
Symmetry of Fuzzy DataHagit Zabrodsky� Shmuel Peleg� David AvnirzInstitute of Computer Science� and Department of Organic ChemistryzThe Hebrew University of Jerusalem91904 Jerusalem, Israel
ICPR-94, p.499-504, Jerusalem, Oct 1994.

AbstractSymmetry is usually viewed as a discrete feature: anobject is either symmetric or non-symmetric. Follow-ing the view that symmetry is a continuous feature, aContinuous Symmetry Measure (CSM) has been devel-oped to evaluate symmetries of shapes and objects. Inthis paper we extend the symmetry measure to evalu-ate the imperfect symmetry of fuzzy shapes, i.e shapeswith uncertain point localization. We �nd the proba-bility distribution of symmetry values for a given fuzzyshape. Additionally, for every such fuzzy shape, we�nd the most probable symmetric shape.1 IntroductionOne of the basic features of shapes and objects issymmetry. Symmetry is considered a pre-attentive fea-ture which enhances recognition and reconstruction ofshapes and objects [2]. Symmetry is also an importantparameter in physical and chemical processes and is animportant criterion in medical diagnosis.The exact mathematical de�nition of symmetry [4]is inadequate to describe and quantify the symmetriesfound in the natural world nor those found in the visualworld. Furthermore, even perfectly symmetric objectsloose their exact symmetry when projected onto animage plane or retina due to occlusion, self-occlusion,digitization, etc.Previous work [5] introduced a symmetry measureto de�ne and quantify the deviation of shapes andobjects from perfect symmetry. This work was ex-tended to deal with evaluating the deviation from per-fect symmetry of incomplete data as appears in oc-cluded shapes [6]. In most cases, however, sensingprocesses do not have absolute accuracy and the lo-cation of each point in a sensed pattern is given onlyas a probability distribution - a fuzzy shape. In thispaper we continue to deal with evaluating symmetryof incomplete data, speci�cally evaluating symmetryfuzzy or uncertain data.

a. b.Figure 1: a) A perfectly D6-symmetric con�gura-tion of points. b) Interference pattern of crystals.Fig. 1a shows a perfect (D6) symmetric con�gura-tion of points. The location of these points (marked asdots) are given precisely. Fig. 1b shows an interferencepattern created by projecting X-ray beams onto crys-tals. Crystal quality is measured by evaluating thesymmetry of these interference patterns. These pat-terns represent uncertain locations (the dark blobs) ofpoint data. Extension of the symmetry measure toquantify the symmetry content of uncertain data, canbe directly applied to evaluating patterns similar tothese interference patterns.In the next section we brie
y review the symmetrymeasure as applied to 2D shapes. In Section 3 we ex-tend the symmetry measure to deal with uncertain orfuzzy data. In Section 4 we give mathematical deriva-tions of the methods described in Section 3.2 A Symmetry MeasureThe Symmetry Measure as described in [5] quan-ti�es the minimum e�ort necessary to turn a givenshape into a symmetric shape. This e�ort is measuredby the sum of square distances each point is movedfrom its location in the original shape to its locationin the symmetric shape.A shape P is represented by a sequence of n pointsfPign�1i=0 . We de�ne a distance between every twoshapes P and Q:d(P;Q) = d(fPig; fQig) = 1n nXi=1 kPi �Qik2
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~Figure 2: The C3-symmetry Transform of 3 points:a) original points fPig2i=0. b) Fold fPig2i=0 intof ~Pig2i=0. c) Average f ~Pig2i=0 obtaining P̂0 =13P2i=0 ~Pi. d) Unfold P̂0 obtaining fP̂ig2i=0.We de�ne the Symmetry Transform P̂ of P as thesymmetric shape closest to P in terms of distance d.The Symmetry Measure of P denoted s(P ) isnow de�ned as the distance to the closest symmetricshape: s(P ) = d(P; P̂)The CSM of a shape P = fPign�1i=0 is evaluated by �nd-ing the symmetry transform P̂ of P and then comput-ing: s(P ) = 1n�n�1i=0 kPi � P̂ik2. Following is a geomet-rical algorithm for deriving the symmetry transform ofa shape P having n points with respect to rotationalsymmetry of order n (Cn-symmetry). Mathematicalderivation and proof can be found in [7]. This methodtransforms P into a regular n-gon, keeping the centroidin place.1. Fold the points fPign�1i=0 by rotating each pointPi counterclockwise about the centroid by 2�i=nradians (Fig. 2b). The \folding" takes Pi to ~Pi,where ~P0 = P0.2. Let P̂0 be the average of the folded points f ~Pign�1i=0(Fig. 2c).3. Unfold the points, obtaining the Cn-symmetricpoints fP̂ign�1i=0 by duplicating P̂0 and rotatingclockwise about the centroid by 2�i=n radians(Fig. 2d).A 2D shape P having qn points is represented as q setsfSrgq�1r=0 of n interlaced points Sr = fPin+rgn�1i=0 . TheCn-symmetry transform of P is obtained by applyingthe above algorithm to each set of n points seperately,
a. b.Figure 3: The C3-symmetry transform for a 6-sidedpolygon. The centroid of the polygon is marked by�. a) The original polygon shown as two sets of 3points. b) The C3-symmetric shape obtained.

where the folding is performed about the centroid ofall the points (Fig. 3). The procedure for evaluatingthe symmetry transform for mirror-symmetry is simi-lar (see [5]).3 Symmetry of points with uncertainlocationsIn most cases, sensors do not have absolute accu-racy and the location of each point in a sensed patterncan be given only as a probability distribution. Givensensed points with such uncertain locations, the fol-lowing properties are of interest:� The most probable symmetric con�guration rep-resented by the sensed points.� The probability distribution of symmetry distancevalues for the sensed points.3.1 The most probable symmetric shapeFig. 4a shows a con�guration of points whose loca-tions are given by a normal distribution function. Thedot represents the expected location of the point andthe rectangle represents the uncertainty of the loca-tion, where the width and length of the rectangle areproportional to the standard deviation. In this sectionwe describe a method of evaluating the most proba-ble symmetric shape under the Maximum Likelihoodcriterion given the sensed points. Detailed derivationsand proofs are given in Section 4.1. For simplicity wedescribe the method with respect to rotational symme-try of order n (Cn-symmetry). The solution for mirrorsymmetry or any other symmetry is similar.Given n ordered points in 2D whose locations aregiven as normal probability distributions with ex-pected location Pi and covariance matrix �i:Qi � N (Pi;�i) i=0 : : :n�1, we �nd the Cn-symmetriccon�guration of points at locations fP̂ign�10 which isoptimal under the Maximum Likelihood criterion.Denote by ! the unknown centeroid of the mostprobable Cn-symmetric set of locations P̂i:! = 1nPn�1i=0 P̂i. The point ! is dependent on the loca-tion of the measurements (Pi) and on the probabilitydistribution associated with them (�i). Intuitively, !is positioned at that point about which the folding (de-scribed below) gives the tightest cluster of points withsmall uncertainty (small s.t.d.). We assume for themoment that the centroid ! is given. A method for�nding ! is derived in Section 4.1. We use a variant ofthe folding method which was described in Section 2for evaluating Cn-symmetry of a set of points:
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3Figure 4: Folding measured points. a) A con�gura-tion of 6 measured points Q0 : : :Q5. The dot rep-resents the expected location of the point and therectangle has width and length proportional to thestandard deviation. b) Each measurement Qi wasrotated by 2�i=6 radians about the centroid of theexpected point locations (marked as '+') obtainingmeasurement ~Q0 : : : ~Q5.1. The nmeasurements Qi � N (Pi;�i) are folded byrotating each measurement Qi by 2�i=n radiansabout the centroid !. A new set of measurements~Qi � N ( ~Pi; ~�i) is obtained (see Fig. 4b).2. The folded measurements are averaged using aweighted average, obtaining a single point P̂0. Av-eraging is done by considering the n folded mea-surements ~Qi as n measurements of a single pointand P̂0 represents the most probable location ofthat point under the Maximum Likelihood crite-rion. P̂0 � ! = (n�1Xj=0 ~��1j )�1 n�1Xi=0 ~��1i ~Pi � !3. The \average" point P̂0 is unfolded as describedin Section 2 obtaining points fP̂ign�1i=0 which areperfectly Cn-symmetric.When we are given m = qn measurements, we �nd themost probable Cn-symmetric con�guration of points,similar to the folding method of Section 2. The mmeasurements fQigm�1i=0 , are divided into q interlacedsets of n points each, and the folding method as de-scribed above is applied seperately to each set of mea-surements. Derivations and proof of this case are alsogiven in Section 4.1.
a. b. c. d. e.Figure 5: The most probable symmetric shapes. a)A con�guration of 6 measured points and the mostprobable symmetric shapes with respect to b) C2-symmetry, c) C3-symmetry, d) C6-symmetry, ande) mirror-symmetry.

Several examples are shown in Fig. 5, where for agiven set of measurements, the most probable symmet-ric shapes were found. Fig. 6 shows the e�ects of vary-ing the probability distribution of the measurementson the resulting symmetric shape.
a. b. c. d. e.Figure 6: The most probable C3-symmetric shapefor a set of measurements after varying the a-c) theuncertainty (s.t.d.), d-e) both the uncertainty andthe expected location of the measurements.3.2 The probability distribution of sym-metry valuesFig. 7a displays a Laue photograph ([1]) which is aninterference pattern created by projecting X-ray beamsonto crystals. Crystal quality is determined by eval-uating the symmetry of the pattern. In this case theinteresting feature is not the closest symmetric con�g-uration, but the probability distribution of the sym-metry distance values.Consider the con�guration of 2D measurementsgiven in Fig. 4a. Each measurement Qi is a normalprobability distribution Qi � N (Pi;�i). We assumethe centroid of the expectation of the measurements isat the origin. The probability distribution of the sym-metry distance values of the original measurements isequivalent to the probability distribution of the loca-tion of the \average" point (P̂0) given the folded mea-surements as obtained in Step 1 and Step 2 of thealgorithm in Section 3.1. It is shown in Section 4.2that this probability distribution is a �2 distributionof order n� 1. However, we can approximate the dis-tribution by a gaussian distribution. Details of thederivation are given in Section 4.2.In Fig. 7 we display distributions of the symmetrydistance as obtained for the Laue photograph givenin Fig. 7a. In this example we considered every darkpatch as a measured point with variance proportionalto the size of the patch. Thus in Fig. 7b the rectan-gles which are proportional in size to the correspondingdark patches of Fig. 7a, represent the standard devia-tion of the locations of point measurements. Note thata di�erent analysis could be used in which the varianceof the measurement location is taken as inversely pro-portional to the size of the dark patch.In Fig. 8 we display distributions of the symmetrydistance value for various measurements. As expected,
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c.Figure 9: Probability distribution of symmetry val-ues a-b) Two images of skin spots. c-d)Probabilitydistribution of point locations corresponding to theskin spots of a-b respectively. e) Probability distri-bution of symmetry distance values with respect tomirror-symmetry for skin spots. Expectation valuefor skin spots a and b are 0.009013 and 0.002921respectively.skin cancer where the skin spot is determined to becancerous, as a function of the \amount" of symmetryof the spot [3]. Fig.s 9a-b display two images of skinspots. These spots were represented by a sequence ofmeasurements along the fuzzy contour of the spot (seeFig. 9c-d). The symmetry distribution of these sets ofmeasurements were evaluated with respect to mirrorsymmetry. Notice that the skin spot of Fig. 9a has notonly a higher expectation for the symmetry value butalso has a broader distribution.4 Mathematical derivations4.1 The most probable Cn-symmetricshapeIn Section 3.1 we described a method of evaluatingthe most probable symmetric shape given a set of mea-surements. In this Section we derive mathematicallyand prove the method. For simplicity we derive themethod with respect to rotational symmetry of ordern (Cn-symmetry). The solution for mirror symmetryis similar.



Given n points in 2D whose positions are given asnormal probability distributions: Qi � N (Pi;�i),i = 0 : : :n�1, we �nd the Cn-symmetric con�gurationof points fP̂ign�10 which is optimal under the Maxi-mum Likelihood criterion.Denote by ! the center of mass of the points P̂i:! = 1nPn�1i=0 P̂i. Having that fP̂ign�10 are Cn-symmetric, the following is satis�ed:P̂i = Ri(P̂0 � !) + ! (1)for i = 0 : : :n�1 where Ri is a matrix representinga rotation of 2�i=n radians. Given the measurementsQ0; : : : ; Qn�1 we �nd the most probable P̂0 and !bymaximizing Prob(fPign�1i=0 j !; P̂0) under the symme-try constraints of Eq. 1.Thus, due to the normal distribution we minimize:n�1Yi=0 ki exp(�12(P̂i � Pi)t��1i (P̂i � Pi)where ki = 12� j �i j1=2. Having log being a monotonicfunction, we maximize:logn�1Yi=0 ki exp(�12(P̂i � Pi)t��1i (P̂i � Pi)Thus we �nd those parameters which maximize:�12 n�1Xi=0 (P̂i � Pi)t��1i (P̂i � Pi)under the symmetry constraint of Eq. 1.Substituting Eq. 1, taking the derivative with re-spect to P̂0 and equating to zero we obtain:(n�1Xi=0 Rti��1i Ri)| {z }A P̂0 + n�1Xi=0 Rti��1i (I �Ri)| {z }B ! =n�1Xi=0 Rti��1i Pi| {z }E (2)Note that R0 = I where I is the identity matrix.When the derivative with respect to ! is zero:(n�1Xi=0(I �Ri)t��1i Ri)| {z }C P̂0 + n�1Xi=0(I � Ri)t��1i (I �Ri)| {z }D != n�1Xi=0 (I � Ri)t��1i Pi| {z }F (3)Notice that when all �i are equal (i.e. all points havethe same uncertainty, which is equivalent to the casesin Section 2 where point location is known with nouncertainty), Eqs. 2-3 reduce to Eqs. 3.5-3.6 in [7].From Eq. 2 we obtainP̂0 � ! = (n�1Xj=0Rtj��1j Rj)�1 n�1Xi=0(Rti��1i Ri)Rti(Pi � !)

Which gives the folding method described in Sec-tion 3.1, where Rti(Pi�!) is the location of the foldedmeasurement (denoted ~Pi in text) and Rti��1i Ri is itsprobability distribution (denoted ~�i in the text). Theterm (Pn�1j=0 Rtj��1j Rj) is the normalization factor.Reformulating Eqs. 2 and 3 in matrix formation weobtain: �A BC D �| {z }U � P̂0! �| {z }V = �EF �| {z }ZNoting that U is symmetric we solve by inversion V =U�1Z and obtain the parameters ! and P̂0, and obtainthe most probable Cn-symmetric con�guration, giventhe measurements fQign�1i=0 .Similar to the representation in Section 2, givenm = qn measurements fQigm�1i=0 , we consider them asq sets of n interlaced measurements: fQiq+jgn�1i=0 forj = 0 : : : q�1. The derivations given above are appliedto each set of n measurements separately, inorder toobtain the most probable Cn-symmetric set of pointsfP̂igm�1i=0 . Thus the symmetry constraints that mustbe satis�ed are: P̂iq+j = Ri(P̂j � !) + !for j = 0 : : : q � 1 and i = 0 : : : n � 1 where, again,Ri is a matrix representing a rotation of 2�i=n radiansand ! is the centroid of all points fP̂igm�1i=0 .As derived in Eq. 2, we obtain for j = 0 : : : q � 1:(n�1Xi=0 Rti��1iq+jRi)| {z }Aj P̂j + n�1Xi=0 Rti��1iq+j(I � Ri)| {z }Bj ! =n�1Xi=0 Rti��1iq+jPiq+j| {z }Ej (4)and equating to zero, the derivative with respect to !,we obtain, similar to Eq. 3:q�1Xj=0 (n�1Xi=0(I � Ri)t��1iq+jRi)| {z }Cj P̂j+q�1Xj=0 n�1Xi=0(I � Ri)t��1iq+j(I �Ri)| {z }D ! =q�1Xj=0 n�1Xi=0(I �Ri)t��1iq+jPiq+j| {z }F (5)Rewriting Eqs. 4 and 5 in matrix formation we obtain:



0BBBBB@A0 B0A1 B1. . . ...Aq�1 Bq�1C0 C1 � � � Cq�1 D 1CCCCCA| {z }U 0BBBBB@ P̂0̂P1...P̂q�1! 1CCCCCA| {z }V = 0BBBBB@ E0E1...Eq�1F 1CCCCCA| {z }ZNoting that U is symmetric we solve by inversion V =U�1Z and obtain the parameters ! and fP̂jgq�1j=0, andobtain the most probable Cn-symmetric con�guration,fP̂jgm�1j=0 given the measurements fQigm�1i=0 .4.2 Probability distribution of symmetryvaluesIn this section we derive the probability distribu-tion of symmetry distance values with respect to Cn-symmetry, obtained from a set of n measurements:Qi � N (Pi;�i) i = 0 : : :n � 1 (see Section 3.2).Denote by Xi the 2-dimensional random variablehaving a normal distribution equal to that of ~Qi i.e.E(Xi) = RiPiCov(Xi) = Ri�iRtiwhere Ri denotes (as in Section 2) the rotation matrixof 2�i=n radians.Denote by Yi the 2-dimensional random variable:Yi = Xi � 1n n�1Xj=0Xjin matrix notation:0B@ Y0...Yn�11CA| {z }Y = A 0B@ X0...Xn�11CA| {z }Xor Y = AX where Y and X are of dimension 2n andA is the 2n� 2n matrix:A = 1n 0BBBB@ n� 1 0 �1 0 �1 � � �0 n� 1 0 �1 0 � � ��1 0 .. . 0 �1 � � �. . . . . .� � � n� 11CCCCAAnd we haveE(X) = 0B@ E(X0)...E(Xn�1)1CA Cov(X) = 0B@Cov(X0). . .Cov(Xn�1)1CAE(Y) = AE(X) Cov(Y) = ACov(X)AtGiven that the matrix ACov(X)At, is symmetric andpositive de�nite, we can �nd a 2n� 2n matrix S diag-onalizing Cov(Y) i.e.SACov(X)AtSt = D

where D is a diagonal matrix (of rank 2(n� 1)).Denote by Z the 2n-dimensional random variableSAX. E(Z) = SAE(X)Cov(Z) = SACov(X)AtSt = DThus the random variables Zi that compose Z are in-dependent and, being linear combinations of Xi, theyare of normal distribution.The symmetry distance, as de�ned in Section 2, isequivalent, in the current notations, to s = YtY. Hav-ing S orthonormal we haves = (AX)tAX = (SAX)tSAX = ZtZIf Z were a random variable of standard normal dis-tribution, we would have s being of a �2 distributionof order 2(n� 1). In the general case Zi are normallydistributed but not standard and Z cannot be stan-dardized globally. We approximate the distribution ofs as a normal distribution withE(s) = E(Z)tE(Z) + traceDtDCov(s) = 2trace(DtD)(DtD) + 4E(Z)tDtDE(Z)5 ConclusionIn this paper we evaluated the deviation from per-fect symmetry of incomplete data. We described amethod based on a continuous measure of symmetry,previously de�ned, for dealing with uncertain data, i.e.dealing with a con�guration of measurements repre-senting the probability distribution of point location.A direct application of this method is to quantify crys-tal quality by evaluating the symmetry of interferencepatterns obtained by projecting X-rays onto crystals.These methods can be easily extended to higher di-mensions and to more complex symmetry classes.References[1] J. Auleytner. X-Ray Methods in the Study of Defectsin Single Crystals. Pergamon Press, Warszawa, 1967.[2] M. Bornstein and J. Stiles-Davis. Discrimination andmemory for symmetry in young children. Developmen-tal Psychology, 17:82{86, 1984.[3] H.T. Lynch. Skin Heredity, and Malignant Neoplasms.Medical Examination Pub., Flushing, NY, 1972.[4] H. Weyl. Symmetry. Princeton Univ. Press, 1952.[5] H. Zabrodsky, S. Peleg, and D. Avnir. A measureof symmetry based on shape similarity. In CVPR-92,pages 703{706, Champaign, June 1992.[6] H. Zabrodsky, S. Peleg, and D. Avnir. Completion ofoccluded shapes using symmetry. In CVPR-93, pages678{679, New York, June 1993.[7] H. Zabrodsky, S. Peleg, and D. Avnir. Symmetry as acontinuous feature. IEEE trans. PAMI, to appear.


