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Abstract – Motion estimation plays an important role in modern 
video coders. In such coders, motion is estimated using a block 
matching algorithm that estimates the amount of motion on a block-
by-block basis. A full search technique for finding the best matching 
blocks delivers good accuracy but is usually not practical due to its 
high computational complexity. In this paper, a novel fast block-
based motion estimation algorithm is proposed. This algorithm uses 
an efficient projection framework which bounds the distance 
between a template block and candidate blocks. Fast projection is 
performed with a family of highly efficient filter kernels – the Gray 
Code Kernels – using only 2 operations per pixel for each filter 
kernel. The projection framework is combined with a rejection 
scheme which allows rapid rejection of candidate blocks that are 
distant from the template block. Experiments show that the proposed 
algorithm significantly outperforms popular fast motion estimation 
algorithms, such as three-step search and diamond search. In 
addition, the tradeoff between computational complexity and quality 
of results could be easily controlled in the proposed algorithm, thus 
it enables adaptivity to image content.  
 
Keywords – fast motion estimation, block matching, video 
compression, video coding, Gray Code Kernels (GCK). 
 

I. INTRODUCTION 
 

Video compression has become an essential part of 
modern multimedia systems since it enables significant bit 
rate reduction of the video signal for transmission or storage. 
A video coder compacts a digital video sequence by 
decreasing video redundancies. Most effective is the removal 
of temporal redundancies which are significant due to the fact 
that the difference between consecutive frames of video is 
small. In recent years, several video compression standards 
have been proposed for various applications such as    
MPEG-1/2/4  [1] [2], H.261/3/4  [3] [4]. Although differing in 
many details, these standards maintain the same general 
hybrid DPCM/transform coding structure. In this structure, 
temporal redundancy is exploited using block-based motion 
estimation and compensation. 

Block-based motion estimation and compensation 
compensates for movement of rectangular nonoverlapping 
regions called macroblocks. Two different types of 
macroblocks are defined – Intra and Inter. Motion estimation 
and compensation is performed on Inter macroblocks only. 
For each template Inter block in the current frame, the 
encoder performs the following procedure: Step 1: Search an 
area (search window) in the reference frame to find the 'best' 
matching block from amongst all candidate blocks in the 
search area. A popular matching criterion is the MSE (Mean 
Squared Error) between a candidate block and a template 
block, which measures the energy of the difference between 

the two blocks. Step 2: The chosen candidate block is 
subtracted from the template block to form a residual block. 
Step 3: The residual block is encoded and transmitted with a 
motion vector representing the displacement between the 
template block and chosen block. The decoder later uses the 
residual block and the motion vector to reconstruct the 
original template block  [5]. 

A brute force technique for performing Step 1 is called full 
search. It is performed by comparing all candidate blocks in 
the search window with the template block. Full search 
motion estimation consumes 60%-80% of a typical video 
encoder's computation time. It delivers good accuracy in 
motion estimation but incurs high computation complexity 
and is not suitable for most real-time applications. Obtaining 
near-optimal block matching results is essential for achieving 
high coding efficiency. Thus a fast and accurate block 
matching algorithm is a critical part of every practical video 
coder with significant impact on coding efficiency. 

Many suboptimal fast motion estimation algorithms have 
been proposed in the literature. Some of these algorithms 
reduce search complexity by limiting the size of the search 
window and the number of candidate blocks under the 
assumption that the matching error monotonically increases 
with the distance from the search position defined by the 
optimal motion vector. This assumption is not always valid 
and the process may converge to a local minimum on the 
error surface rather than to the global minimum as in the full 
search algorithm  [11]. Examples for such algorithms are the 
three-step search  [6], 2-D logarithmic search  [7], cross search 
 [8], diamond search  [9], etc. 

Another approach is to speed up the calculation of 
matching error for each candidate block. In  [10], this 
approach is implemented by subsampling the pixels in the 
template and candidate blocks. This technique, as well, does 
not guarantee finding the optimal match with minimum 
matching error. The technique may be combined with a 
method to limit the number of search positions. 

A different approach for fast motion estimation is to use 
some matching criteria to rule out search positions while 
ensuring the global minimum matching error is still attained. 
One such algorithm uses the block sum pyramid  [11]. In this 
method, a sum pyramid structure is constructed for each 
block. Successive elimination is then performed 
hierarchically from the top level to the bottom level of the 
pyramid. Many search positions are determined as 
suboptimal and can be excluded from being further 
consideration in the motion vector search. Thus, search 
complexity is reduced. An improvement of this algorithm 
based on a winner-update strategy is presented in  [12]. 



Orthogonal transforms have also been shown to be useful 
for matching. However, only very few algorithms using the 
fast Walsh-Hadamard Transform (WHT) for block motion 
estimation, have been proposed in the literature. Two 
examples of such algorithms are presented in  [13] and  [14]. 

The block motion estimation problem is a variant of the 
pattern matching problem that involves finding a particular 
pattern in an image. In  [15] [16] a novel pattern matching 
technique using Walsh-Hadamard (WH) projection kernels is 
presented. The suggested approach uses an efficient 
projection scheme which bounds the distance between a 
pattern and an image window using very few operations on 
average. The projection framework is combined with a 
rejection scheme which allows rapid rejection of image 
windows that are distant from the pattern. In  [17] [18] a 
family of efficient filter kernels – the Gray Code Kernels 
(GCK) – is introduced. Filtering an image with a sequence of 
Gray Code Kernels is highly efficient. Advantageously, this 
family includes the WH kernels amongst others. In this paper, 
a novel fast block motion estimation technique for video 
compression is presented based on the fast pattern matching 
techniques developed in  [15] [16] [17] [18], hence is denoted 
FME-GCK. 

The paper is organized as follows: Fast pattern matching 
algorithms using WH projection kernels and GCK are first 
described in sections II and III, respectively. The proposed 
fast bock motion estimation algorithm is presented in section 
IV. Complexity analysis and results are given in section V. 
Finally, conclusions are drawn in section VI. 

 
II. FAST PATTERN MATCHING USING 

 WALSH-HADAMARD PROJECTION KERNELS 
 

Finding a given pattern in an image can be performed 
naively by scanning the entire image and evaluating the 
similarity between the pattern and a local 2D window about 
each pixel. Assume a 2D k k×  pattern, x yp( , ) , is to be 
matched within an image ( , )x yI  of size n n× . For each pixel 
location ( , )x y  in the image, the Euclidean distance may be 
calculated: 
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where ,x yI  denotes a local window of I  at coordinates 
( , )x y . In the context of motion estimation, this procedure is 
equivalent to full search block matching of a template block 

( , )x yp  to a set of candidate blocks in a search window of 
size n n×  with the MSE criterion. 

Referring to the pattern p  and window w  as vectors 

in
2kℜ , = −d p w  is the difference vector between p and w . 

The Euclidean distance can then be rewritten in vectorial 
form: 

 ( , ) T
Ed = =p w d d d  (2) 

Now assume that p  and w are not given but only the 
values of their projection onto a vector u  (Fig. 1). Let  
 T T T= = −b u d u p u w  (3) 
be the projected distance value. Since the Euclidean distance 
is a norm, it follows from the Cauchy-Schwartz inequality 
that a lower bound on the actual Euclidean distance can be 
inferred from the projection values: 

 22 2( , ) /Ed ≥p w b u  (4) 
If a collection of projection vectors are given 1... mu u  

along with the corresponding projected distance 
values T

i i=b u d , the lower bound on the distance can then be 
tightened: 

 2 1( , ) ( )T T
Ed −≥p w b U U b  (5) 

where 1[ ... ]m=U u u  and 1( ... )T
m=b b b  so that T =U d b . 

Note that, if the projection vectors are orthonormal, the 
lower bound reduces to Tb b . As the number of projection 
vectors increases, the lower bound on the distance ( , )Ed p w  
becomes tighter. In the extreme case when the rank of U  
equals 2k , the lower bound reaches the Euclidean distance. 

An iterative scheme for calculating the lower bound is also 
possible; given an additional projection vector 1m+u  and 
projection value 1m+b , the previously computed lower bound 
can be updated without recalculating the inverse of the entire 
system 1( )T −U U (see  [15] [16] for details). 

Many calculations can be spared if the vectors are chosen 
according to the following two necessary requirements: 
• The projection vectors should be highly probable of 

being parallel to the vector = −d p w . 
• Projections of image windows onto the projection 

vectors should be fast to compute. 
One set of projection vectors shown in  [15] [16] to satisfy 

the above two requirements are the WH basis vectors. These 
vectors capture a large portion of the pattern-window 
distance with very few projections on average. 

 The elements of the WH (non-normalized) basis vectors 
are orthogonal and contain only binary values (±1). Thus, 
computation of the transform requires only integer additions 
and subtractions. The WHT of an image window of size 
k k×  (with k  a power of 2) is obtained by projecting the 
window onto 2k  WH basis vectors. In our case, it is required 
to project each k k×  window of the n n×  image onto the 
vectors. This results is a highly overcomplete image 

Fig. 1.  Projection of −p w  onto projection vector 
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representation.  
The projection vectors associated with the 2D WHT of 

order 8k =  are shown in Fig. 2. Each basis vector is of size 
8 8× , where white represents the value +1 and black 
represents the value -1. In Fig. 2, the basis vectors are 
displayed in order of increasing sequency (the number of sign 
changes along rows and columns of the basis vector). A 
'snake' ordering of these vectors is shown by the overlaid 
arrow. This ordering is induced by the algorithm discussed in 
section IV and, although not exactly according to sequency, 
captures the increase in spatial frequency.  

As discussed above, a second critical requirement of the 
projection vectors is the speed and efficiency of computation. 
An efficient method for calculating the projections of all 
image windows onto a sequence of WH vectors is discussed 
in section III. 

 
III. THE GRAY CODE KERNELS 

  
In  [17] [18] a family of filter kernels – the Gray-Code 

Kernels (GCK) – is introduced. Filtering an image with a 
sequence of GCK is highly efficient and requires only 2 
operations per pixel for each filter kernel, independent of the 
size or dimension of the kernel. This family of kernels 
includes the WH kernels among others, thus it enables very 
efficient projection onto the WH basis vectors. 

Consider first the 1D case where signal and kernels are 
one-dimensional vectors. Denote by ( )k

sV  a set of 1D filter 
kernels expanded recursively from an initial seed vector s  as 
follows: 
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where kα v  indicates the multiplication of kernel v  by the 
value kα  and [ ]  denotes concatenation. 

The set of kernels and the recursive definition can be 
visualized as a binary tree of depth k . An example is shown 
in Fig. 3 for 3k = . The nodes of the binary tree at level i  

represent the kernels of ( )i
sV . The leaves of the tree represent 

the 8 kernels of (3)
sV . The branches are marked with the 

values of α  used to create the kernels (where +/- indicates 
+1/-1). 

Denote s t=  the length of s. It is easily shown that ( )k
sV  

is an orthogonal set of 2k  kernels of length 2k t . Furthermore, 
given an orthogonal set of seed vectors 1,... ns s , it can be 
shown that the union set 

1

( ) ( )...
n

k k
s sV V∪ ∪  is orthogonal with 

2k n  vectors of length 2k t . If n t= the set forms a basis. Fig. 
3 also demonstrates the fact that the values, 1... kα α  along the 
tree branches, uniquely define a kernel in ( )k

sV . 
The sequence { }1,... 1, 1k iα α α α= ∈ + −  that uniquely 

defines a kernel ( )k
s∈v V  is called the α-index of v . Two 

kernels ( ), k
i k s∈v v V  are defined to be α-related if and only if 

the hamming distance of their α-index is one. Without loss of 
generality, let the α-indices of two α-related kernels be 

1 1( ... , 1,... )r kα α α− −  and 1 1( ... , 1,... )r kα α α− + . We denote the 
corresponding kernels as +v  and −v  respectively. Since 

1 1... rα α −  uniquely define a kernel in ( 1)r
s

−V , two α-related 
kernels always share the same prefix vector of length 12r t− . 
The arrows of Fig. 3 indicate examples of α-related kernels in 
the binary tree of depth 3k = .  

Of special interest are sequences of kernels that are 
consecutively α-related. An ordered set of kernels 

( )
0 ... k

n s∈v v V  that are consecutively α-related form a 
sequence of GCK. The sequence is called a Gray Code 
Sequence (GCS). The kernels at the leaves of the tree in Fig. 
4 in a left to right scan, are consecutively α-related, and form 
a GCS. Note, however that this sequence is not unique and 
that there are many possible ways of reordering the kernels to 
form a GCS. 

The main idea presented in  [17] [18] relies on the fact that 
two α-related kernels share a special relationship. Given two  
α-related kernels ( ), k

s+ − ∈v v V  their sum pv  and their 
difference mv  are defined as follows: 

Fig. 2.  The projection vectors of the WHT of order 8n =  ordered with 
increasing spatial frequency. White represents the value 1 and black 
represents the value -1. A 'snake' ordering of these basis vectors is shown by 
the overlaid arrow. 

Fig. 3.  The set of kernels and the recursive definition can be visualized as a 
binary tree. In this example the tree is of depth 3k = and creates 32 8=
kernels of length 8. Arrows indicate pairs of kernels that are α-related. 
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In  [17] [18] it is proven that the following relation holds: 
 [ ] [ ]p mΔ Δ=0 v v 0  (8) 

where Δ  is the length of the common prefix and Δ0  denotes 
a vector with Δ  zeros. For simplicity of explanation, we now 
expand ( )k

s∈v V to an infinite sequence such that ( ) 0i =v  for 
0i <  and for 2ki t> . Using this convention, the relation (8) 

can be rewritten in a new notation: 
 ( ) ( )p mi i− Δ =v v  (9) 

and this gives rise to the following Corollary:   
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( ) ( ) ( ) ( )
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Let +b  and −b  be the signals resulting from convolving a 
signal x  with filter kernels +v  and −v  respectively: 
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Then, by linearity of the convolution operation and 
corollary (10) we have the following: 
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This forms the basis of an efficient scheme for convolving 
a signal with a set of GCKs. Given the result of convolving 
the signal with the filter kernel −v ( +v ), convolving with the 
filter kernel +v ( −v ) requires only 2 operations per pixel 
independent of the kernel size. 

Considering Definition (6), and setting the prefix string to 
[1]=s , we obtain that ( )k

sV  is the WH basis set of order 2k . 
A binary tree can be designed such that its leaves are the WH 
kernels ordered in dyadically increasing sequency and they 
form a GCS (i.e. are consecutively α-related). An example for 

2k =  is shown in Fig. 4 where every two consecutive 
kernels are α-related. Thus, by ordering the WH kernels to 
form a GCS and given the result of filtering an image with 
the first WH kernel, filtering with the other kernels can be 
performed using only 2 operations per pixel per kernel 

regardless of signal and kernel size. This result could be 

easily generalized to two dimensions due to the separability 
of the WHT  [17] [18]. 

 
IV. FAST BLOCK MOTION ESTIMATION 

 
The proposed fast block matching algorithm, FME-GCK, will 
now be described. Assume the video sequence is composed 
of images 0 1 2, , ,...I I I  of size 1 2n n× , macroblocks are of size 
k k× , and search windows of size n n× . Also assume a set 
of m  WH basis vectors { } 1

0

m
i i

−

=
v  that form a GCS is given. 

Denote by j
i
( )b  the projection values of macroblocks of 

image jI  onto WH basis vector iv . Denote by ( )
,
j

x yp  or ( )
,
j

x yw  a 
macroblock of image jI  at coordinates ( , )x y , and denote by 

( )sw p  the search window around macroblock p .  
 

For each image jI  

1) Project jI  onto { } 1

0

m
i i

−

=
v  to obtain { } 1( )

0
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i i

−

=
b . 

2) For each Inter macroblock ( )
1, 1
j

x yp   

2.1) For each macroblock ( 1) ( )
2, 2 1, 1( )j j

x y x ysw− ∈w p  
2.1.1) Calculate lower bound on distance between  

( )
1, 1
j

x yp  and ( 1)
2, 2
j

x y
−w  using { } 1( )

0

mj
i i

−

=
b  and 

{ } 1( 1)

0

mj
i i

−−

=
b . 

2.2) Calculate the MSE between ( )
1, 1
j

x yp  and the q  

macroblocks ( 1)
2, 2
j

x y
−w  with the smallest distance 

lower bound from ( )
1, 1
j

x yp . 

2.3) From the q  macroblocks, select ( 1)
2, 2
j

x y
−w  with the 

smallest Euclidean distance from ( )
1, 1
j

x yp  as the best 
matched macroblock. 

 
The FME-GCK algorithm will now be discussed in 

details. In order to perform efficient GCK calculations, the 
set of WH basis vectors must be consecutively α-related, thus 
forming a GCS. Finding an optimal GCS is shown to be NP-
Complete  [17] [18]. The sequence of kernels that was used 
with the FME-GCK is shown as overlaid arrow in Fig. 2. 
This 'snake' order forms a GCS and captures the increase in 
spatial frequency. 

Step 1 of the algorithm is performed using GCK with only 
2 operations per pixel for each WH kernel. An exception for 
this efficient calculation is the first kernel (DC component) 
that can be calculated using 4 operations per pixel as 
described in  [19].  

Notice that the GCK approach can not be used efficiently 
for projecting macroblocks on the image boundary 
(specifically at the top and left image boundaries). This 
limitation, although minor, might increase algorithm 
complexity substantially. In an experiment for a CIF 

Fig. 4.  Using initial vector s = [1] and depth 2k =  a binary tree creates the 
WH basis set of order 4. Consecutive kernels are α-related, as shown by the 
arrows. 
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(352x288) video sequence, boundary macroblock projections 
were performed by direct filtering with WH basis vectors and 
nonboundary macroblock projections were performed using 
the FME-GCK. Boundary projections were found to require 
about 55% of the calculation time spent on all projections. A 
solution to this problem is to zero-pad the upper and left 
boundaries of the image by 1kΔ + −  rows and 1kΔ + −  
columns respectively. This, naturally, also increases the size 
of the projection images{ } 1( )

0

mj
i i

−

=
b . The upper Δ  rows and left 

Δ  columns of these projection images { } 1( )

0

mj
i i

−

=
b are filled 

with zeros. This is correct since projecting a zero macroblock 
onto any kernel results in zero. For all other image pixels 
starting from the Δ +1 row and column, projections are 
performed using the efficient GCK method. The proposed 
technique for fast boundary calculation is depicted in Fig. 5. 

Step 2.1.1 is based on the projection framework described 
in section II. Although the WH basis vectors are not 
orthornormal, they are orthogonal. Therefore, the term 

1( )TU U −  in equation (5) can be ignored.  
 

V. COMPLEXITY ANALYSIS AND RESULTS 
 
FME-GCK uses two parameters that affect the tradeoff 

between complexity (time and memory) and accuracy of 
resulting motion vectors. These parameters are m , the 
number of projections to perform for each image, and q , the 
number of candidate macroblocks for which the true MSE 
value is calculated (Step 2.2 in algorithm). Larger m  
produces more accurate results at the cost of higher time and 
memory complexity. Memory complexity is affected since 
m  projections of image jI  and m  projections of image 1j−I  
must be stored in memory, thus, memory complexity is 
approximately 1 22( 1)m n n+ . Note that if 2m k=  the algorithm 
results are guaranteed to be identical to that of the full search. 
Larger q  also produces more accurate results at the cost of 
higher time complexity; it does not however, affect memory. 

As a reference for setting m  and q  we consider the 
performance of the diamond search algorithm. This algorithm 
is shown in  [9] to produce results of similar accuracy to that 

of the three-step search algorithm, while reducing block 
matching operations to an average of 15.5 per block with 

16, 15k n= = . Assuming 1 time unit for each operation of 
addition, subtraction, multiplication and minimum of two 
numbers, we obtain that performing a single MSE 
computation between two blocks requires 23 1k −  time units. 
Thus, performing a diamond search requires 215.5(3 1)k −  
time units plus 14.5 time units (for calculating the minimum 
over all MSE values) per template macroblock. In the given 
configuration this sums to 11,903 time units per template 
macroblock. 

Performing the FME-GCK algorithm involves m  
projections of each image. Time complexity of this step is 2 
time units per pixel for every projection with the exception of 
the first projection that requires 4 time units per pixel to 
calculate – a total of 22 ( 1)k m +   time units per template 
macroblock. Calculating the lower bound for candidate 
macroblocks requires another 23mn  time units per template 
macroblock. Finding the q  candidate macroblocks with the 
lowest lower bounds, if performed naively, requires less than 

2qn  time units. Calculating the MSE for these candidate 
macroblocks and selecting the one with the minimal MSE 
requires 2(3 1) ( 1)q k q− + −  time units. Thus, a total of 

2 2 2 22 ( 1) 3 3 1k m mn qn k q ε+ + + + − +  time units are required 
per template macroblock. The ε  is added due to two 
additional overheads: 1) The aforementioned additional 
boundary calculation and 2) The fact that both Inter and Intra 
macroblocks must be projected, in contradiction to zero 
calculations for Intra macroblocks incurred by the diamond 
search algorithm. A reasonable value for ε  is one that adds 
about 10% to the total algorithm time complexity. This 
estimation takes into account the fact that finding the best q  
candidates could be performed using a more efficient 
nontrivial procedure. 

In order to compare performance of our suggested 
approach we choose parameters q  and m  such that run times 
of the FME-GCK equals that of the diamond search. From 
the run times computed above we find that such selections 
are 5m = , 3q =  and 4m = , 4q = . Note that it has been 
verified by real-time code profiling that both selections are 
comparable in time complexity to the diamond search. 

Table 1 compares the results of full search, diamond 
search, and the FME-GCK algorithm. The selection of 
parameters for the FME-GCK is such that its time complexity 
equals the time complexity of diamond search. Results are 
given in average MSE values between template blocks and 
'best' found candidate blocks. It can clearly be seen that 
FME-GCK significantly outperforms diamond search in both 
configurations for all sequences in Table 1 except Akiyo. For 
this sequence the difference between the results is very small. 
We conclude that for the same amount of calculations, FME-

Fig. 5.  Zero-padding each image with 1kΔ+ −  rows and 1kΔ + −  columns
enables rapid boundary calculation. The Δ  upper rows and Δ left columns 
of each corresponding projection images are filled with zeros. GCK based 
computations start with the 1Δ +  row and 1Δ +  column.  
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GCK significantly outperforms the diamond search on 
average. 

 
Table 1.  Performance of FME-GCK algorithm compared to full search and 
diamond search. The selection of parameters for the FME-GCK is such that 
its time complexity equals the time complexity of diamond search 
( 5, 3m q= =  and 4, 4m q= = ). Macroblocks are of size 8 8× , search 
window is of size 15 15× , and GOP size is 15 . Results are given in average 
MSE between template blocks and 'best' candidate blocks. 

Sequence Res. FS Diamond GCK53 GCK44 
Akiyo CIF 456 502 552 553 
Silent CIF 621 699 670 674 
Coastguard QCIF 6,472 12,751 8,572 10,089 
Carphone QCIF 8,307 13,954 10,400 11,675 
Mobile CIF 69,991 133,359 90,981 95,522 
 
An important property of the FME-GCK algorithm is that 

the tradeoff between complexity and accuracy of the results is 
controlled by the parameters m  and q . The number of 
projections to perform for each image, m , could adapt to the 
video sequence characteristics with one frame of delay. The 
number of candidate macroblocks to perform MSE with for 
every template block, q , enables even more flexiblity since it 
could be different for every macroblock. Fig. 6 depicts the 
effect of different values of parameter m  on FME-GCK 
performance with a constant 3q = . As expected, increasing 
the number of projections produces results which are closer 
to the optimal. This figure shows, that FME-GCK 
outperforms the diamond search starting from 4m = . 

 
VI. CONCLUSION 

 
In this paper a novel fast block motion estimation 

algorithm called FME-GCK has been presented. FME-GCK 
uses an efficient projection framework which bounds the 
distance between a template block and candidate blocks using 
highly efficient filter kernels. Candidate blocks that are 
distant from the template block are quickly rejected. This 
algorithm significantly outperforms diamond search and 
three-step search. In addition, this algorithm is guaranteed to 
converge to the optimal (full search) results and enables 

adaptivity of the block matching process based on image 
content and complexity limitations. 
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Fig. 6.  FME-GCK algorithm performance for the sequence mobile CIF. 
Different values of m  are shown while 3q =  is constant. Performance is 
measured in mean MSE between template macroblock and the 'best' found 
macroblock. Full search and diamond search results are shown as reference. 
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