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Abstract

In previous applications, bilateral symmetry of objects was used either as a descriptive feature
in domains such as recognition and grasping, or as a way to reduce the complexity of structure
from motion. In this paper we demonstrate how bilateral symmetry can be used to improve the
accuracy in 3D reconstruction. The symmetry property is used to “symmetrize” data before
and after reconstruction. We first show how to compute the closest symmetric 2D and 3D
configurations given noisy data. This gives us a symmetrization procedure, which we apply to
images before reconstruction, and which we apply to the 3D configuration after reconstruction.
We demonstrate a significant improvement obtained with real images. We demonstrate the
relative merits of symmetrization before and after reconstruction using simulated and real data.

1 Introduction

The most common symmetry in our environment is three dimensional mirror symmetry. It is thus
not surprising that the human visual system is most sensitive to bilateral symmetry. A common case
in human and computer vision is that only 2D (projective) data is given about a 3D object. Many
studies deal with inferring 3D symmetry from 2D data. These studies deal with perfect non-noisy
data. In this paper, we deal with noisy 2D data by extending the notion of Symmetry Distance
defined in [17, 18] to 2D projections of 3D objects which are not necessarily perfectly symmetric.
We describe in this work the reconstruction of 3D mirror symmetric connected configurations from
their noisy 2D projections.

More specifically, we describe the enhancement in performance that can be obtained using
existing structure from motion methods (or structure from a sequence of 2D images), when the
reconstructed object is known to be mirror-symmetric. We consider here objects whose 3D structure
is a mirror-symmetric connected configuration (a 3D graph structure composed of one or more
connected components). We are given several noisy 20 projections of such an object, where the
projection is approximately weak perspective (scaled orthographic). As a working example, we
combine the invariant reconstruction algorithm described in [16] with a symmetrization method,
to improve the input and output data in the structure reconstruction from several views.

Exploiting the fact that the 3D structure to be reconstructed is mirror-symmetric, we incorpo-
rate a symmetrization procedure into the reconstruction scheme as a separate module, independent
of the reconstruction method used. We employ two approaches:

e correct for bilateral-symmetry prior to reconstruction
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e correct for bilateral-symmetry following reconstruction

Correction for symmetry following reconstruction is performed by applying any existing method
of structure from motion with no a-priori symmetry assumption on the reconstructed object. Fol-
lowing the reconstruction, the symmetry assumption is exploited and the mirror-symmetric struc-
ture closest to the reconstruction is found. This last stage is performed using a closed form method
described in Section 3.1 for finding the closest mirror-symmetric configuration to a given 3D con-
nected configuration.

Correction for symmetry prior to reconstruction requires application of some symmetrization
procedure to the 2D data with respect to the 3D symmetry. In Section 3.2 we describe a sym-
metrization procedure of 2D data for projected 3D mirror-symmetry. Following the symmetrization
procedure, any existing method of reconstruction of general 3D structure from 2D data can be ap-
plied. Notice that this procedure does not ensure that the final reconstructed 3D structure is
mirror-symmetric; however, as will be shown in Section 5, the error in reconstruction is greatly
reduced.

In Section 4 we outline the reconstruction algorithms, which start off by verifying that the object
is symmetrical, and proceed by using one of the different symmetrization methods described above
to improve the reconstruction. In Section 5 we give examples and comparisons between correction
for symmetry prior and following 3D reconstruction, using real and simulated data.

2 Previous work

As an intrinsic characteristic of objects and shapes, symmetry can be used to describe and recognize
objects. Many studies deal with symmetry of 2D shapes and patterns, either using global symmetry
features [2, 6] or local symmetry features [4, 11]. Most studies deal with a specific symmetry class
such as circular (radial) symmetry [2, 11] or mirror and linear symmetry [5, 8]. A method for
dealing with any type of symmetry in both 2D and 3D has recently been suggested [17, 18].

When dealing with 3D symmetries, several studies concentrate on finding the projected or
skewed symmetries in 2D images [5, 10]. Other studies reconstruct 3D objects from 2D images
using symmetry as a constraint [13, 14]. Symmetrical descriptions and symmetric features of objects
are useful in guiding shape matching, model-based object matching and object recognition [8, 12].
Additionally, symmetry has been used in guiding robot grasping [3]. Recently, symmetry has been
exploited for reducing complexity and reducing the number of frames in structure from motion
problems [7, 9, 12]. However none of these studies deal with exploiting symmetry for improving the
input data for structure from motion algorithms, or the symmetrization of noisy two dimensional
projections of three dimensional objects, which is the subject of the present paper.

3 Symmetrization algorithms and their complexity

In Section 3.1 we describe a closed-form method for finding the closest mirror-symmetric configura-
tion to a given 3D connected configuration. In Section 3.2 we describe a symmetrization procedure
of 2D data for projected 3D mirror-symmetry. A complexity analysis of both symmetrization
procedures is given in Section 3.3.
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3.1 3D symmetrization

In [17, 18] we described a method for finding the symmetric configuration of points which is closest
to a given configuration in a least squares sense. We defined a measure of symmetry - the Symmetry
Distance (SD), and described a method for evaluating this measure for any configuration of points
with respect to any point symmetry group in any dimension. An outcome of evaluating the Sym-
metry Distance of a given configuration is the configuration which is symmetric and which is closest
to the original configuration in a least squares sense. An iterative folding/unfolding method, which
finds the closest symmetric configuration, was described in [17, 18]. Below we describe another
closed-form solution that gives equivalent results in the case of 3D mirror-symmetry.
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Figure 1: Obtaining the closest mirror symmetric set of points - see text.

We first note that every mirror symmetric 3D configuration of points {PZ'}?:_O1 implicitly implies
a pairing (matching) of the points: for every point P; there exists a point match(FP;) = P; which
is its counterpart under reflection. Following is the closed-form algorithm as applied to 3D mirror
symmetry (Fig. 1).
Given a configuration of points {£}72 in R? (see Fig. la):

1. Divide the points into sets of one or two points. If a set contains one point, duplicate that

point. In the example of Fig. 1, the sets are {Fy, Fo},{P1, Ps} and {P,, P»}. This defines a
matching on points of the object.

2. Reflect all points across a randomly chosen mirror plane, obtaining the points P; (Fig. 1b).

3. Find the optimal rotation and translation which minimizes the sum of squared distances
between the original points and the reflected corresponding points (Fig. 1c). This is a well
known problem of pose estimation. To find the solution we use the method of Arun et. al.
[1], which requires no more than the evaluation of SVD.

4. Rotate the reflected points {]52'}?:_01 by the optimal rotation.

5. Average each original point P; with its reflected matched point Pj, obtaining the point )2
(Fig. 1d). The points {F;}"=) are mirror symmetric.

6. Evaluate the Symmetry Distance:

1 n—1 )
= P =P (1)
=0
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7. Minimize the Symmetry Distance value obtained in step 6 by repeating steps 1-6 with all
possible division of points into sets. The mirror symmetric configuration corresponding to
the minimal Symmetry Distance value is the closest mirror symmetric configuration in a least
squares sense (proof is given in [17]).

In practice, the minimization in Step 7 is greatly simplified if connectivity or ordering information
is available regarding the configuration of points. In some cases the complexity is reduced from
exponential to linear (see below, Section 3.3).

3.2 2D Symmetrization

Dealing with mirror-symmetry and assuming weak perspective projection, a 30 mirror-symmetric
object has the property that if the projection of the mirror-symmetric pairs of 3D points are
connected by segments in the 2D plane, then all these segments are parallel, i.e., have the same ori-
entation (see Fig. 2). We will denote this property as the “projected mirror-symmetry constraint”.
If perspective projection is used, these line segments would not be of the same orientation; rather
they would be oriented such that the rays extending and including these segments all meet at a
single point [7].

R R
T P
Figure 2: The projected mirror-symmetry constraint. a)
A weak perspective projection of a 31 mirror-symmetric
P’ configuration. Points P; and P/ are corresponding mirror-
R ! p symmetric pairs of points in the 3D structure. b) By con-
2
Pz'/. necting points P; with the corresponding P/, we obtain a
collection of parallel segments.
R
R

b.

We use the projected mirror-symmetry constraint to symmetrize the 2D data prior to recon-
struction of the 3D structure. Given a 2D configuration of connected points {PZ'}?Z_OI7 and given a
matching between the points of the configuration (see Section 3.3 for discussion on matching), we

P

find a connected configuration of points {]52'}?:_01 which satisfy:

1. The configuration of points P; have the same topology as the configuration of points F;, i.e.,
points F; and P; are connected if and only if points P; and P; are connected.

2. Points {]52'}?:_01 satisfy the projected mirror-symmetry constraint, i.e., all the lines passing
through points P; and P; (where P; =match(F;)) are of the same orientation.

n—1 N
3. The Symmetry Distance is minimized: = 3 ||P; — P;||?
=0

It can be shown (see Appendix A) that the points {]52'}?:_01 are obtained by projecting each point
P; onto a line at orientation @ passing through the midpoint between P; and match(F;), where 6 is
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given by:
n—1
2 E (x; — match(x;)) (y; — match(y;))
tan 20 = n_llzo (2)
> (x; — match(x;))? — (y; — mateh(y;))?
=0

Note that two possible solutions exist for Eq. (2). It is easily seen that the solution is achieved
when sin 8 cos 8 is of opposite sign to the numerator.

Several examples of noisy 2D projections of mirror-symmetric configurations of points are shown
in Fig. 3 with the closest projected mirror-symmetric configuration, which was obtained using the
above algorithm. The matching is shown by the connecting segments.
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Figure 3: Finding the closest projected mirror-symmetric configuration. a-b) Several examples of noisy 2D pro-
jections of mirror-symmetric configurations of points (left) and the closest projected mirror-symmetric configuration

(right).

a. b.

3.3 A Complexity analysis: matching and symmetrization

Figure 4: Connected configurations of points. The connectivity in the graph constrain the possible matchings of
the points (see text).

In terms of complexity, the crucial step in the symmetrization algorithms described above is the
minimization of the Symmetry Distance value over all possible matchings of feature points. Offhand,
matching of feature points is of exponential complexity. However, as will be discussed below, the
actual computational costs can be greatly reduced by constraining the search space of all possible
matches.
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Graph matching:

As described in Sections 3.1,3.2, finding the closest mirror-symmetric configuration, or the closest
projected mirror-symmetric configuration, requires finding a matching of the points, i.e., a division
of the points into sets. Each such set is transformed under the folding/unfolding method into a
mirror symmetric set or a projected mirror-symmetric set. We assume that the folding/unfolding
method maintains any connectivity and any ordering that exists between the points of the con-
figuration. Thus, the connectivity of the 2D or 3D points in the original configuration (i.e., the
topology of the configuration) constrains the division of points into sets.

For example, consider the connected configuration shown in Fig 4a. Points Fy, ..., Ps are leaf
nodes and can only be paired between themselves. Points Fs and P are the only nodes with valency
of 4 (where valency denotes the number of edges converging at a point), and thus must be paired
between themselves or form single-point pairs. Point Pjg stands alone in its valency of 2 and can
only form a single-point pair (a degenerate pair).

Further constraints on possible matching of points are obtained when taking into consideration
that the valency of a point is necessary but not sufficient in determining the division into sets. In
the example of Figure 4a, points P, and Ps have the same valency (1) but obviously cannot be
geometrically moved to be mirror-symmetric. This is due to the fact that they are not equivalent
in their second order connectivity (i.e. in the valency of their neighboring points): point P, has a
neighbor of valency 3, whereas point P5 has a neighbor of valency 4. This reasoning does not stop at
the second order connectivity but must be taken to the maximal connectivity of the configuration
(which is equal to the width of the graph).

These considerations constrain the space of all possible matchings that can give rise to a mirror-
symmetric configuration. Specifically, for the example of Figure 4a, the number of possible match-
ings reduces to 2, namely: {Fy, P2}, {P1, Ps},{ Py, Ps},{Fs, Pr},{Ps, Po},{Pio} and the matching
in which all pairs are degenerate pairs. For the class of cyclically connected configurations (as that
shown in Figure 4b) it can be shown that the number of possible matchings is reduced form expo-
nential to linear (specifically, for a cyclic configuration of n points there are n possible matchings).

More generally, we consider the original configuration as a graph G = {V, F'}. The problem of di-
viding the points into sets, containing one or two points, reduces to the classical problem of listing all
graph isomorphisms of order 2. A graph isomorphism is a permutation of the graph vertices which
leaves the graph topologically equivalent. More specifically, given a graph G = {E, V}, replacing
each vertex i € V with its permuted vertex match(i) results in a graph G’ = {V’, F'} such that the
set of edges I’ equals E. Note that in this case, for every (7, j) € E also (match(i), match(j)) € E. A
graph isomorphism of order 2 is an isomorphism where match(match(i)) =1 (i.e., either match(i) =1,
or, match(i)=j and match(j)=1). The constraints discussed above are inherent in any algorithm
that finds graph isomorphisms. There are several methods for finding all graph isomorphism of
order two. We used a simple recursive algorithm for finding this isomorphism.

Points matching:

In some cases, it is difficult to extract connectivity and order information relating to the original
configuration of points. In these cases the number of possible matchings increases exponentially
with the number of points in the configuration. For these cases a heuristic approach can be used
instead. The above described approach of graph isomorphism assumes a matching is to be found
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prior to finding the optimal reflection plane. We now consider the problems of point matching
and of finding the optimal reflection plane as confounded; given a matching, we can determine
the optimal reflection plane (using the folding/unfolding algorithm described in Section 3.1), and
given the reflection plane we can constrain the possible matchings and more easily determine the
pairings.

We suggest a heuristic approach which tries to solve these two problems simultaneously as
follows. For every possible pair of points we determine the corresponding reflection plane (the
plane perpendicular to and passing through the mid point of the segment connecting the two
points). We build a histogram of all possible reflection planes for pairs from the original set of
points. Peaks in the histogram will point at candidates for the optimal reflection plane. Given
these reflection planes, the matchings can be determined and the Symmetry Distance evaluated.

4 Algorithms

We propose reconstruction algorithms that enhance existing structure from motion algorithms by
using symmetry to improve the reconstruction. Two features characterize our approach:

e The underlying method is independent of the particular reconstruction algorithm, i.e., the
enhancement stage can be used together with any reconstruction algorithm. In the examples
below we use the particular reconstruction algorithm described in Appendix B. We believe,
however, that the improvement obtained is general, and characterizes the properties of the
enhancement stage independently of the particular reconstruction method used.

e An enhanced algorithm should only be used in the reconstruction of mirror symmetrical
objects. Thus we develop a test to measure object symmetry from the given data. If the
object is not likely to be symmetrical, the enhancement stage is not applied - reconstruction
is done with the bare (un-enhanced) reconstruction algorithm.

More specifically, our enhanced reconstruction approach is the following:
1. Pre-processing:

(a) Select a reconstruction algorithm.

(b) Test whether the object is bilaterally symmetrical using the 2D Symmetry Distance
defined in Section 3.2. This measure can be used to determine whether the configuration
of 2D points is indeed a projection of a 3D mirror-symmetric configuration. Specifically,
under the condition that the system noise is bounded, if the Symmetry Distance is
large, we may assume that we are not dealing with a 3D symmetric configuration. If
the Symmetry Distance is small in all projections (in all images in the given sequence),
we may assume that the 3D configuration is symmetric and that any deviations are due
to noise.

2. Symmetry enhanced reconstruction: if the symmetry test is successful, we propose three
algorithms for improving 3D reconstruction from noisy 2D perspective projections (image
sequences) using symmetry.
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(a) The 3D reconstruction method is applied directly to the 2D data with no symmetry
assumption. Following the reconstruction, correction for symmetry is applied to the
3D reconstruction by finding the closest 3D mirror-symmetric configuration using the
method described in Section 3.1.

(b) Correction for symmetry is applied to the 2D projected data by finding, for every image,
the closest projected mirror-symmetric configuration, using the method described in
Section 3.2. Following the correction for symmetry, the reconstruction method is applied
to the modified images.

(c) Correction for symmetry is performed both prior and following the reconstruction of the
3D configuration from 2D data.

5 Experiments

In this section we describe experiments in which the three algorithms described in Section 4 are
compared and evaluated. As a working example, we demonstrate and compare the algorithms using
the invariant reconstruction method described in [16] and reviewed in Appendix B.

The reconstruction was performed on both simulated and real data. The reconstruction obtained
from the three procedures was compared with the original mirror-symmetric 3D configuration. The
differences were measured by the mean squared-distance between the reconstructed and the original
sets of 3D points.

5.1 Simulation Results

=R .A.
=N

=\

Figure 5: Reconstruction of 3D mirror-symmetric configurations from noisy 20 projections - see text.

Two examples of the simulation are shown in Figure 5. Two randomly chosen 3D mirror-symmetric
connected configuration of 10 points are shown in Figure 5a. Points were selected randomly in the
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box [0, 1]>. Eight noisy 2D projections were created for each of the 3D configurations. Perspective
projection was used with a focal length of 5. The projections are from randomly chosen viewpoints
and the noise was added to the 2D projections and was set at a predefined level of ¢ = 0.005 for
the first simulation and of ¢ = 0.05 for the second simulation.

Reconstruction of the connected configuration directly from the 2D projections, with no sym-
metry assumption, is shown in Figure 5b. The 3D reconstruction obtained when correcting for
symmetry prior to reconstruction is shown in Figure 5c. The 3D reconstruction obtained when
correcting for symmetry following the reconstruction is shown in Figure 5d. Finally, Figure be
shows the 3D reconstructed configuration following correction for symmetry prior and following
the reconstruction. The differences and percentage of improvement are summarized in Table 1.

Sigma No Symmetrization | Symmetrization | Symmetrization
Symmetrization prior to Jollowing prior & following
reconstruction reconstruction reconstruction
% improvement | % improvement | % improvement
sim. 1 | 0.005 0.084967 0.072156 0.057879 0.048645
15.08% 31.88% 42.75%
sim. 2 | 0.05 0.094200 0.086757 0.058274 0.046645
7.90% 38.14% 50.48%

Table 1: The error and % improvement of the reconstruction of 31 mirror-symmetric configurations from noisy 2.
projections.

In order to obtain some statistical appraisal of the improvement obtained by correcting for
symmetry, we applied the simulation many times while varying the simulation parameters. Points
were, again, selected randomly in the box [0,1]>. The number of points was varied between 8
and 24, the number of views was varied between 8 and 24, and the noise level was taken as
o = 0.001,0.005,0.01,0.05 and 0.1. Every combination of parameters was simulated 300 times.
The differences between the reconstruction and the original configuration were measured as in the
above two examples.

The percentage of improvement between the reconstruction with no symmetry assumption and
the reconstruction with correction for symmetry was calculated and averaged over the simulations
(7500 trials). The results are given in Table 2. Using o greater than 0.1 the percentage of improve-
ment breaks down, although when using orthographic projections the improvement is significant
up to o = 0.3.

5.2 Real data

Our algorithm was applied to measurements taken from real 2D images of an object. In the first
example we took images of the object at three different positions (Fig. 6). 16 feature points were
manually extracted from each of the three images. The points were automatically matched using the
heuristical method described in Section 3.3, giving 8 pairs of symmetrical points. Using the 16 points
and the three views, the 3D object was reconstructed using the invariant reconstruction method
with symmetrization performed prior, following, or both prior and following the reconstruction, as
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Symmetry Symmetry Symmetry
o prior to Jollowing prior & following
(noise) | reconstruction | reconstruction reconstruction
% improvement | % improvement | % improvement
0.001 11.4 37.7 42.0
0.005 12.6 38.4 43.3
0.01 11.3 38.3 43.2
0.05 4.0 28.9 29.3
0.1 4.8 23.1 22.2
All 8.8 33.3 36.0

Table 2: Improvement in the reconstruction of 3D mirror-symmetric configurations from noisy 2D perspective
projections.

Figure 6: Three 2D images of a 3D mirror-symmetric object from different view points.

discussed above. The reconstructions were compared to the real (measured) 3D coordinates of the
object. The results are given in Table 3.

In the second example we took images of the object at five different positions (Fig. 7a). 18
feature points were manually extracted from each of the three images (visually displayed as black
crosses in Fig. 7b). The 3D object was reconstructed using the invariant reconstruction method
with symmetrization performed prior, following, or both prior and following the reconstruction, as
discussed above. The reconstructions were compared to the real (measured) 3D coordinates of the
object. The results are given in Table 4. It can be seen that in this example the symmetrization
prior to reconstruction was more effective than following reconstruction. This is due to the fact
that the 3D reconstruction itself produced a relatively mirror-symmetric object.

6 Discussion

The work described above shows that existing reconstruction methods can be enhanced, and their
output significantly improved, if bilateral symmetry constraints are used during the reconstruction
of symmetrical objects. As seen in the examples above, the reconstruction of 3D mirror-symmetric
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No Symmetrization | Symmetrization | Symmetrization
Symmetrization prior to Jollowing prior & following
reconstruction reconstruction reconstruction
error 1.619283 1.388134 1.339260 1.329660
% improvement 14.3 17.3 17.9

Table 3: Improvement in the reconstruction of a real 3} mirror-symmetric object from three 20 images. The error
(average per point) is given in cm, where the object size is approximately 30cm.

Figure 7: Reconstruction of a 3D-mirror-symmetric object from 2D images. a. Five 2D images of a 3D mirror-
symmetric chair from different view points. b. The 18 feature points are illustrated by crosses on one of the images.

No Symmetrization | Symmetrization | Symmetrization
Symmetrization prior to Jollowing prior & following
reconstruction reconstruction reconstruction
error 3.335983 1.919489 3.192995 1.976036
% improvement 42.5 4.3 40.8

Table 4: Improvement in reconstruction of a real 3D mirror-symmetric object from three 20 images. The error
(average per point) is given in cm, where the object size is approximately 80cm.
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configurations from noisy 2D projected data can be greatly improved by correcting for symmetry
either prior and/or following reconstruction. Although correcting for symmetry prior to recon-
struction improves the result, correcting for symmetry following reconstruction generally gives a
greater improvement. Not surprisingly, the greatest improvement in reconstruction is obtained
when correction for symmetry is performed both prior and following reconstruction.

We believe this improvement to be independent of the reconstruction method that had been
used. In particular, our examples should not be taken as a comparison between different reconstruc-
tion methods. Rather, we demonstrate the improvement that can always be obtained when using
valid symmetry constraints. The only valid comparison is between the different ways of applying
these symmetry constraints, which give rise to different methods of enhancing any reconstruction
method.

Appendix

A Finding the Closest Projected Mirror Symmetry

Given a 2D configuration of connected points {P’}n_ol7 and given a matching between the points of
the configuration (i.e., V P; define match(F;) where match(match(F;)) = P; and where match(FP;) =
P; is permissible), we ﬁnd a connected configuration of points {Pz}izol which satisfy:

1. The configuration of points P; have the same topology as the configuration of points F;, i.e.,
points F; and P; are connected if and only if points P; and P; are connected.

2. Points {P satlsfy the prOJected mirror-symmetry constraint, i.e., all the lines passing
through pomts P; and P; (where P; =match(P;)) are of the same orlentation.

3. The following sum is minimized:
n—1
S - P (3)
=0

Consider first a simple case where we are given two points Py and P, in R? and an orientation
6 (without loss of generality, 8 is the angle to the positive x-axis). We find 2 points Fy and P; such
that the segment connecting them is at orientation # and the following sum is minimized:

1Py — Bol|* + ([P — Pu)? (4)

Claim 1: Given a line y = tan(f)z + ¢ (c € R), points Py and P, which minimize Eq. (4) are
obtained by projecting Py and Py respectively onto the line (Fig. 8a).

Furthermore, the line of orientation 6, on which positioning points Py and P, minimizes Eq. (4),
passes through the centroid (or mid-section point) of Py and P, (Fig. 8b).

The claim follows from the fact that the projection of a point on a line is the closest location
on the line to the point.
Thus, given 2 points Py, P, € R? and given an orientation 8, the value of Eq. (4) is

. . 1 )
1Py = ol + 1Py = Bl = S[(1 — o) in(6) — (1 — 1) cos(6)]
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Figure 8: Finding the closest projected mirror-symmetric configuration, a simple case of two points: a) given two
points Py and Py and given a line y = tan(8) + ¢ (¢ € R), the points closest to Py and P; which lie on the line are
obtained by projection; b) the points lying on a line of orientation 6§ that are closest to Py and P, are obtained by
projecting Py and P; onto a line of orientation § passing through the midpoint between Py and P;.

where (2;,y;) are the coordinates of point P;.

Consider now n 2D points {PZ'}?:_O1 and a given matching of these points. In order to find the
points {]52'}?:_01 that minimize Eq. (3) and that satisfy the projected mirror-symmetry constraint,
we must find the orientation # which minimizes Eq. (3). For a given orientation 6, the value of
Eq. (3) is

72 \|P; — ]5ZH2 = nz__:[(am — match(x;))sin(0) — (y; — match(y;)) cos(8)]?

where match(z;),match(y;) are the 2D coordinates of the point match(F;).
Taking the derivative with respect to 8 and equating to zero we obtain for the minimal 6:

Qéz_:l(xi — match(x;))(y; — match(y;))
tan 20 = n_llzo (5)
;)(3% — match(x;))? — (y; — match(y;))?

As noted in Section 3.2, two possible solutions exist for Eq. (5). It is easily seen that the
minimum is achieved when sin 6 cos # is of opposite sign to the numerator of Eq. (5).
Thus we have a closed form solution for finding the closest projected mirror-symmetric set of

n—1,

points; given the 2D points {P;}*Z) and a matching {match(P;)}"Z}:
1. calculate the optimal orientation # using Eq. (5).

2. calculate the coordinates of each point )2 by projecting the points P; onto a line at orientation
6 passing through the midpoint between P, and match(F;).

B Review of the invariant reconstruction algorithm

This linear method was described in [16]. It computes an invariant description of the Euclidean
structure of points from a sequence of images assuming weak perspective.

Let {p; ?:_01, p; € R3, denote the 3D coordinates of an object composed of n features in
some Cartesian coordinate system. For simplicity and clarity, we start with the case n = 4 and
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po = (0,0,0). Let P denote the 3 X 3 matrix whose columns are the vectors {p; ?:_11, namely,

pP= [plv P2, p3]
A representation of the object shape, which is invariant to rigid transformations of the camera,

is the Gramian matrix! G = PT P:
PiP1 P{Py PP
G=|pip: PiP2 PiPs
PiPs PIPs PiPs
Using the weak perspective approximation, it can be shown [15] that:
xI'G7lx = y'a™ly (6)
xIG7ly = 0
where the vectors x = (21, 22,23) and y = (y1,y2,y3) are obtained from the image data points
{P; = (@i,4;)}_,. We compute the Gramian of the 4 points by solving the linear system of
equations given in Eq. (6) (note that Eq. (6) is linear in the elements of the inverse Gramian). The

Gramian gives the complete Euclidean-invariant (metric) structure of the 4 points [15].
Given more than 4 points, the algorithm proceeds as follows:

e select 4 basis points from the data (using QR factorization to maximize the independence of
the selected points);

e compute the affine structure of all the points by solving a linear system of equations;

e compute the Euclidean structure of the 4 basis points by solving a linear system (given in

Eq. (6));

e obtain the Euclidean structure of all the points if necessary (this can be done by multiplying
a vector of affine coordinates by the root of the Gramian G of the basis points).
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