
A Fast Block Motion Estimation Algorithm Using Gray Code Kernels

Yair Moshe, Hagit Hel-Or
Dept. of Computer Science, University of Haifa

31905 Haifa, Israel

Abstract – Motion estimation plays an important role in modern
video coders. In such coders, motion is estimated using a block
matching algorithm that estimates the amount of motion on a block-
by-block basis. A full search technique for finding the best matching
blocks delivers good accuracy but is usually not practical due to its
high computational complexity. In this paper, a novel fast block-
based motion estimation algorithm is proposed. This algorithm uses
an efficient projection framework which bounds the distance
between a template block and candidate blocks. Fast projection is
performed with a family of highly efficient filter kernels – the Gray
Code Kernels – using only 2 operations per pixel for each filter
kernel. The projection framework is combined with a rejection
scheme which allows rapid rejection of candidate blocks that are
distant from the template block. Experiments show that the proposed
algorithm significantly outperforms popular fast motion estimation
algorithms, such as three-step search and diamond search. In
addition, the tradeoff between computational complexity and quality
of results could be easily controlled in the proposed algorithm, thus
it enables adaptivity to image content.

Keywords – fast motion estimation, block matching, video
compression, video coding, Gray Code Kernels (GCK).

I. INTRODUCTION

Video compression has become an essential part of
modern multimedia systems since it enables significant bit
rate reduction of the video signal for transmission or storage.
A video coder compacts a digital video sequence by
decreasing video redundancies. Most effective is the removal
of temporal redundancies which are significant due to the fact
that the difference between consecutive frames of video is
small. In recent years, several video compression standards
have been proposed for various applications such as
MPEG-1/2/4 [1] [2], H.261/3/4 [3] [4]. Although differing in
many details, these standards maintain the same general
hybrid DPCM/transform coding structure. In this structure,
temporal redundancy is exploited using block-based motion
estimation and compensation.

Block-based motion estimation and compensation
compensates for movement of rectangular nonoverlapping
regions called macroblocks. Two different types of
macroblocks are defined – Intra and Inter. Motion estimation
and compensation is performed on Inter macroblocks only.
For each template Inter block in the current frame, the
encoder performs the following procedure: Step 1: Search an
area (search window) in the reference frame to find the 'best'
matching block from amongst all candidate blocks in the
search area. A popular matching criterion is the MSE (Mean
Squared Error) between a candidate block and a template
block, which measures the energy of the difference between

the two blocks. Step 2: The chosen candidate block is
subtracted from the template block to form a residual block.
Step 3: The residual block is encoded and transmitted with a
motion vector representing the displacement between the
template block and chosen block. The decoder later uses the
residual block and the motion vector to reconstruct the
original template block [5].

A brute force technique for performing Step 1 is called full
search. It is performed by comparing all candidate blocks in
the search window with the template block. Full search
motion estimation consumes 60%-80% of a typical video
encoder's computation time. It delivers good accuracy in
motion estimation but incurs high computation complexity
and is not suitable for most real-time applications. Obtaining
near-optimal block matching results is essential for achieving
high coding efficiency. Thus a fast and accurate block
matching algorithm is a critical part of every practical video
coder with significant impact on coding efficiency.

Many suboptimal fast motion estimation algorithms have
been proposed in the literature. Some of these algorithms
reduce search complexity by limiting the size of the search
window and the number of candidate blocks under the
assumption that the matching error monotonically increases
with the distance from the search position defined by the
optimal motion vector. This assumption is not always valid
and the process may converge to a local minimum on the
error surface rather than to the global minimum as in the full
search algorithm [11]. Examples for such algorithms are the
three-step search [6], 2-D logarithmic search [7], cross search
 [8], diamond search [9], etc.

Another approach is to speed up the calculation of
matching error for each candidate block. In [10], this
approach is implemented by subsampling the pixels in the
template and candidate blocks. This technique, as well, does
not guarantee finding the optimal match with minimum
matching error. The technique may be combined with a
method to limit the number of search positions.

A different approach for fast motion estimation is to use
some matching criteria to rule out search positions while
ensuring the global minimum matching error is still attained.
One such algorithm uses the block sum pyramid [11]. In this
method, a sum pyramid structure is constructed for each
block. Successive elimination is then performed
hierarchically from the top level to the bottom level of the
pyramid. Many search positions are determined as
suboptimal and can be excluded from being further
consideration in the motion vector search. Thus, search
complexity is reduced. An improvement of this algorithm
based on a winner-update strategy is presented in [12].

Orthogonal transforms have also been shown to be useful
for matching. However, only very few algorithms using the
fast Walsh-Hadamard Transform (WHT) for block motion
estimation, have been proposed in the literature. Two
examples of such algorithms are presented in [13] and [14].

The block motion estimation problem is a variant of the
pattern matching problem that involves finding a particular
pattern in an image. In [15] [16] a novel pattern matching
technique using Walsh-Hadamard (WH) projection kernels is
presented. The suggested approach uses an efficient
projection scheme which bounds the distance between a
pattern and an image window using very few operations on
average. The projection framework is combined with a
rejection scheme which allows rapid rejection of image
windows that are distant from the pattern. In [17] [18] a
family of efficient filter kernels – the Gray Code Kernels
(GCK) – is introduced. Filtering an image with a sequence of
Gray Code Kernels is highly efficient. Advantageously, this
family includes the WH kernels amongst others. In this paper,
a novel fast block motion estimation technique for video
compression is presented based on the fast pattern matching
techniques developed in [15] [16] [17] [18], hence is denoted
FME-GCK.

The paper is organized as follows: Fast pattern matching
algorithms using WH projection kernels and GCK are first
described in sections II and III, respectively. The proposed
fast bock motion estimation algorithm is presented in section
IV. Complexity analysis and results are given in section V.
Finally, conclusions are drawn in section VI.

II. FAST PATTERN MATCHING USING

 WALSH-HADAMARD PROJECTION KERNELS

Finding a given pattern in an image can be performed
naively by scanning the entire image and evaluating the
similarity between the pattern and a local 2D window about
each pixel. Assume a 2D k k× pattern, x yp(,) , is to be
matched within an image (,)x yI of size n n× . For each pixel
location (,)x y in the image, the Euclidean distance may be
calculated:

 ()
1

22
,

{ , } 0

(,) (,) (,)
k

E x y
i j

d x i y j i j
−

=

= + + −∑I p I p (1)

where ,x yI denotes a local window of I at coordinates
(,)x y . In the context of motion estimation, this procedure is
equivalent to full search block matching of a template block

(,)x yp to a set of candidate blocks in a search window of
size n n× with the MSE criterion.

Referring to the pattern p and window w as vectors

in
2kℜ , = −d p w is the difference vector between p and w .

The Euclidean distance can then be rewritten in vectorial
form:

 (,) T
Ed = =p w d d d (2)

Now assume that p and w are not given but only the
values of their projection onto a vector u (Fig. 1). Let
 T T T= = −b u d u p u w (3)
be the projected distance value. Since the Euclidean distance
is a norm, it follows from the Cauchy-Schwartz inequality
that a lower bound on the actual Euclidean distance can be
inferred from the projection values:

 22 2(,) /Ed ≥p w b u (4)
If a collection of projection vectors are given 1... mu u

along with the corresponding projected distance
values T

i i=b u d , the lower bound on the distance can then be
tightened:

 2 1(,) ()T T
Ed −≥p w b U U b (5)

where 1[...]m=U u u and 1(...)T
m=b b b so that T =U d b .

Note that, if the projection vectors are orthonormal, the
lower bound reduces to Tb b . As the number of projection
vectors increases, the lower bound on the distance (,)Ed p w
becomes tighter. In the extreme case when the rank of U
equals 2k , the lower bound reaches the Euclidean distance.

An iterative scheme for calculating the lower bound is also
possible; given an additional projection vector 1m+u and
projection value 1m+b , the previously computed lower bound
can be updated without recalculating the inverse of the entire
system 1()T −U U (see [15] [16] for details).

Many calculations can be spared if the vectors are chosen
according to the following two necessary requirements:
• The projection vectors should be highly probable of

being parallel to the vector = −d p w .
• Projections of image windows onto the projection

vectors should be fast to compute.
One set of projection vectors shown in [15] [16] to satisfy

the above two requirements are the WH basis vectors. These
vectors capture a large portion of the pattern-window
distance with very few projections on average.

 The elements of the WH (non-normalized) basis vectors
are orthogonal and contain only binary values (±1). Thus,
computation of the transform requires only integer additions
and subtractions. The WHT of an image window of size
k k× (with k a power of 2) is obtained by projecting the
window onto 2k WH basis vectors. In our case, it is required
to project each k k× window of the n n× image onto the
vectors. This results is a highly overcomplete image

Fig. 1. Projection of −p w onto projection vector
i

u produces lower bound
on distance = −d p w

u1

p

w
u2

b2

b1

d

representation.
The projection vectors associated with the 2D WHT of

order 8k = are shown in Fig. 2. Each basis vector is of size
8 8× , where white represents the value +1 and black
represents the value -1. In Fig. 2, the basis vectors are
displayed in order of increasing sequency (the number of sign
changes along rows and columns of the basis vector). A
'snake' ordering of these vectors is shown by the overlaid
arrow. This ordering is induced by the algorithm discussed in
section IV and, although not exactly according to sequency,
captures the increase in spatial frequency.

As discussed above, a second critical requirement of the
projection vectors is the speed and efficiency of computation.
An efficient method for calculating the projections of all
image windows onto a sequence of WH vectors is discussed
in section III.

III. THE GRAY CODE KERNELS

In [17] [18] a family of filter kernels – the Gray-Code

Kernels (GCK) – is introduced. Filtering an image with a
sequence of GCK is highly efficient and requires only 2
operations per pixel for each filter kernel, independent of the
size or dimension of the kernel. This family of kernels
includes the WH kernels among others, thus it enables very
efficient projection onto the WH basis vectors.

Consider first the 1D case where signal and kernels are
one-dimensional vectors. Denote by ()k

sV a set of 1D filter
kernels expanded recursively from an initial seed vector s as
follows:

 { }
{ }

(0)

() (1) (1) (1) (1). . ,

1, 1

s

k k k k k
s s k s s s

k

s tα

α

− − − −

=

⎡ ⎤= ∈⎣ ⎦
∈ + −

V s

V v v v V (6)

where kα v indicates the multiplication of kernel v by the
value kα and [] denotes concatenation.

The set of kernels and the recursive definition can be
visualized as a binary tree of depth k . An example is shown
in Fig. 3 for 3k = . The nodes of the binary tree at level i

represent the kernels of ()i
sV . The leaves of the tree represent

the 8 kernels of (3)
sV . The branches are marked with the

values of α used to create the kernels (where +/- indicates
+1/-1).

Denote s t= the length of s. It is easily shown that ()k
sV

is an orthogonal set of 2k kernels of length 2k t . Furthermore,
given an orthogonal set of seed vectors 1,... ns s , it can be
shown that the union set

1

() ()...
n

k k
s sV V∪ ∪ is orthogonal with

2k n vectors of length 2k t . If n t= the set forms a basis. Fig.
3 also demonstrates the fact that the values, 1... kα α along the
tree branches, uniquely define a kernel in ()k

sV .
The sequence { }1,... 1, 1k iα α α α= ∈ + − that uniquely

defines a kernel ()k
s∈v V is called the α-index of v . Two

kernels (), k
i k s∈v v V are defined to be α-related if and only if

the hamming distance of their α-index is one. Without loss of
generality, let the α-indices of two α-related kernels be

1 1(... , 1,...)r kα α α− − and 1 1(... , 1,...)r kα α α− + . We denote the
corresponding kernels as +v and −v respectively. Since

1 1... rα α − uniquely define a kernel in (1)r
s

−V , two α-related
kernels always share the same prefix vector of length 12r t− .
The arrows of Fig. 3 indicate examples of α-related kernels in
the binary tree of depth 3k = .

Of special interest are sequences of kernels that are
consecutively α-related. An ordered set of kernels

()
0 ... k

n s∈v v V that are consecutively α-related form a
sequence of GCK. The sequence is called a Gray Code
Sequence (GCS). The kernels at the leaves of the tree in Fig.
4 in a left to right scan, are consecutively α-related, and form
a GCS. Note, however that this sequence is not unique and
that there are many possible ways of reordering the kernels to
form a GCS.

The main idea presented in [17] [18] relies on the fact that
two α-related kernels share a special relationship. Given two
α-related kernels (), k

s+ − ∈v v V their sum pv and their
difference mv are defined as follows:

Fig. 2. The projection vectors of the WHT of order 8n = ordered with
increasing spatial frequency. White represents the value 1 and black
represents the value -1. A 'snake' ordering of these basis vectors is shown by
the overlaid arrow.

Fig. 3. The set of kernels and the recursive definition can be visualized as a
binary tree. In this example the tree is of depth 3k = and creates 32 8=
kernels of length 8. Arrows indicate pairs of kernels that are α-related.

[s -s s -s][s s -s -s][s s s
s]

+ - + - + -+ -

+ + - -

+ -
s

[s -s][s s]

[s -s -s s]

[s s -s -s s s -s -s] [s -s s -s s -s s -s] [s -s -s s s -s -s s]
[s -s -s s -s s s -s][s -s s -s -s s -s s][s s -s -s -s -s s s][s s s s -s -s -s -s]

α-related α-related

[s s s s s s s s]

 p

m

+ −

+ −

= +
= −

v v v
v v v

 (7)

In [17] [18] it is proven that the following relation holds:
 [] []p mΔ Δ=0 v v 0 (8)

where Δ is the length of the common prefix and Δ0 denotes
a vector with Δ zeros. For simplicity of explanation, we now
expand ()k

s∈v V to an infinite sequence such that () 0i =v for
0i < and for 2ki t> . Using this convention, the relation (8)

can be rewritten in a new notation:
 () ()p mi i− Δ =v v (9)

and this gives rise to the following Corollary:

() () () ()
() () () ()
i i i i
i i i i

+ + − −

− − + +

= + − Δ + + − Δ
= − − Δ + − −Δ

v v v v
v v v v

 (10)

Let +b and −b be the signals resulting from convolving a
signal x with filter kernels +v and −v respectively:

() () ()

() () ()
j

j

i j i j

i j i j

+ +

− −

= −

= −

∑

∑

b x v

b x v
 (11)

Then, by linearity of the convolution operation and
corollary (10) we have the following:

() () () ()
() () () ()
i i i i
i i i i

+ + − −

− + + +

= + − Δ + + − Δ
= − − Δ + − −Δ

b b b b
b b b b

 (12)

This forms the basis of an efficient scheme for convolving
a signal with a set of GCKs. Given the result of convolving
the signal with the filter kernel −v (+v), convolving with the
filter kernel +v (−v) requires only 2 operations per pixel
independent of the kernel size.

Considering Definition (6), and setting the prefix string to
[1]=s , we obtain that ()k

sV is the WH basis set of order 2k .
A binary tree can be designed such that its leaves are the WH
kernels ordered in dyadically increasing sequency and they
form a GCS (i.e. are consecutively α-related). An example for

2k = is shown in Fig. 4 where every two consecutive
kernels are α-related. Thus, by ordering the WH kernels to
form a GCS and given the result of filtering an image with
the first WH kernel, filtering with the other kernels can be
performed using only 2 operations per pixel per kernel

regardless of signal and kernel size. This result could be

easily generalized to two dimensions due to the separability
of the WHT [17] [18].

IV. FAST BLOCK MOTION ESTIMATION

The proposed fast block matching algorithm, FME-GCK, will
now be described. Assume the video sequence is composed
of images 0 1 2, , ,...I I I of size 1 2n n× , macroblocks are of size
k k× , and search windows of size n n× . Also assume a set
of m WH basis vectors { } 1

0

m
i i

−

=
v that form a GCS is given.

Denote by j
i
()b the projection values of macroblocks of

image jI onto WH basis vector iv . Denote by ()
,
j

x yp or ()
,
j

x yw a
macroblock of image jI at coordinates (,)x y , and denote by

()sw p the search window around macroblock p .

For each image jI

1) Project jI onto { } 1

0

m
i i

−

=
v to obtain { } 1()

0

mj
i i

−

=
b .

2) For each Inter macroblock ()
1, 1
j

x yp

2.1) For each macroblock (1) ()
2, 2 1, 1()j j

x y x ysw− ∈w p
2.1.1) Calculate lower bound on distance between

()
1, 1
j

x yp and (1)
2, 2
j

x y
−w using { } 1()

0

mj
i i

−

=
b and

{ } 1(1)

0

mj
i i

−−

=
b .

2.2) Calculate the MSE between ()
1, 1
j

x yp and the q

macroblocks (1)
2, 2
j

x y
−w with the smallest distance

lower bound from ()
1, 1
j

x yp .

2.3) From the q macroblocks, select (1)
2, 2
j

x y
−w with the

smallest Euclidean distance from ()
1, 1
j

x yp as the best
matched macroblock.

The FME-GCK algorithm will now be discussed in

details. In order to perform efficient GCK calculations, the
set of WH basis vectors must be consecutively α-related, thus
forming a GCS. Finding an optimal GCS is shown to be NP-
Complete [17] [18]. The sequence of kernels that was used
with the FME-GCK is shown as overlaid arrow in Fig. 2.
This 'snake' order forms a GCS and captures the increase in
spatial frequency.

Step 1 of the algorithm is performed using GCK with only
2 operations per pixel for each WH kernel. An exception for
this efficient calculation is the first kernel (DC component)
that can be calculated using 4 operations per pixel as
described in [19].

Notice that the GCK approach can not be used efficiently
for projecting macroblocks on the image boundary
(specifically at the top and left image boundaries). This
limitation, although minor, might increase algorithm
complexity substantially. In an experiment for a CIF

Fig. 4. Using initial vector s = [1] and depth 2k = a binary tree creates the
WH basis set of order 4. Consecutive kernels are α-related, as shown by the
arrows.

+ -+ -

- +
[1]

[1 1][1 -1]

[1 1 1 1][1 1 -1 -1][1 -1 1 -1] [1 -1 -1 1]

α-related

(352x288) video sequence, boundary macroblock projections
were performed by direct filtering with WH basis vectors and
nonboundary macroblock projections were performed using
the FME-GCK. Boundary projections were found to require
about 55% of the calculation time spent on all projections. A
solution to this problem is to zero-pad the upper and left
boundaries of the image by 1kΔ + − rows and 1kΔ + −
columns respectively. This, naturally, also increases the size
of the projection images{ } 1()

0

mj
i i

−

=
b . The upper Δ rows and left

Δ columns of these projection images { } 1()

0

mj
i i

−

=
b are filled

with zeros. This is correct since projecting a zero macroblock
onto any kernel results in zero. For all other image pixels
starting from the Δ +1 row and column, projections are
performed using the efficient GCK method. The proposed
technique for fast boundary calculation is depicted in Fig. 5.

Step 2.1.1 is based on the projection framework described
in section II. Although the WH basis vectors are not
orthornormal, they are orthogonal. Therefore, the term

1()TU U − in equation (5) can be ignored.

V. COMPLEXITY ANALYSIS AND RESULTS

FME-GCK uses two parameters that affect the tradeoff

between complexity (time and memory) and accuracy of
resulting motion vectors. These parameters are m , the
number of projections to perform for each image, and q , the
number of candidate macroblocks for which the true MSE
value is calculated (Step 2.2 in algorithm). Larger m
produces more accurate results at the cost of higher time and
memory complexity. Memory complexity is affected since
m projections of image jI and m projections of image 1j−I
must be stored in memory, thus, memory complexity is
approximately 1 22(1)m n n+ . Note that if 2m k= the algorithm
results are guaranteed to be identical to that of the full search.
Larger q also produces more accurate results at the cost of
higher time complexity; it does not however, affect memory.

As a reference for setting m and q we consider the
performance of the diamond search algorithm. This algorithm
is shown in [9] to produce results of similar accuracy to that

of the three-step search algorithm, while reducing block
matching operations to an average of 15.5 per block with

16, 15k n= = . Assuming 1 time unit for each operation of
addition, subtraction, multiplication and minimum of two
numbers, we obtain that performing a single MSE
computation between two blocks requires 23 1k − time units.
Thus, performing a diamond search requires 215.5(3 1)k −
time units plus 14.5 time units (for calculating the minimum
over all MSE values) per template macroblock. In the given
configuration this sums to 11,903 time units per template
macroblock.

Performing the FME-GCK algorithm involves m
projections of each image. Time complexity of this step is 2
time units per pixel for every projection with the exception of
the first projection that requires 4 time units per pixel to
calculate – a total of 22 (1)k m + time units per template
macroblock. Calculating the lower bound for candidate
macroblocks requires another 23mn time units per template
macroblock. Finding the q candidate macroblocks with the
lowest lower bounds, if performed naively, requires less than

2qn time units. Calculating the MSE for these candidate
macroblocks and selecting the one with the minimal MSE
requires 2(3 1) (1)q k q− + − time units. Thus, a total of

2 2 2 22 (1) 3 3 1k m mn qn k q ε+ + + + − + time units are required
per template macroblock. The ε is added due to two
additional overheads: 1) The aforementioned additional
boundary calculation and 2) The fact that both Inter and Intra
macroblocks must be projected, in contradiction to zero
calculations for Intra macroblocks incurred by the diamond
search algorithm. A reasonable value for ε is one that adds
about 10% to the total algorithm time complexity. This
estimation takes into account the fact that finding the best q
candidates could be performed using a more efficient
nontrivial procedure.

In order to compare performance of our suggested
approach we choose parameters q and m such that run times
of the FME-GCK equals that of the diamond search. From
the run times computed above we find that such selections
are 5m = , 3q = and 4m = , 4q = . Note that it has been
verified by real-time code profiling that both selections are
comparable in time complexity to the diamond search.

Table 1 compares the results of full search, diamond
search, and the FME-GCK algorithm. The selection of
parameters for the FME-GCK is such that its time complexity
equals the time complexity of diamond search. Results are
given in average MSE values between template blocks and
'best' found candidate blocks. It can clearly be seen that
FME-GCK significantly outperforms diamond search in both
configurations for all sequences in Table 1 except Akiyo. For
this sequence the difference between the results is very small.
We conclude that for the same amount of calculations, FME-

Fig. 5. Zero-padding each image with 1kΔ+ − rows and 1kΔ + − columns
enables rapid boundary calculation. The Δ upper rows and Δ left columns
of each corresponding projection images are filled with zeros. GCK based
computations start with the 1Δ + row and 1Δ + column.

Image

Δ

k-1

Δ k-1

Boundary

Bo
un

da
ry

GCK significantly outperforms the diamond search on
average.

Table 1. Performance of FME-GCK algorithm compared to full search and
diamond search. The selection of parameters for the FME-GCK is such that
its time complexity equals the time complexity of diamond search
(5, 3m q= = and 4, 4m q= =). Macroblocks are of size 8 8× , search
window is of size 15 15× , and GOP size is 15 . Results are given in average
MSE between template blocks and 'best' candidate blocks.

Sequence Res. FS Diamond GCK53 GCK44
Akiyo CIF 456 502 552 553
Silent CIF 621 699 670 674
Coastguard QCIF 6,472 12,751 8,572 10,089
Carphone QCIF 8,307 13,954 10,400 11,675
Mobile CIF 69,991 133,359 90,981 95,522

An important property of the FME-GCK algorithm is that

the tradeoff between complexity and accuracy of the results is
controlled by the parameters m and q . The number of
projections to perform for each image, m , could adapt to the
video sequence characteristics with one frame of delay. The
number of candidate macroblocks to perform MSE with for
every template block, q , enables even more flexiblity since it
could be different for every macroblock. Fig. 6 depicts the
effect of different values of parameter m on FME-GCK
performance with a constant 3q = . As expected, increasing
the number of projections produces results which are closer
to the optimal. This figure shows, that FME-GCK
outperforms the diamond search starting from 4m = .

VI. CONCLUSION

In this paper a novel fast block motion estimation

algorithm called FME-GCK has been presented. FME-GCK
uses an efficient projection framework which bounds the
distance between a template block and candidate blocks using
highly efficient filter kernels. Candidate blocks that are
distant from the template block are quickly rejected. This
algorithm significantly outperforms diamond search and
three-step search. In addition, this algorithm is guaranteed to
converge to the optimal (full search) results and enables

adaptivity of the block matching process based on image
content and complexity limitations.

ACKNOWLEDGMENT

The authors would like to thank Prof. David Malah and

Mr. Nimrod Peleg from the Signal and Image Processing Lab
(SIPL), Dept. of EE., Technion - IIT, for their support and
valuable advice.

REFERENCES

[1] ISO/IEC CD 13818-2 - ITU-T H.262 (MPEG-2 Video), "Information

technology - Generic coding of moving pictures and associated audio
information: Video, " 1995.

[2] ISO/IEC 14496-2 (MPEG-4 Video), "Information technology – Coding
of audio visual objects," 1999.

[3] ITU-T Rec. H.263, "Video coding for low bit rate communication,"
1998.

[4] ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, "Advanced video
coding for generic audiovisual services," 2003.

[5] I. E. G. Richardson E. G. I., H.264 and MPEG-4 Video Compression -
Video Coding for Next-generation Multimedia. England: Wiley, 2003.

[6] T. Koga, et al., "Motion-Compensated Interframe Coding for Video
Conferencing," Proc. NTC'81, pp. G5.3.1-5, Dec.1981.

[7] J. R. Jain and A. K. Jain, "Displacement Measurement and Its
Application in Interframe Image Coding," IEEE Trans. Commun.,
COM-29, vol. 12, pp. 1799–1808, Dec. 1981.

[8] M. Ghanbari, “The Cross-Search Algorithm for Motion Estimation,”
IEEE Trans. Commun., vol. 38, pp. 950–3, July 1990.

[9] J. Y. Tham, "A Novel Unrestricted Center-Biased Diamond Search
Algorithm for Block Motion Estimation," IEEE Trans. Circuits and
Systems for Video Technology, vol. 8(4), pp. 369-377, Aug.1998.

[10] B. Liu and A. Zaccarin, "New Fast Algorithms for the Estimation of
Block Motion Vectors," IEEE Trans. Circuits and Systems for Video
Technology, vol. 3(2), pp. 148–157, Apr. 1993.

[11] L. C. Hsing and C. L. Hwei, "A Fast Motion Estimation Algorithm
Based on the Block Sum Pyramid," IEEE Trans. Image Process., vol. 6
(11), pp. 1587-91, Nov. 1997.

[12] C. Y. Sheng, H. Y. Ping and F. C. Shann, "A Fast Block Matching
Algorithm Based on the Winner-Update Strategy," IEEE Trans. Image
Process., vol. 10(8), pp. 1212-22, Aug. 2001.

[13] C. S. Young and C. S. Ik, "Hierarchical Motion Estimation in
Hadamard Transform Domain," Electronics Letters, vol. 35(25), pp.
2187-8, Dec. 1999.

[14] M. Brünig and B. Mense, "A Fast Exhaustive Search Algorithm Using
Orthogonal Transforms," Proc. 7th Int. Workshop on Systems, Signals
and Image Process. IWSSIP 2000, pp.111-4, June 2000.

[15] Y. Hel-Or and H. Hel-Or, "Real-Time Pattern Matching Using
Projection Kernels," 9th IEEE Int. Conf. Computer Vision, pp. 1486-93,
Oct. 2003.

[16] Y. Hel-Or and H. Hel-Or, "Real-Time Pattern Matching Using
Projection Kernels," IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, pp. 1430-45, Sep. 2005.

[17] G. Ben-Artzi, H. Hel-Or and Y. Hel-Or, "Filtering with Gray Code
Kernels," Proc. of the 17th Int. Conf. Pattern Recognition, vol. 1, pp.
556-9, Aug. 2004.

[18] G. Ben-Artzi, H. Hel-Or and Y. Hel-Or, "The Gray Code Filter
Kernels," submitted to IEEE Trans. Pattern Analysis and Machine
Intelligence.

[19] P. T. Simard, et al., "Boxlets: A Fast Convolution Algorithm for Neural
Networks and Signal Processing," Advances in Neural Information
Processing Systems, vol. 11, pp. 571-7, MIT Press, 1998.

Fig. 6. FME-GCK algorithm performance for the sequence mobile CIF.
Different values of m are shown while 3q = is constant. Performance is
measured in mean MSE between template macroblock and the 'best' found
macroblock. Full search and diamond search results are shown as reference.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6
x 105

M
ea

n
M

S
E

 p
er

 M
ac

ro
bl

oc
k

m (number or WH projections)

FS
Diamond
FME-GCK

