
Using Bilateral Symmetry To Improve 3D Reconstruction FromImage SequencesHagit Zabrodsky and Daphna WeinshallInstitute of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, Israelcontact email: daphna@cs.huji.ac.ilAbstractIn previous applications, bilateral symmetry of objects was used either as a descriptive featurein domains such as recognition and grasping, or as a way to reduce the complexity of structurefrom motion. In this paper we demonstrate how bilateral symmetry can be used to improve theaccuracy in 3D reconstruction. The symmetry property is used to \symmetrize" data beforeand after reconstruction. We �rst show how to compute the closest symmetric 2D and 3Dcon�gurations given noisy data. This gives us a symmetrization procedure, which we apply toimages before reconstruction, and which we apply to the 3D con�guration after reconstruction.We demonstrate a signi�cant improvement obtained with real images. We demonstrate therelative merits of symmetrization before and after reconstruction using simulated and real data.1 IntroductionThe most common symmetry in our environment is three dimensional mirror symmetry. It is thusnot surprising that the human visual system is most sensitive to bilateral symmetry. A common casein human and computer vision is that only 2D (projective) data is given about a 3D object. Manystudies deal with inferring 3D symmetry from 2D data. These studies deal with perfect non-noisydata. In this paper, we deal with noisy 2D data by extending the notion of Symmetry Distancede�ned in [17, 18] to 2D projections of 3D objects which are not necessarily perfectly symmetric.We describe in this work the reconstruction of 3D mirror symmetric connected con�gurations fromtheir noisy 2D projections.More speci�cally, we describe the enhancement in performance that can be obtained usingexisting structure from motion methods (or structure from a sequence of 2D images), when thereconstructed object is known to be mirror-symmetric. We consider here objects whose 3D structureis a mirror-symmetric connected con�guration (a 3D graph structure composed of one or moreconnected components). We are given several noisy 2D projections of such an object, where theprojection is approximately weak perspective (scaled orthographic). As a working example, wecombine the invariant reconstruction algorithm described in [16] with a symmetrization method,to improve the input and output data in the structure reconstruction from several views.Exploiting the fact that the 3D structure to be reconstructed is mirror-symmetric, we incorpo-rate a symmetrization procedure into the reconstruction scheme as a separate module, independentof the reconstruction method used. We employ two approaches:� correct for bilateral-symmetry prior to reconstruction1



Computer Vision and Image Understanding, 67(1):48-57, July, 1997 2� correct for bilateral-symmetry following reconstructionCorrection for symmetry following reconstruction is performed by applying any existing methodof structure from motion with no a-priori symmetry assumption on the reconstructed object. Fol-lowing the reconstruction, the symmetry assumption is exploited and the mirror-symmetric struc-ture closest to the reconstruction is found. This last stage is performed using a closed form methoddescribed in Section 3.1 for �nding the closest mirror-symmetric con�guration to a given 3D con-nected con�guration.Correction for symmetry prior to reconstruction requires application of some symmetrizationprocedure to the 2D data with respect to the 3D symmetry. In Section 3.2 we describe a sym-metrization procedure of 2D data for projected 3D mirror-symmetry. Following the symmetrizationprocedure, any existing method of reconstruction of general 3D structure from 2D data can be ap-plied. Notice that this procedure does not ensure that the �nal reconstructed 3D structure ismirror-symmetric; however, as will be shown in Section 5, the error in reconstruction is greatlyreduced.In Section 4 we outline the reconstruction algorithms, which start o� by verifying that the objectis symmetrical, and proceed by using one of the di�erent symmetrization methods described aboveto improve the reconstruction. In Section 5 we give examples and comparisons between correctionfor symmetry prior and following 3D reconstruction, using real and simulated data.2 Previous workAs an intrinsic characteristic of objects and shapes, symmetry can be used to describe and recognizeobjects. Many studies deal with symmetry of 2D shapes and patterns, either using global symmetryfeatures [2, 6] or local symmetry features [4, 11]. Most studies deal with a speci�c symmetry classsuch as circular (radial) symmetry [2, 11] or mirror and linear symmetry [5, 8]. A method fordealing with any type of symmetry in both 2D and 3D has recently been suggested [17, 18].When dealing with 3D symmetries, several studies concentrate on �nding the projected orskewed symmetries in 2D images [5, 10]. Other studies reconstruct 3D objects from 2D imagesusing symmetry as a constraint [13, 14]. Symmetrical descriptions and symmetric features of objectsare useful in guiding shape matching, model-based object matching and object recognition [8, 12].Additionally, symmetry has been used in guiding robot grasping [3]. Recently, symmetry has beenexploited for reducing complexity and reducing the number of frames in structure from motionproblems [7, 9, 12]. However none of these studies deal with exploiting symmetry for improving theinput data for structure from motion algorithms, or the symmetrization of noisy two dimensionalprojections of three dimensional objects, which is the subject of the present paper.3 Symmetrization algorithms and their complexityIn Section 3.1 we describe a closed-form method for �nding the closest mirror-symmetric con�gura-tion to a given 3D connected con�guration. In Section 3.2 we describe a symmetrization procedureof 2D data for projected 3D mirror-symmetry. A complexity analysis of both symmetrizationprocedures is given in Section 3.3.



Computer Vision and Image Understanding, 67(1):48-57, July, 1997 33.1 3D symmetrizationIn [17, 18] we described a method for �nding the symmetric con�guration of points which is closestto a given con�guration in a least squares sense. We de�ned a measure of symmetry - the SymmetryDistance (SD), and described a method for evaluating this measure for any con�guration of pointswith respect to any point symmetry group in any dimension. An outcome of evaluating the Sym-metry Distance of a given con�guration is the con�guration which is symmetric and which is closestto the original con�guration in a least squares sense. An iterative folding/unfolding method, which�nds the closest symmetric con�guration, was described in [17, 18]. Below we describe anotherclosed-form solution that gives equivalent results in the case of 3D mirror-symmetry.
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P2 P2a. b. d.c.Figure 1: Obtaining the closest mirror symmetric set of points - see text.We �rst note that every mirror symmetric 3D con�guration of points fPign�1i=0 implicitly impliesa pairing (matching) of the points: for every point Pi there exists a point match(Pi) = Pj whichis its counterpart under reection. Following is the closed-form algorithm as applied to 3D mirrorsymmetry (Fig. 1).Given a con�guration of points fPign�1i=0 in R3 (see Fig. 1a):1. Divide the points into sets of one or two points. If a set contains one point, duplicate thatpoint. In the example of Fig. 1, the sets are fP0; P0g; fP1; P3g and fP2; P2g. This de�nes amatching on points of the object.2. Reect all points across a randomly chosen mirror plane, obtaining the points ~Pi (Fig. 1b).3. Find the optimal rotation and translation which minimizes the sum of squared distancesbetween the original points and the reected corresponding points (Fig. 1c). This is a wellknown problem of pose estimation. To �nd the solution we use the method of Arun et. al.[1], which requires no more than the evaluation of SVD.4. Rotate the reected points f ~Pign�1i=0 by the optimal rotation.5. Average each original point Pi with its reected matched point ~Pj , obtaining the point P̂i(Fig. 1d). The points fP̂ign�1i=0 are mirror symmetric.6. Evaluate the Symmetry Distance: 1n n�1Xi=0 kPi � P̂ik2 (1)



Computer Vision and Image Understanding, 67(1):48-57, July, 1997 47. Minimize the Symmetry Distance value obtained in step 6 by repeating steps 1-6 with allpossible division of points into sets. The mirror symmetric con�guration corresponding tothe minimal Symmetry Distance value is the closest mirror symmetric con�guration in a leastsquares sense (proof is given in [17]).In practice, the minimization in Step 7 is greatly simpli�ed if connectivity or ordering informationis available regarding the con�guration of points. In some cases the complexity is reduced fromexponential to linear (see below, Section 3.3).3.2 2D SymmetrizationDealing with mirror-symmetry and assuming weak perspective projection, a 3D mirror-symmetricobject has the property that if the projection of the mirror-symmetric pairs of 3D points areconnected by segments in the 2D plane, then all these segments are parallel, i.e., have the same ori-entation (see Fig. 2). We will denote this property as the \projected mirror-symmetry constraint".If perspective projection is used, these line segments would not be of the same orientation; ratherthey would be oriented such that the rays extending and including these segments all meet at asingle point [7].
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Figure 2: The projected mirror-symmetry constraint. a)A weak perspective projection of a 3D mirror-symmetriccon�guration. Points Pi and P 0i are corresponding mirror-symmetric pairs of points in the 3D structure. b) By con-necting points Pi with the corresponding P 0i , we obtain acollection of parallel segments.We use the projected mirror-symmetry constraint to symmetrize the 2D data prior to recon-struction of the 3D structure. Given a 2D con�guration of connected points fPign�1i=0 , and given amatching between the points of the con�guration (see Section 3.3 for discussion on matching), we�nd a connected con�guration of points fP̂ign�1i=0 which satisfy:1. The con�guration of points P̂i have the same topology as the con�guration of points Pi, i.e.,points P̂i and P̂j are connected if and only if points Pi and Pj are connected.2. Points fP̂ign�1i=0 satisfy the projected mirror-symmetry constraint, i.e., all the lines passingthrough points P̂i and P̂j (where P̂j =match(P̂i)) are of the same orientation.3. The Symmetry Distance is minimized: 1n n�1Pi=0 kPi � P̂ik2It can be shown (see Appendix A) that the points fP̂ign�1i=0 are obtained by projecting each pointPi onto a line at orientation � passing through the midpoint between Pi and match(Pi), where � is



Computer Vision and Image Understanding, 67(1):48-57, July, 1997 5given by: tan 2� = 2 n�1Pi=0(xi �match(xi))(yi �match(yi))n�1Pi=0(xi �match(xi))2 � (yi �match(yi))2 (2)Note that two possible solutions exist for Eq. (2). It is easily seen that the solution is achievedwhen sin � cos � is of opposite sign to the numerator.Several examples of noisy 2D projections of mirror-symmetric con�gurations of points are shownin Fig. 3 with the closest projected mirror-symmetric con�guration, which was obtained using theabove algorithm. The matching is shown by the connecting segments.
a. b.Figure 3: Finding the closest projected mirror-symmetric con�guration. a-b) Several examples of noisy 2D pro-jections of mirror-symmetric con�gurations of points (left) and the closest projected mirror-symmetric con�guration(right).3.3 A Complexity analysis: matching and symmetrization
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b.a.Figure 4: Connected con�gurations of points. The connectivity in the graph constrain the possible matchings ofthe points (see text).In terms of complexity, the crucial step in the symmetrization algorithms described above is theminimization of the Symmetry Distance value over all possible matchings of feature points. O�hand,matching of feature points is of exponential complexity. However, as will be discussed below, theactual computational costs can be greatly reduced by constraining the search space of all possiblematches.



Computer Vision and Image Understanding, 67(1):48-57, July, 1997 6Graph matching:As described in Sections 3.1,3.2, �nding the closest mirror-symmetric con�guration, or the closestprojected mirror-symmetric con�guration, requires �nding a matching of the points, i.e., a divisionof the points into sets. Each such set is transformed under the folding/unfolding method into amirror symmetric set or a projected mirror-symmetric set. We assume that the folding/unfoldingmethod maintains any connectivity and any ordering that exists between the points of the con-�guration. Thus, the connectivity of the 2D or 3D points in the original con�guration (i.e., thetopology of the con�guration) constrains the division of points into sets.For example, consider the connected con�guration shown in Fig 4a. Points P0; : : : ; P3 are leafnodes and can only be paired between themselves. Points P6 and P7 are the only nodes with valencyof 4 (where valency denotes the number of edges converging at a point), and thus must be pairedbetween themselves or form single-point pairs. Point P10 stands alone in its valency of 2 and canonly form a single-point pair (a degenerate pair).Further constraints on possible matching of points are obtained when taking into considerationthat the valency of a point is necessary but not su�cient in determining the division into sets. Inthe example of Figure 4a, points P2 and P3 have the same valency (1) but obviously cannot begeometrically moved to be mirror-symmetric. This is due to the fact that they are not equivalentin their second order connectivity (i.e. in the valency of their neighboring points): point P2 has aneighbor of valency 3, whereas point P3 has a neighbor of valency 4. This reasoning does not stop atthe second order connectivity but must be taken to the maximal connectivity of the con�guration(which is equal to the width of the graph).These considerations constrain the space of all possible matchings that can give rise to a mirror-symmetric con�guration. Speci�cally, for the example of Figure 4a, the number of possible match-ings reduces to 2, namely: fP0; P2g; fP1; P3g; fP4; P5g; fP6; P7g; fP8; P9g; fP10g and the matchingin which all pairs are degenerate pairs. For the class of cyclically connected con�gurations (as thatshown in Figure 4b) it can be shown that the number of possible matchings is reduced form expo-nential to linear (speci�cally, for a cyclic con�guration of n points there are n possible matchings).More generally, we consider the original con�guration as a graphG = fV;Eg. The problem of di-viding the points into sets, containing one or two points, reduces to the classical problem of listing allgraph isomorphisms of order 2. A graph isomorphism is a permutation of the graph vertices whichleaves the graph topologically equivalent. More speci�cally, given a graph G = fE; V g, replacingeach vertex i 2 V with its permuted vertex match(i) results in a graph G0 = fV 0; E 0g such that theset of edgesE 0 equals E. Note that in this case, for every (i; j) 2 E also (match(i);match(j)) 2 E. Agraph isomorphism of order 2 is an isomorphism wherematch(match(i))= i (i.e., either match(i)= i,or, match(i)= j and match(j)= i). The constraints discussed above are inherent in any algorithmthat �nds graph isomorphisms. There are several methods for �nding all graph isomorphism oforder two. We used a simple recursive algorithm for �nding this isomorphism.Points matching:In some cases, it is di�cult to extract connectivity and order information relating to the originalcon�guration of points. In these cases the number of possible matchings increases exponentiallywith the number of points in the con�guration. For these cases a heuristic approach can be usedinstead. The above described approach of graph isomorphism assumes a matching is to be found



Computer Vision and Image Understanding, 67(1):48-57, July, 1997 7prior to �nding the optimal reection plane. We now consider the problems of point matchingand of �nding the optimal reection plane as confounded; given a matching, we can determinethe optimal reection plane (using the folding/unfolding algorithm described in Section 3.1), andgiven the reection plane we can constrain the possible matchings and more easily determine thepairings.We suggest a heuristic approach which tries to solve these two problems simultaneously asfollows. For every possible pair of points we determine the corresponding reection plane (theplane perpendicular to and passing through the mid point of the segment connecting the twopoints). We build a histogram of all possible reection planes for pairs from the original set ofpoints. Peaks in the histogram will point at candidates for the optimal reection plane. Giventhese reection planes, the matchings can be determined and the Symmetry Distance evaluated.4 AlgorithmsWe propose reconstruction algorithms that enhance existing structure from motion algorithms byusing symmetry to improve the reconstruction. Two features characterize our approach:� The underlying method is independent of the particular reconstruction algorithm, i.e., theenhancement stage can be used together with any reconstruction algorithm. In the examplesbelow we use the particular reconstruction algorithm described in Appendix B. We believe,however, that the improvement obtained is general, and characterizes the properties of theenhancement stage independently of the particular reconstruction method used.� An enhanced algorithm should only be used in the reconstruction of mirror symmetricalobjects. Thus we develop a test to measure object symmetry from the given data. If theobject is not likely to be symmetrical, the enhancement stage is not applied - reconstructionis done with the bare (un-enhanced) reconstruction algorithm.More speci�cally, our enhanced reconstruction approach is the following:1. Pre-processing:(a) Select a reconstruction algorithm.(b) Test whether the object is bilaterally symmetrical using the 2D Symmetry Distancede�ned in Section 3.2. This measure can be used to determine whether the con�gurationof 2D points is indeed a projection of a 3D mirror-symmetric con�guration. Speci�cally,under the condition that the system noise is bounded, if the Symmetry Distance islarge, we may assume that we are not dealing with a 3D symmetric con�guration. Ifthe Symmetry Distance is small in all projections (in all images in the given sequence),we may assume that the 3D con�guration is symmetric and that any deviations are dueto noise.2. Symmetry enhanced reconstruction: if the symmetry test is successful, we propose threealgorithms for improving 3D reconstruction from noisy 2D perspective projections (imagesequences) using symmetry.



Computer Vision and Image Understanding, 67(1):48-57, July, 1997 8(a) The 3D reconstruction method is applied directly to the 2D data with no symmetryassumption. Following the reconstruction, correction for symmetry is applied to the3D reconstruction by �nding the closest 3D mirror-symmetric con�guration using themethod described in Section 3.1.(b) Correction for symmetry is applied to the 2D projected data by �nding, for every image,the closest projected mirror-symmetric con�guration, using the method described inSection 3.2. Following the correction for symmetry, the reconstruction method is appliedto the modi�ed images.(c) Correction for symmetry is performed both prior and following the reconstruction of the3D con�guration from 2D data.5 ExperimentsIn this section we describe experiments in which the three algorithms described in Section 4 arecompared and evaluated. As a working example, we demonstrate and compare the algorithms usingthe invariant reconstruction method described in [16] and reviewed in Appendix B.The reconstruction was performed on both simulated and real data. The reconstruction obtainedfrom the three procedures was compared with the original mirror-symmetric 3D con�guration. Thedi�erences were measured by the mean squared-distance between the reconstructed and the originalsets of 3D points.5.1 Simulation Results
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e.Figure 5: Reconstruction of 3D mirror-symmetric con�gurations from noisy 2D projections - see text.Two examples of the simulation are shown in Figure 5. Two randomly chosen 3D mirror-symmetricconnected con�guration of 10 points are shown in Figure 5a. Points were selected randomly in the



Computer Vision and Image Understanding, 67(1):48-57, July, 1997 9box [0; 1]3. Eight noisy 2D projections were created for each of the 3D con�gurations. Perspectiveprojection was used with a focal length of 5. The projections are from randomly chosen viewpointsand the noise was added to the 2D projections and was set at a prede�ned level of � = 0:005 forthe �rst simulation and of � = 0:05 for the second simulation.Reconstruction of the connected con�guration directly from the 2D projections, with no sym-metry assumption, is shown in Figure 5b. The 3D reconstruction obtained when correcting forsymmetry prior to reconstruction is shown in Figure 5c. The 3D reconstruction obtained whencorrecting for symmetry following the reconstruction is shown in Figure 5d. Finally, Figure 5eshows the 3D reconstructed con�guration following correction for symmetry prior and followingthe reconstruction. The di�erences and percentage of improvement are summarized in Table 1.Sigma No Symmetrization Symmetrization SymmetrizationSymmetrization prior to following prior & followingreconstruction reconstruction reconstruction% improvement % improvement % improvementsim. 1 0.005 0.084967 0.072156 0.057879 0.04864515.08% 31.88% 42.75%sim. 2 0.05 0.094200 0.086757 0.058274 0.0466457.90% 38.14% 50.48%Table 1: The error and % improvement of the reconstruction of 3D mirror-symmetric con�gurations from noisy 2Dprojections.In order to obtain some statistical appraisal of the improvement obtained by correcting forsymmetry, we applied the simulation many times while varying the simulation parameters. Pointswere, again, selected randomly in the box [0; 1]3. The number of points was varied between 8and 24, the number of views was varied between 8 and 24, and the noise level was taken as� = 0:001; 0:005; 0:01; 0:05 and 0:1. Every combination of parameters was simulated 300 times.The di�erences between the reconstruction and the original con�guration were measured as in theabove two examples.The percentage of improvement between the reconstruction with no symmetry assumption andthe reconstruction with correction for symmetry was calculated and averaged over the simulations(7500 trials). The results are given in Table 2. Using � greater than 0:1 the percentage of improve-ment breaks down, although when using orthographic projections the improvement is signi�cantup to � = 0:3.5.2 Real dataOur algorithm was applied to measurements taken from real 2D images of an object. In the �rstexample we took images of the object at three di�erent positions (Fig. 6). 16 feature points weremanually extracted from each of the three images. The points were automatically matched using theheuristical method described in Section 3.3, giving 8 pairs of symmetrical points. Using the 16 pointsand the three views, the 3D object was reconstructed using the invariant reconstruction methodwith symmetrization performed prior, following, or both prior and following the reconstruction, as



Computer Vision and Image Understanding, 67(1):48-57, July, 1997 10Symmetry Symmetry Symmetry� prior to following prior & following(noise) reconstruction reconstruction reconstruction% improvement % improvement % improvement0.001 11.4 37.7 42.00.005 12.6 38.4 43.30.01 11.3 38.3 43.20.05 4.0 28.9 29.30.1 4.8 23.1 22.2All 8.8 33.3 36.0Table 2: Improvement in the reconstruction of 3D mirror-symmetric con�gurations from noisy 2D perspectiveprojections.
Figure 6: Three 2D images of a 3D mirror-symmetric object from di�erent view points.discussed above. The reconstructions were compared to the real (measured) 3D coordinates of theobject. The results are given in Table 3.In the second example we took images of the object at �ve di�erent positions (Fig. 7a). 18feature points were manually extracted from each of the three images (visually displayed as blackcrosses in Fig. 7b). The 3D object was reconstructed using the invariant reconstruction methodwith symmetrization performed prior, following, or both prior and following the reconstruction, asdiscussed above. The reconstructions were compared to the real (measured) 3D coordinates of theobject. The results are given in Table 4. It can be seen that in this example the symmetrizationprior to reconstruction was more e�ective than following reconstruction. This is due to the factthat the 3D reconstruction itself produced a relatively mirror-symmetric object.6 DiscussionThe work described above shows that existing reconstruction methods can be enhanced, and theiroutput signi�cantly improved, if bilateral symmetry constraints are used during the reconstructionof symmetrical objects. As seen in the examples above, the reconstruction of 3D mirror-symmetric



Computer Vision and Image Understanding, 67(1):48-57, July, 1997 11No Symmetrization Symmetrization SymmetrizationSymmetrization prior to following prior & followingreconstruction reconstruction reconstructionerror 1.619283 1.388134 1.339260 1.329660% improvement 14.3 17.3 17.9Table 3: Improvement in the reconstruction of a real 3D mirror-symmetric object from three 2D images. The error(average per point) is given in cm, where the object size is approximately 30cm.a.
b.Figure 7: Reconstruction of a 3D-mirror-symmetric object from 2D images. a. Five 2D images of a 3D mirror-symmetric chair from di�erent view points. b. The 18 feature points are illustrated by crosses on one of the images.No Symmetrization Symmetrization SymmetrizationSymmetrization prior to following prior & followingreconstruction reconstruction reconstructionerror 3.335983 1.919489 3.192995 1.976036% improvement 42.5 4.3 40.8Table 4: Improvement in reconstruction of a real 3D mirror-symmetric object from three 2D images. The error(average per point) is given in cm, where the object size is approximately 80cm.



Computer Vision and Image Understanding, 67(1):48-57, July, 1997 12con�gurations from noisy 2D projected data can be greatly improved by correcting for symmetryeither prior and/or following reconstruction. Although correcting for symmetry prior to recon-struction improves the result, correcting for symmetry following reconstruction generally gives agreater improvement. Not surprisingly, the greatest improvement in reconstruction is obtainedwhen correction for symmetry is performed both prior and following reconstruction.We believe this improvement to be independent of the reconstruction method that had beenused. In particular, our examples should not be taken as a comparison between di�erent reconstruc-tion methods. Rather, we demonstrate the improvement that can always be obtained when usingvalid symmetry constraints. The only valid comparison is between the di�erent ways of applyingthese symmetry constraints, which give rise to di�erent methods of enhancing any reconstructionmethod.AppendixA Finding the Closest Projected Mirror SymmetryGiven a 2D con�guration of connected points fPign�1i=0 , and given a matching between the points ofthe con�guration (i.e., 8 Pi de�ne match(Pi) where match(match(Pi)) = Pi and where match(Pi) =Pi is permissible), we �nd a connected con�guration of points fP̂ign�1i=0 which satisfy:1. The con�guration of points P̂i have the same topology as the con�guration of points Pi, i.e.,points P̂i and P̂j are connected if and only if points Pi and Pj are connected.2. Points fP̂ign�1i=0 satisfy the projected mirror-symmetry constraint, i.e., all the lines passingthrough points P̂i and P̂j (where P̂j =match(Pi)) are of the same orientation.3. The following sum is minimized: n�1Xi=0 kPi � P̂ik2 (3)Consider �rst a simple case where we are given two points P0 and P1 in R2 and an orientation� (without loss of generality, � is the angle to the positive x-axis). We �nd 2 points P̂0 and P̂1 suchthat the segment connecting them is at orientation � and the following sum is minimized:kP0 � P̂0k2 + kP1 � P̂1k2 (4)Claim 1: Given a line y = tan(�)x + c (c 2 R), points P̂0 and P̂1 which minimize Eq. (4) areobtained by projecting P0 and P1 respectively onto the line (Fig. 8a).Furthermore, the line of orientation �, on which positioning points P̂0 and P̂1 minimizes Eq. (4),passes through the centroid (or mid-section point) of P0 and P1 (Fig. 8b).The claim follows from the fact that the projection of a point on a line is the closest locationon the line to the point.Thus, given 2 points P0; P1 2 R2 and given an orientation �, the value of Eq. (4) is:kP0 � P̂0k2 + kP1 � P̂1k2 = 12[(x1 � x0) sin(�)� (y1 � y0) cos(�)]2
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a. b.Figure 8: Finding the closest projected mirror-symmetric con�guration, a simple case of two points: a) given twopoints P0 and P1 and given a line y = tan(�) + c (c 2 R), the points closest to P0 and P1 which lie on the line areobtained by projection; b) the points lying on a line of orientation � that are closest to P0 and P1 are obtained byprojecting P0 and P1 onto a line of orientation � passing through the midpoint between P0 and P1.where (xi; yi) are the coordinates of point Pi.Consider now n 2D points fPign�1i=0 and a given matching of these points. In order to �nd thepoints fP̂ign�1i=0 that minimize Eq. (3) and that satisfy the projected mirror-symmetry constraint,we must �nd the orientation � which minimizes Eq. (3). For a given orientation �, the value ofEq. (3) is n�1Xi=0 kPi � P̂ik2 = n�1Xi=0 [(xi �match(xi)) sin(�)� (yi �match(yi)) cos(�)]2where match(xi),match(yi) are the 2D coordinates of the point match(Pi).Taking the derivative with respect to � and equating to zero we obtain for the minimal �:tan 2� = 2 n�1Pi=0(xi �match(xi))(yi �match(yi))n�1Pi=0(xi �match(xi))2 � (yi �match(yi))2 (5)As noted in Section 3.2, two possible solutions exist for Eq. (5). It is easily seen that theminimum is achieved when sin � cos � is of opposite sign to the numerator of Eq. (5).Thus we have a closed form solution for �nding the closest projected mirror-symmetric set ofpoints; given the 2D points fPign�1i=0 and a matching fmatch(Pi)gn�1i=0 :1. calculate the optimal orientation � using Eq. (5).2. calculate the coordinates of each point P̂i by projecting the points Pi onto a line at orientation� passing through the midpoint between Pi and match(Pi).B Review of the invariant reconstruction algorithmThis linear method was described in [16]. It computes an invariant description of the Euclideanstructure of points from a sequence of images assuming weak perspective.Let fpign�1i=0 ; pi 2 R3, denote the 3D coordinates of an object composed of n features insome Cartesian coordinate system. For simplicity and clarity, we start with the case n = 4 and
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