
IRREGULAR PATTERN MATCHING USING PROJECTIONS

M. Ben-Yehuda, L. Cadany, H. Hel-Or

Department of Computer Science
University of Haifa
Haifa, Israel 31905

Y. Hel-Or

School of Computer Science
The Interdisciplinary Center

Herzliya, Israel

ABSTRACT

Recently, a novel approach to pattern matching was intro-
duced, which reduces time complexity by two orders of
magnitude over traditional approaches. It uses an efficient
projection scheme which bounds the distance between a pat-
tern and an image window using very few operations on av-
erage. The projection framework combined with a rejection
scheme allows rapid rejection of image windows that are
distant from the pattern. One of the limitations of this ap-
proach is the restriction to square dyadic patterns. In this
paper we introduce a scheme, based on this approach which
allows fast search for patterns of any size and shape. The
suggested method takes advantage of the inherent recursive
tree-structure introduced in the original scheme.

1. INTRODUCTION

Pattern Matching finds appearances of a pattern within a
source image. The pattern is typically a 2D image frag-
ment, much smaller than the image. Finding a given pat-
tern in an image is performed by scanning the entire image,
and evaluating the similarity between the pattern and a lo-
cal 2D window about each pixel. Using naive approaches,
this task is computationally intensive. Heuristics are often
introduced to overcome the time complexity.

Naive Fourier New Approach

Avg # ops + : 2k2 + : 36 log n + : 2 log k + ε
per pixel ∗ : k2 ∗ : 24 log n

Space n2 n2 2n2 log k
Int Ops Yes No Yes

Run time 1.33 Sec. 3.5 Sec. 54Msec
16× 16
Run time 4.86 Sec. 3.5 Sec. 78Msec
32× 32
Run time 31.30 Sec. 3.5 Sec. 125Msec
64× 64

Table 1. Pattern matching approaches - comparison.

In [1, 2], a novel approach was introduced which re-
duces run times by almost 2 orders of magnitude as shown
in Table 1. The approach is based on a projection scheme
where lower bounds on the distance between a pattern and
image windows are obtained by projection onto a set of ker-
nels. The projection framework is combined with a rejec-
tion scheme which reject those windows whose distance
bounds imply that they do not match the pattern. The set
of projection kernels are chosen such that they are fast to
apply. Therefore, tight lower bounds can be produced with
very few operations, which in turn, enable very fast rejec-
tion of a large portion of the image. Experiments show that
the approach is efficient even under very noisy conditions.

One of the limitations of the approach as suggested in
[1, 2], is the restriction to dyadic square patterns. In this
paper we introduce a new scheme, based on this approach
which allows fast search for patterns of any size and shape.
The suggested method takes advantage of the tree-structure
introduced in the original scheme.

2. PATTERN MATCHING USING PROJECTIONS

Assume a k× k pattern p is to be sought within a given im-
age. Pattern p is matched against a similarly sized window
w at every location in the image. Referring to the pattern p

and the window w as vectors in <k2

, the Euclidean distance
between them is given as:

d2
E(p,w) = ‖p−w‖2 (1)

The smaller the distance value, the more similar are w

and p. If the distance is below a given threshold, then win-
dow w is considered similar to pattern p.

Now, assume that p and w are not given, but only the
values of their projection v1

T p and vT
1 w onto a particular

projection vector v1, where ‖v1‖ = 1. Since the Euclidean
distance is a norm, it follows from the Cauchy-Schwartz in-
equality, that a lower bound on the actual Euclidean distance
can be inferred from the projection values [2]:

d2
E(p,w) ≥ d2

E(v
T
1 p,vT

1 w) (2)



+ − +−

−+

+

+ + + −

+ + + + + + − − + − + −+ − − +

+−+ −+−+ −

+ − + − − + − ++ − + − + − + −+ + + + + + + ++ + + + − − − − + + − − + + − −+ + − − − − + + + − − + + − − ++ − − + − + + −

Fig. 1. The tree-scheme for computing projections of all windows of a 1D signal onto all WH kernels of order 8.

If an additional projection vector v2 is given along with
the projection values: vT

2 p and vT
2 w, it is possible to tighten

the lower bound on the distance. Define the distance vector
d = w−p, and assume that the projection values of d onto
r orthonormal projection vectors are given:

MT d = b

M = [v1 v2 · · ·vr] is a matrix of the r orthonormal projec-
tion vectors, and b = [b1 b2 · · · br] is a vector of projection
values bi = vT

i d = vT
i w − vT

i p. It is straightforward to
verify that the lower-bound LBE on the distance is:

d2
E(p,w) = dT d ≥ bT b = LB

(r)
E (p,w)

Thus
LB

(r)
E (p,w) =

r∑

i=1

(vT
i p− vT

i w)2 (3)

Note, that as the number of projection vectors increases, the
lower bound on dE(p,w) tightens. In the extreme, when
r = k2 and the projection vectors are linearly independent,
the lower bound reaches the actual Euclidean distance.

This is the basis for the Pattern Matching process:

1. The sought pattern p is projected onto a set of n nor-
malized projection vectors {vi}, resulting in n val-
ues: p̂ i = vT

i p, for i = 1 . . . n.

2. All image windows {wj} are projected onto the first
projection vector v1: ŵ1

j = vT
1 wj

3. This projection sets a lower bound on the true dis-
tance between each window wj and the pattern:

LB
(1)
E (p,wj) = (ŵ

1
j − p̂1)2. According to the lower

bound values, any window j whose LB
(1)
E value is

greater than the given threshold can be rejected.

4. The windows of the image that have not been rejected,
are projected onto the second projection vector v2:
ŵ2

j = vT
2 wj . This produces updated lower bounds:

LB
(1)
E = LB

(2)
E + (ŵ2

j − p̂ 2)2.

+ -

- +

+ - +-

+ +
Pattern 

Shape  B
Pattern 

Shape  A

Pattern Shape A

Pattern Shape B

Fig. 2. Combining coefficients in the WH-tree allows de-
tection of non-square patterns. Two examples are shown.

5. Steps 3 and 4 are repeated for the subsequent projec-
tion vector.

6. The process terminates after all n kernels have been
processed or until the number of non-rejected image
windows reaches a predefined value.

The efficiency of this Pattern Matching approach relies
on choosing projection vectors, for which the lower bound
becomes tight following very few projections and for which
projections can be computed efficiently. In [1, 2] it was
shown that the Walsh-Hadamard Kernels ordered in decreas-
ing sequency, fulfil the tight bound requirement. Addition-
ally, a method for efficiently computing the projection onto
the Walsh-Hadamard kernels, was presented which reduces
computation time to O(1)-O(logk) operations per pixel per
kernel. The projections are computed using a tree structure
called the Walsh Hadamard Tree.

2.1. Projections Using the Walsh-Hadamard Tree

In order to efficiently compute the projections of all image
windows onto all kernels, the Walsh-Hadamard Tree de-
scribed in [2] is used.



Consider first, the 1D pattern matching case. Given a
signal vector of length n, and a ”pattern” vector of length k,
the goal is to find appearances of the pattern in the signal.
Towards this end, we project each window of the signal, of
length k, onto a set of 1D Walsh-Hadamard basis vectors.
These projections can be computed efficiently using the tree
scheme depicted in Figure 1. There are log2(k) + 1 levels
in the tree. Every node in the tree represents a vector of in-
termediate values used in the computation. The root node
represents the original signal vector. The i-th leaf repre-
sents a vector containing the projection values of all signal
windows onto the i-th Walsh-Hadamard basis vector. The
symbols + and − represent the operations performed at a
given tree level. A symbol + (−) on an edge connecting
nodes at level i and level i+1 denotes the computation per-
formed on the signal at level i, in which to every entry x of
the signal, the value of entry x + ∆ is added (subtracted),
where ∆ = 2i. Thus, the 2 signals at level 1 are obtained
by adding or subtracting consecutive entries in the signal of
level 0 which is the original signal. The 4 signals at level
2 are obtained by adding/subtracting entries at distance 2 in
the signals at level 1, and so on.

This approach can be extended to higher dimensions.
Searching for a k×k pattern in a 2D image of size n×n, each
window of the image is projected onto a set of 2D Walsh-
Hadamard kernels using a Walsh-Hadamard tree. However,
for the 2D case, the tree depth is 2 log2(k) rather than log2(k),
and there are k2 leaf nodes. The operations performed at
each level of the tree are now performed along the rows or
along the columns of the image (see [2] for details).

The order of projection kernels (associated with the tree
leaves) in both 1D and 2D, is crucial to the efficiency of the
matching process. The operations+/− on the tree branches
were designed to create projections onto Walsh-Hadamard
vectors ordered in increasing dyadic sequency.

Computations within the tree are typically performed
by descending from a node in the tree to its child. This
requires a single operation per pixel. Thus, for every ker-
nel, 2 log2(k) operations per pixel are required in the 2D
case. Note, that due to the tree structure, intermediate com-
putations actually serve many windows. Thus, following
the projection onto the first kernel, the computation onto
the second kernel requires only a single operation per pixel,
since most of the intermediate computations have already
been performed. Additionally, since a rejection scheme is
incorporated into the computation, many windows are re-
jected following the first few projections. Thus the follow-
ing projections require even fewer computations since they
are performed only on the remaining windows. In practise
it is shown that the number of operations per pixel required
to complete the pattern detection process using the Walsh-
Hadamard tree is 2 log k + ε.

3. NON-SQUARE PATTERN MATCHING

As described in [2] and above, Pattern Matching, assumes
pattern and corresponding windows are square shaped of
dyadic length. This seriously constrains pattern matching as
often the desired pattern is irregularly shaped. We propose
a pattern matching approach that overcomes this restriction.
The approach relies on the Walsh-Hadamard tree described
above. An important characteristic of the Walsh-Hadamard
tree is its inherent recursive nature. The sub-trees from root
to any level of the tree are themselves Walsh-Hadamard
trees for smaller sized image windows. Within the Walsh-
Hadamard tree containing 2log2k + 1 levels, developed for
a window of size k×k, the first 2log2k−2 levels of the tree
can be used to match patterns of size k

2 ×
k
2 . This has been

used for Multi-Scale Pattern Matching [2]. We exploit this
in our non-square Pattern matching scheme.

The pattern is decomposed into dyadic components. Each
component is matched with an appropriate sized image win-
dow. The same Walsh-Hadamard tree is used to compute the
projection of all these image windows onto the projection
kernels. The projection values may be located at the same
node of the tree at different coordinates or even at different
nodes of the tree. An example is shown in Figure 2. Pattern
matching is based on calculating lower bounds and reject-
ing the non-square windows whose lower bound exceeds a
threshold. Lower bounds on the actual Euclidean distance
between the non-square pattern and window are computed
from the projections of the dyadic components of the pat-
tern and window. This can be implemented since the Eu-
clidean distance is additive. Issues of kernel normalization
and weighting must be carefully considered.

Pattern matching proceeds by calculating the first branch
of the Walsh-Hadamard tree. This branch may now contain
projection values of several dyadic components of the win-
dow. All these projection values are considered, and lower
bounds updated accordingly, before the subsequent branch
of the tree is computed.

3.1. Pattern Decomposition

The original non-square pattern is decomposed into dyadic
components. From experimental results (see Figure 5b), we

a. b. c.

Fig. 3. a) Non-square pattern. b) Mask of pattern. c) Re-
sulting decomposition of pattern. Maximum components
was set to 10 and minimum size was set to 4.



a b c da b c d
Fig. 4. Non-Square Pattern Matching. a) Image with non-square pattern marked. b-d) Steps in the pattern matching process.
Number of remaining windows are b) 2970 c) 100 d) 1.

found that there is an advantage in computation and run-
time, the larger the components of the pattern. Thus we use
a greedy decomposition algorithm to extract the largest pos-
sible components first. We use a 2-pass algorithm to create
a map of distances from every pixel in the pattern to the pat-
tern boundary. The distance values may be considered as
half the length of the maximal square centered at the pixel
and bounded within the pattern. The largest bounded dyadic
square is thus found and marked. The process is repeated
with a new pattern obtained by removing the marked dyadic
square from the original pattern. A sequence of dyadic com-
ponents of decreasing size are thus extracted greedily from
the pattern and form the dyadic decomposition. The process
is repeated until the desired number of squares is reached,
or the size of the components reaches the minimum size al-
lowed. An example is shown in Figure 3.

4. RESULTS

The proposed scheme was tested on real images and pat-
terns. As an example, Figure 4 shows an original 256x256
image within which a non-square pattern was marked. This
example shows that patterns need not be a single connected
component. In this case the, the pattern consists of 2 rect-
angular patches. Following the pattern matching approach

# Projections

# 
R

em
ai

ni
ng

 W
in

do
w

s

0      20     40      60     80    100

4000

3000

2000

1000

0

# Projections

# 
R

em
ai

ni
ng

 W
in

do
w

s

0      20     40      60     80    100

4000

3000

2000

1000

0

1      1.5       2       2.5      3      3.5      4

16

12

8

4

0

square size

N
um

be
r 

of
 C

al
cu

la
tio

ns

x104

Fig. 5. a) Number of remaining windows following each
projection. b) Computations as a function of maximum pat-
tern component size.

described in this paper, non-square image windows were
projected onto Walsh-Hadamard kernels and windows with
values exceeding the given threshold were rejected. Pro-
cess continued with remaining windows until one window
remained. The remaining windows after each steps of the
process is shown in Figures 4b-d. This behavior was con-
sistent over many such examples including matching with
noise contaminated images. Figure 5a plots the number of
remaining window as a function of the number of projec-
tions for various noise levels.

We examined the effects of the size of components on
the computation time. Results are shown in Figure 5b where
the number of calculation steps is plotted as a function of the
maximum allowed size of dyadic component of the pattern.
As can be seen, there is an advantage in computation and
run-time, when larger component sizes are allowed.

5. CONCLUSION

The pattern-matching scheme proposed in this paper deals
with irregularly shaped patterns. The pattern is decomposed
into dyadic components which are searched for using the
projection based pattern matching approach. A single Walsh-
hadamard tree is used. This is possible due to the tree’s
inherent recursive nature. The advantage of the projection
scheme is increased by the fact that the Walsh-Hadamard
tree needs to be developed only up to the level associated
with the maximum component size. This also implies that
less run time memory is required.

6. REFERENCES

[1] Y. Hel-Or and H. Hel-Or, “Real time pattern match-
ing using projection kernels,” in 9th IEEE Interna-
tional Conference on Computer Vision, Nice, France,
Oct 2003, pp. 1486–1493.

[2] Y. Hel-Or and H. Hel-Or, “Real time pattern matching
using projection kernels,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, To Appear.


