips and Catenanes: We continue to demonstrate the versatility of

the CCM approach on other topological distinct structures which give rise to chiral-

ity,namely, knots, M�obius strips and substituted catenanes
26;27

. Examples of these

structures are shown in Figure 19 along with their chirality values. For the knot and

the tilted catenane, the nearest achiral structure is planar (or, if one prefers, in�nitisi-

maly close to a plane). For the M�obius strip, the nearest achiral structure colapses the

twist to a point (Fig. 19b).

� Large Random Objects: Another family of objects for which chirality analysis is not

trivial are the large (random) objects. Fig. 20a shows a chiral di�usion limited aggre-

gate (DLA)
54;55

. We commented already on some basic conceptual di�culties in the

application of the standard terms \symmetry" and \chirality" to such objects
3
, and

will expand on it later. Here, however, we show that the CCM tool is capable of dealing

with such complex structures as well. For DLA's, all points are contour points
54

, and

therefore a contour analysis
2;3

can be applied here, which simpli�es the calculations.

The chirality measure of the DLA in Figure 20a is 3.40. The nearest chiral structure is

shown in Figure 20b. For actual experimental examples of chiral growth phenomena,

see for instance, ref. 56.
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4.2 Dynamic Chirality Changes: Fluxional Molecules, Vibra-

tions, Rotations and Concerted Reactions

120
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Figure 21: Chirality during the process of a of a Walden inversion. a) In

this example, the three arms marked P
2
; P

3
; P

4
move with random phase shifts

(of 2=32; 3=32 and 6=32 of the cycle). b) The changes in chirality during the

inversion.

Given a su�ciently fast camera, one can follow the continuous changes in the symmetry of

any dynamic process. In Parts 2 and 3 we demonstrated it for a uxional, Walden-type

ip-opping
3
, for vibrating CX

4

3
and for roatating ethane

3;4
, and analysed the continuous

changes in the relevant symmetry groups. If the dynamic process removes an improper

element of symmetry from the molecule then it becomes chiral. Actually, as we show now,

these systems are chiral during most of the dynamic process. Comming back to some of

the examples of Parts 2,3 , we now perform a Walden inversion so that the movements

of P
2
; P

3
; P

4
are phase shifted (see Fig. 21a and details in the caption), and note that the
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Figure 22: The changes in chirality of a rotating ethane structure (a) are shown

in (b). Note that ethane is chiral most of the time.

chirality is retained almost throughout the cycle (Figure 21b); and we note that rotating

ethane (Fig 22a)
4

is chiral (D
3
) most of the time (Fig 22b)

13c
. Finally, we note that

structural changes along the pathway of a concerted reaction, again, may be chiral through

most of the process. Consider for instance, the intermolecular approach of the Diels-Alder

reaction between, say, 1,3-butadiene and propene; or a [2+2] reaction between two di�erently

substituted ethylenes, not ideally aligned
57

; or a disrotatory ring openning, in which the

rotating ends are not exactly in phase, etc. In all of these cases, the reacting system is chiral,

its degree of chirality changes throughout the process, and the CCM approach is capable of

quantifying it as a novel reaction coordinate. Research in this direction is in progress in our

research group.
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5 Conclusion

We have presented a versatile general tool for quantifying shape-chirality as a continuous

structural property. This report was devoted to a detailed exposition of the method for both

simple and more complicated cases. The general behaviour of the chirality measure was

analysed for various shapes and structures, for limiting cases, and for continuous structural

changes. Returning to the Thema of our work, we hope we were able to convince the

reader that chirality should be considered as a universal structural property (existing even

in classical \achiral" structures), and that it is up to the detectability limits of analytical

tools to realize this universality.

In subsequent reports we expand several topics which we only briey touched in this intro-

ductory paper (especially those outlined in Section 4), emphasizing, both basic issues of the

very concept of chirality and correlations between the chirality values and other molecular

properties.
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Appendix

Pose Estimation Algorithm

Given 2 sets of points fPig
n

i=1
and f ~Pig

n

i=1
and given a correspondance between them (without

loss of generality, we assume point Pi corresponds to point ~Pi):

1. Calculate the centeroids P and ~P of the two sets.

2. Translate each set so that its centroid aligns with the origin. i.e. Qi = Pi � P and

~Qi = ~Pi �
~P for i = 1 : : : n

3. calculate the 3x3 matrix H:

H =
nX

i=1

Qi
~Qt

i

4. Find the Singular Value Decomposition (SVD) of H i.e. �nd 2 orthonormal 3x3 matri-

ces U and V and �nd a diagonal 3x3 matrixW such that H = UWV t. (Computational

algorithms are readily available - see ref.60 for example).

5. Calculate the rotation matrix R:

R = V U t

The translation T = P � ~P and the rotation matrix R optimally transform points f ~Pig such

that the sum of squared distances between these points and their corresponding point Pi is

minimal. Note that the determinant of R should be one. In some extreme cases this is not

so and additional steps are required
59a

.
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Table 2: Symmetry and Chirality Measures of Phosphates.

Compound� Td C
3v �

Na
3
H(PO

4
)
4
(10) 20.5691 10.3628 0.4784

25.8591 9.5236 0.4345

37.3978 21.695 0.0693

28.0098 0.6014 0.0171

(NH
4
)
2
HPO

4
(35) 13.5883 3.3414 0.1279

C
7
H

19
N

3
� 3=2H

3
PO

4
� 3H

2
O (19) 34.177 12.3783 0.4417

21.2617 9.0154 0.0903

31.2404 11.1761 0.1636

(NH
2
)
2
�CO �H

3
PO

4
(78) 22.6043 2.4808 0.8037

CH
3
COOH �H

3
PO

4
(61) 20.6114 3.4992 1.0853

18.2685 2.0785 0.1983

H
3
PO

4
� 1=2H

2
O (16) 17.9484 4.2638 0.2249

14.4922 2.4886 0.2113

N
2
H

6
(H

2
PO

4
)
2
(18) 33.959 12.4358 1.7559

(C
6
H

4
NO

2
)
3
PO

4
(38) 29.6991 4.5375 0.4785

(NH
4
)
3
PO

4
� 3H

2
O (31) 31.7482 6.9858 0.0558

Na
2
HPO

4
(53) 23.7603 12.8566 2.1199

C
10
H

26
N

4
� 2H

3
PO

4
� 6H

2
O (84) 28.9243 8.6902 1.9072

Mn
2
(PO

4
)Cl (33) 19.7312 14.2482 0.9310

Mn
2
(PO

4
)F (32) 20.0056 11.7915 0.4144

MgHPO
4
� 3H

2
O (15) 33.0826 0.0689 0.0051

CaHPO
4
(46) 29.3306 3.4538 0.1045

25.9993 19.2799 0.1945

Mg
3
(PO

4
)
2
(20) 34.3814 15.5892 0.5321

C
6
H

15
O

2
N

4
� 2(HPO

4
) � 6H

2
O (81) 29.4232 2.4762 0.2250

C
5
H

11
N

3
(H

2
PO

4
)
2
�H

2
O (59) 27.285 5.2666 0.4227

30.8529 5.6503 0.2250

Cd
2
P
2
O

7
(58) 17.1107 11.2703 0.4227

15.3496 7.7854 0.9439

�The numbers in brackets refer to Baur's numbering. More than one entry per compound,

refer to distinctly di�erent phosphate moieties in the crystal.
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