
Real Time Pattern Matching Using Projection Kernels

Yacov Hel-Or Hagit Hel-Or

School of Computer Science Dept of Computer Science
The Interdisciplinary Center University of Haifa

Herzeliya, Israel Haifa, Israel

Abstract
A novel approach to pattern matching is presented, which
reduces time complexity by two orders of magnitude com-
pared to traditional approaches. The suggested approach
uses an efficient projection scheme which bounds the dis-
tance between a pattern and an image window using very
few operations. The projection framework is combined with
a rejection scheme which allows rapid rejection of image
windows that are distant from the pattern. Experiments
show that the approach is effective even under very noisy
conditions. The approach described here can also be used
in classification schemes where the projection values serve
as input features that are informative and fast to extract.

1. Introduction
Many applications in Image Processing and Computer Vi-
sion require finding a particular pattern in an image. This
task is referred to as Pattern Matching and may appear in
various forms. Some applications require detection of a set
of patterns in a single image, for instance, when a pattern
may appear under various transformations, or when several
distinct patterns are sought in the image. Other applications
require finding a particular pattern in several images. The
pattern is usually a 2D image fragment, much smaller than
the image. In video applications, a pattern may also take
the form of a 3D spatio-temporal fragment, representing a
collection of 2D patterns.

Finding a given pattern in an image is typically per-
formed by scanning the entire image, and evaluating the
similarity between the pattern and a local 2D window about
each pixel. In this paper, we deal with Euclidean distance,
however, our scheme is applicable to any distance measure
that forms a norm. Although there are strong arguments
against the Euclidean distance as a similarity measure for
images, it is still commonly used due to its simplicity and
its favorable computational complexity. For a discussion on
the Euclidean distance as a similarity metric see [5].

Assume a 2D k × k pattern P (i, j) is to be matched
within an image I(i, j) of size n×n. For each k× k image

window I(x,y) = {I(i, j) | x+k > i ≥ x , y+k > j ≥ y},
the following distance is calculated:

d2
E(I(x,y), P) =

k−1∑

{i,j}=0

(I(x + i, y + j) − P (i, j))
2 (1)

The smaller the distance measure at a particular location,
the more similar the k × k local window is to the pattern.
If the distance is zero, the local window is identical to the
pattern. In practice, however, windows whose distance are
smaller than a predefined threshold are accepted as a match
(to compensate for noise, digitization errors, etc.). In prin-
ciple, the distance should be calculated for every location in
the image, hence it must be applied n2 times, with k2 mul-
tiplications and 2k2 additions at each step. Fortunately, this
naive approach can be expedited using the FFT transform
while exploiting the convolution theorem. This reduces the
calculations to 36 logn additions and 24 logn multiplica-
tions, for each pixel of the image. Table 1 summarizes
the number of operations for each approach, including run
times for search of different sized patterns in a 1K×1K im-
age. Note, that in the Naive approach the operations may be
calculated in integers, while for the Fourier approach calcu-
lations must be performed in float. Despite this, the Fourier
approach is faster, and as the pattern size increases, the
Fourier approach becomes even more advantageous. How-
ever, as can be seen, actual run times are still far from real
time application requirements.

In this paper, we present a novel approach which reduces
run times by almost 2 orders of magnitude as shown in Ta-
ble 1. The approach is based on a projection scheme where
tight bounds on the distance between a pattern and image
windows are obtained using projections onto a set of ker-
nels. The projection framework is combined with a rejec-
tion scheme which discards those windows whose distance
bounds indicate that they do not match the pattern.

This approach can also be used for Classification in
which projection values are used as features which can be
extracted very fast. In recent approaches, the projection
scheme coupled with rejection has been studied. These ap-
proaches aim to increase classification efficiency by choos-

1

Naive Fourier New Approach
Average # operations + : 2k2 + : 36 logn + : 2 log k + ε

per pixel ∗ : k2 ∗ : 24 logn
Space n2 n2 2n2 log k

Integer Arithmetics Yes No Yes
Run time for 16× 16 1.33 Sec. 3.5 Sec. 54 Msec
Run time for 32× 32 4.86 Sec. 3.5 Sec. 78 Msec
Run time for 64× 64 31.30 Sec. 3.5 Sec. 125 Msec

Table 1: A comparison between existing pattern matching approaches and the proposed approach.

ing projection kernels that are optimal with respect to dis-
crimination abilities [4, 1, 2]. In this paper, a different
scheme is suggested in which efficiency is achieved by
choosing specific projection kernels that are very fast to ap-
ply. Thus although more projections might be needed, the
overall performance is enhanced.

The idea of choosing projection kernels that are fast to
apply is not new. In [9] Viola uses a set of projection kernels
to produce a feature set for a classification system. The ker-
nels are chosen such that they can be applied very rapidly
using an integral image scheme [3]. This process also in-
cludes a rejection phase where non-relevant windows can
be classified as such very efficiently. Viola’s scheme is sim-
ilar in spirit to the method suggested in this paper, however
in this work, we do not deal necessarily with classification
problems. Additionally, in Viola’s work, the projection ker-
nels are restricted to those applicable in the integral image
scheme. In some classification problems, however, such
kernels can produce poor results as they may form non-
informative feature inputs. In our method, this behavior is
avoided since the projection kernels form a complete repre-
sentation of the input.

2. Bounding the Euclidean Distance
Assume a k × k pattern is to be matched against a similar
sized window at a particular location in a given image. Re-
ferring to the pattern p and the window w as vectors in <k2

,
d = p−w is the difference vector between p and w. Then,
the Euclidean distance can be re-written in vectorial form:

dE(p,w) = ‖d‖ =
√

dT d (2)

Now, assume that p and w are not given, but only the values
of their projection onto a particular vector u. Let

b = uT d = uT p − uT w

be the projected distance value. Since the Euclidean dis-
tance is a norm, it follows from the Cauchy-Schwartz in-
equality, that a lower bound on the actual Euclidean distance
can be inferred from the projection values:

d2
E(p,w) ≥ b2/(uT u) (3)

If a collection of projection vectors are given u1 . . .um

along with the corresponding projected distance values bi =
uT

i d, the lower bound on the distance can then be tightened:

d2
E(p,w) ≥ bT (UT U)−1b

where,

U = [u1 . . .um] and b = (b1 . . . bm)T

As the number of projection vectors increases, the lower
bound on the distance dE(p,w) becomes tighter. In the ex-
treme case when the rank of U equals k2 the lower bound
reaches the actual Euclidean distance. Note, that if the pro-
jection vectors are orthonormal, the lower bound reduces to
bT b.

An iterative scheme for calculating the lower bound is
also possible and is elaborated in [6] together with addi-
tional extensions and proofs relating to this section.

3. Finding Efficient Projection Vectors
At first thought, it is unclear why a projection scheme
should be used to calculate the distance between pattern p

and all image windows w, rather than computing the exact
Euclidean distance directly. The answer is in the appropri-
ate selection of projection vectors. A large number of cal-
culations can be spared if the vectors are chosen according
to the following two necessary requirements:

• The projection vectors should have a high probability
of being parallel to the vector d = p−w.

• Projections of image windows onto the projection vec-
tors should be fast to compute.

The first requirement implies that, on average, the first
few projection vectors produce a tight lower bound on the
pattern-window distance. This, in turn, will allow rapid re-
jection of image windows that are distant from the pattern.
The second requirement arises from the fact that the projec-
tion calculations are performed many times, for each win-
dow of the image. Thus, the complexity of calculating the
projection plays an important role when choosing the ap-
propriate projection vectors.

2

Figure 1: The projection vectors of the Walsh-Hadamard
transform of order n = 8 ordered with increasing spatial
frequency. White represents the value 1, and black repre-
sents the value -1. A diadic ordering of these basis vectors
is shown by the overlayed arrows.

There are various sets of projection vectors that satisfy
the above two requirements. We chose to demonstrate our
approach using the Walsh-Hadamard basis vectors. It will
be shown that these vectors capture a large portion of the
pattern-window distance with very few projections. Addi-
tionally, a technique is presented here, to calculate the pro-
jection values very efficiently.

4. The Windowed Walsh-Hadamard
Basis Vector for Pattern Matching

The Walsh-Hadamard (WH) transform has long been used
for image representation under numerous applications. The
elements of the (non-normalized) basis vectors contain only
binary values (±1). Thus, computation of the transform
requires only integer additions and subtractions. The WH
transform of an image window of size k × k (k = 2m)
is obtained by projecting the window onto the k2 WH ba-
sis vectors [8]. In our case, it is required to project each
k × k window of the image onto the vectors. This results
in a highly over-complete image representation, with k2n2

projection values for the entire image.
The projection vectors associated with the 2D WH trans-

form of order n = 23 = 8 are shown in Figure 1. Each basis
vector is of size 8 × 8 where white represents the value +1,
and black represents the value -1. In Figure 1, the basis
vectors are displayed in order of increasing sequency (the
number of sign changes along rows and columns of the ba-
sis vector). A diadic ordering of these vectors is shown
by the overlayed arrows. The diadic ordering is induced

a.
0 50 100 150 200 250

0

10

20

30

40

50

60

70

80

90

100

Walsh Coefficients

%
 o

f D
is

ta
nc

e

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Walsh Coefficients

%
 o

f D
is

ta
nc

e

b.
0 50 100 150 200 250

0

10

20

30

40

50

60

70

80

90

100

Delta Coefficients

%
 o

f D
is

ta
nc

e

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Delta Coefficients

%
 o

f D
is

ta
nc

e

Figure 2: The lower bound on the distance between image
window and pattern, as a percentage of the total distance,
versus the number of projection vectors used. The values
displayed are averaged over 100 16 × 16 pattern-window
pairs chosen randomly from natural images. a) Projections
are onto Walsh-Hadamard basis vectors. b) Projections are
onto the standard basis vectors (i.e. delta functions).

by the algorithm discussed below and although not exactly
according to sequency, captures the increase in spatial fre-
quency. The ordering of the basis vectors plays an important
role with respect to the first requirement mentioned above,
namely, that a high proportion of the window-pattern differ-
ence is captured by the first few projection vectors [7]. In
terms of pattern matching, the lower bounds on distances
between window and pattern, are shown to be tight after
very few projections. Figure 2a displays this behavior by
plotting the lower bound as a percentage of the total dis-
tance between image window and pattern, versus the num-
ber of projection vectors used. It can be seen that the first 10
(of 256) projections capture over 70% of the distance. For
comparison, Figure 2b shows the same lower bound when
using the standard basis for projection (delta functions), i.e.
when calculating the Euclidean distance by accumulating
squared pixel difference values.

As discussed above, a critical requirement of the projec-
tion vectors, is the speed and efficiency of computation. An
efficient method for calculating the projections of all image
windows onto a sequence of WH vectors is introduced in the
following section and is the essence of the pattern matching
scheme presented in this paper.

4.1 The Walsh-Hadamard Tree Structure

We introduce a novel scheme for computing the projection
of all image windows onto WH basis vectors (this may also
be considered as the Windowed WH Transform). The sug-
gested scheme uses a tree structure to implement these op-
erations.

Consider first, the 1D pattern matching case. Given a
signal vector of length n, and a ”pattern” vector of length k,
the goal is to find appearances of the pattern in the signal.
Towards this end, we project each window of the signal, of
length k, onto a set of 1D WH basis vectors. These projec-
tions can be computed efficiently using the tree scheme de-

3

+ − +−

−+

+

+ + + −

+ + + + + + − − + − + −+ − − +

+−+ −+−+ −

+ − + − − + − ++ − + − + − + −+ + + + + + + ++ + + + − − − − + + − − + + − −+ + − − − − + + + − − + + − − ++ − − + − + + −

Figure 3: Tree-scheme for computing projections of all sig-
nal windows onto all Walsh-Hadamard vectors of order 8.

picted in Figure 3. There are log2(k) + 1 levels in the tree.
Every node in the tree represents a vector of intermediate
values used in the computation. The root node represents
the original signal vector. The i-th leaf represents a vector
containing the projection values of all signal windows onto
the i-th WH basis vector. The symbols + and − represent
the operations performed at a given tree level. A symbol +
(−) on an edge connecting nodes at level i and level i+1 de-
notes the computation performed on the signal at level i, in
which to every entry x of the signal, the value of entry x+∆
is added (subtracted), where ∆ = 2i. Thus, the 2 signals at
level 1 are obtained by adding or subtracting consecutive
entries in the signal of level 0 which is the original signal.
The 4 signals at level 2 are obtained by adding/subtracting
entries at distance 2 in the signals at level 1, and so on.
The operations +/− on the tree branches were designed to
create projections onto WH vectors ordered in increasing
diadic sequency (as shown in Figure 1).

Computations within the tree are typically performed by
descending from a node in the tree to its child. The follow-
ing lists various types of projections that may be computed
using the tree. The number of operations are given as well.

• Projecting all windows onto a single projection vec-
tor. This corresponds to evaluating all signal values at
a single leaf of the tree. This is performed by descend-
ing the tree, top-down, from the root to the appropriate
leaf. At each level, all entries at that node are calcu-
lated. Note, that due to the tree structure, every inter-
mediate computation actually serves many windows.
Descending from a node in the tree to its child requires
a single operation per window, thus, at most log2(k)
additions/subtractions per signal window are required.

• Projecting all windows onto a set of consecutive
projection vectors. This corresponds to evaluating
all entries in a consecutive set of leaf nodes of the
tree. This extends the previously described type of
projection. However in the top-down descent of the
tree, many nodes are common to several branches. For
example, the first 2 projection vectors, have log2(k)
nodes common to both branches. Thus, given the

branch associated with the computation of the first pro-
jection vector, only one additional operation per entry
is required for the second projection vector. In general,
when computing the signal values at sequentially or-
dered leaf nodes, the WH tree is traversed in pre-order.
The projection of all windows onto the first l projec-
tion vectors requires m operations per signal window,
where m is the number of nodes preceding the l leaf in
the pre-order tree traversal. Thus, projecting all win-
dows onto all projection vectors requires only 2k−2
operations per window (about 2 operations per win-
dow per projection vector, independently of the win-
dow size!).

• Projecting a single window onto a single projection
vector. This corresponds to evaluating a single entry in
one of the leaves of the tree. To compute this value, a
single branch of the tree must be traversed - the branch
from the root to the leaf associated with the projection
vector. However since not all values of all the nodes
in the branch are required for computation, the pro-
jection is calculated more efficiently by recursively as-
cending the tree bottom-up, from the leaf to the root
node, and calculating only those entries that are miss-
ing yet are required for the computation. To compute
an entry at level i, two entries are needed at level i−1,
therefore, a total of at most k − 1 operations (addi-
tions/subtractions) are required for this projection.

4.2. Using The Walsh-Hadamard Tree Struc-
ture for Pattern Matching

The pattern matching approach we propose, uses the WH
tree structure and follows the projection schemes described
above. As discussed in Section 2, a lower bound on the
distance between each window and the pattern can be esti-
mated from the projections. Thus, complexity and run time
of the pattern matching process can be significantly reduced
by rejecting windows with lower bounds exceeding a given
threshold value. Rejection of windows implies that many
signal values at the tree leaves need not be computed.

In the pattern matching process, projections are per-
formed onto vectors in the order determined by sequentially
traversing the leaves. At all times, a single branch of the
WH tree is maintained. This branch includes all nodes
from the root to the current leaf. The algorithm proceeds as
follows:

The Pattern Matching Algorithm:
Assume the sought pattern p is projected (in a pre-

processing stage) onto the set of k WH basis vectors
{ui}k

i=1, resulting in k values: p̂i = uT
i p.

1. The first branch of the tree is computed, obtaining the
projection of all signal windows {wx} onto the first
WH projection vector u1: ŵ1

x = uT
1 wx

4

2. This projection generates a lower bound on the true
distance between each window wx and the pattern:
LB1(x) = (ŵ1

x − p̂1)2. All windows whose LB value
is greater than the given threshold are rejected.

3. Image windows that have not been rejected, are pro-
jected onto the second vector u2: ŵ2

x = uT
2 wx. This

is performed by replacing the maintained tree-branch
associated with the first projection with the branch as-
sociated with the second projection. This produces up-
dated lower bounds: LB2(x) = LB1(x)+(ŵ2

x− p̂2)2.

4. Steps 2 and 3 are repeated similarly for subsequent
projection vectors, for those windows that have not
been rejected.

5. The process terminates after all k vectors have been
processed or until the number of non-rejected image
windows reaches a predefined value.

During the matching process it is possible to compute the
projection values in two manners; The top-down approach
calculates the projections of all windows. This method is
preferable in the initial stages, when the number of rejected
windows is small. However, at later stages, when the num-
ber of rejected windows is sufficiently large, it is preferable
to compute the projection on individual windows, i.e. in a
bottom-up manner (see Section 4.1). In practice, when only
very few windows remain, it is preferable to calculate the
Euclidean distance directly for these windows. A rigorous
analysis on the conditions for transitioning between the dif-
ferent forms of projections can be found in [6].

The complexity of the pattern matching process is
calculated as follows: Initially (Step 1), log2(k) operations
per window are required to calculate the projection of all
windows onto the first projection vector. In the following
stages of the process (repeated Steps 2-3), every projection
requires only l operations per window where l is the
number of nodes that differ between the current branch
and the previous branch of the tree. Practically, after very

+

+ −+ +

+ +
− −

+ −
+ −

+ −
− +

−+

+ − + −

+ +
+ +

Figure 4: The tree-scheme for computing projections of all
2D image windows onto all 2×2 Walsh-Hadamard kernels.

few projections, most of the signal windows are rejected,
and the bottom-up scheme is applied for the remaining
windows. The number of operations per window beyond
the first stage is shown experimentally to be negligible.

Efficiency of computation is due to three main factors:

1. Using the recursive structure of the WH Tree, Calcula-
tions applied to one window are exploited when com-
puting neighboring windows.

2. Using the structure of the Walsh-Hadamard Tree, cal-
culations applied to one vector, are exploited in the
computation of the next vector.

3. As discussed above, the first few WH vectors capture a
large portion of the distance between pattern and win-
dow. Thus, in practice, after a few projections, the
lower-bound on the distance is tight and enables most
image windows to be rejected from further considera-
tion.

In terms of memory demand, the proposed scheme re-
quires more memory than the traditional approaches. Tra-
ditional approaches, performing in-signal computations re-
quire memory on the order of n (signal size). The proposed
approach maintains a branch of the WH tree at all times,
requiring memory of size n log k. However, considering
the fact that floating memory is required for the naive ap-
proach and integer memory for the new approach and con-
sidering the typical scenario where k, (pattern size) is rel-
atively small compared to n (signal size), we find that this
increase in memory, is acceptable.

4.3. Pattern Matching in 2D
The pattern matching process described above for 1D sig-
nal, easily extends to 2D images (as well as to higher dimen-
sional data). Searching for a k × k pattern in a 2D image
of size n×n, each window of the image is projected onto a
set of 2D WH kernels1 using a WH tree. However, for the
2D case, the tree depth is 2 log2(k) rather than log2(k), and
there are k2 leaf nodes. Figure 4 depicts such a tree for the
WH transform of order 2×2. Each node represents an n×n
image of intermediate values used in the computation. The
operations performed at a given tree level are represented
by the symbols along the edge. As in the 1D case, the op-
erations performed are additions and subtractions of pixels
at a distance ∆ from each other, however in the 2D case
a distinction is made between operations performed on the
rows of the image and on the columns of the image. This
is designated by the arrows in the symbols. Thus, the sym-
bol + ↓ on an edge connecting nodes at level i and level
i + 1 denotes the computation performed on the image at

1The notion ’kernels’ in 2D replaces the notion ’vectors’ in 1D

5

level i in which to every pixel (x, y) of the image, the value
of pixel (x, y + ∆) is added, where now ∆ = 2bi/2c. De-
scending from a node in the tree to its child image requires a
single operation per pixel, thus, for every kernel, 2 log2(k)
operations (additions/subtraction) per pixel are required.

The order of projection kernels is crucial to the effi-
ciency of the matching process. The projection used in
the tree structure is that of diadically increasing frequency
of the kernels (Figure 1). The order of kernels is deter-
mined by the operations (+ or -) assigned to each edge.
The diadically increasing order is obtained as follows: Let
s = (+−+−−+−+) be a seed sequence, and S = {s}∗
an arbitrary number of repetitions of s. At each level of
the tree, scanning the operations applied at each node, from
left to right, yields a sequence equal to a prefix string of
S. From this rule it is straightforward to calculate the op-
eration that is to be applied at any given tree level for any
given branch.

Extensions to higher dimensional data (e.g. for spatio-
temporal pattern matching in video sequences) is straight-
forward and can be performed in a similar manner.

5. Experimental Results
The proposed scheme was tested on real images and pat-
terns. The results show that the suggested approach reduces
run time by almost 2 orders of magnitude compared to the
naive and FFT approaches.

As an example, Figure 5 shows an original 256× 256
image and the 16×16 pattern that is to be matched. Fig-
ures 6a-c show the results of the pattern matching scheme.
Following the suggested method, the projection of all 65536
windows of the image onto the first WH kernel were calcu-
lated. All windows with projection values above a given
threshold were rejected. After the first projection, only 602
candidate windows remained (Figure 6a), i.e. only 0.92% of
the original windows. Following the second projection only

a.

b.

Figure 5: Inputs for the pattern matching example. a. Orig-
inal 256×256 image. b. 16×16 pattern shown at large scale.

8 candidate windows remained (Figure 6b) and following
the third projection a single window containing the pattern
remained (Figure 6c).

The performance shown in this example is typical and is
attained over many such examples. Figure 7 shows the per-
centage of image windows remaining after each projection
for images of size 256 × 256 and patterns of size 16 × 16.
The results are the average over 100 image-pattern pairs.
Using these results, an estimate of the average number of
operations per pixel required to complete the process was
calculated and found to equal 8.0154 which is slightly over
2 log2(16) as expected (see Section 4.3).

Run time comparison was performed between the Naive
approach, the Fourier approach, and the suggested method
using a 1K×1K image and patterns of size 16×16, 32×32,
and 64 × 64. The experiments were performed on a PIII
processor, 1.8 GHz. The average number of operations and
run times are summarized in Table 1. It can be seen that
the suggested approach is advantageous over the traditional
approaches especially for small pattern size. For larger pat-
tern sizes run time increases, but still maintains a speedup
of orders of magnitude over the two other methods.

5.1. Robustness of the Approach
Noise

Appearances of a pattern in an image, may vary due
to noise, quantization, digitization and transformation
errors. In the following experiment an original 256 × 256
image was embedded with 10 occurrences of a 16 × 16
pattern. Various levels of noise were added to the image.
Figure 10a shows a noisy version of the image with
noise level of 40 (i.e. each pixel value in the image was
increased/decreased by a random amount uniformly chosen
in [−40 . . .40]). All 10 patterns were detected even under
these very noisy conditions. Under these conditions a

0 50 100 150 200 250
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Projection #

%
 w

in
do

w
s

re
m

ai
ni

ng

0 50 100 150 200 250
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Projection #

%
 w

in
do

w
s

re
m

ai
ni

ng

Figure 7: Percentage of image windows remaining after
each projection for images of size 256×256 and patterns
of size 16×16. Results are averaged over 100 image-pattern
pairs.

6

a. b. c.
Figure 6: Three steps in the pattern matching process. a. Following the first projection only 602 candidate windows remain
(0.92% of the windows). b. Following the second projection only 8 candidate windows remain. c. After the third projection
a single window remains corresponding to the correct pattern location.

larger threshold for rejection is required. This implies that
fewer image windows are rejected after each projection and
that the overall number of required projections increases.
Figure 8 shows this behavior where the minimum number
of projections required to find all noisy patterns is shown as
a function of the noise level. In all cases, the threshold used
is the minimum value that produces no miss-detections.
Although the number of required projections increases
with noise level, efficiency of the pattern matching process
is maintained as shown in Figure 9. The Figure shows
the percentage of image windows remaining after each
projection for noise levels varying between 0 and 40. As
the noise level increases, fewer windows are rejected after
each projection, however the decreasing profile for the
various thresholds is similar (Figure 9 inset shows a scaled
version of the values for the first few projections). The
average number of operations per pixel was calculated and
at maximal noise level was found to be 10.0623 which is
only slightly higher than the value obtained for non-noisy
images of the same size (see above).

Invariance to Illumination
The WH tree has the additional advantage that it eas-

ily enables pattern matching that disregards the DC values.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

Noise Level

P

ro
je

ct
io

ns

Figure 8: The minimum number of projections required to
find all patterns in an image as a function of the noise level.

0 50 100 150 200 250
-5

0

5

10

15

20

25

30

35

Projection #

%
 W

in
do

w
s

R
em

ai
ni

ng

0 5 10 15

0

1

2

3

4

Figure 9: Percentage of image windows remaining after
each projection for images at various noise levels (e.g. Fig-
ure 10a). Image size is 256×256 and pattern size is 16×16.

This can be used to compensate for illumination variations.
The DC value of all windows is given by their projection
onto the first WH kernel. In order to perform DC invari-
ant pattern matching, the first branch of the WH tree (Sec-
tion 4.1) may be skipped and the process initialized by com-
puting the projections onto the second kernel. The rest of
the process continues as before. As an example, in Fig-
ure 10b an illumination gradient was added to the original
image in which 10 occurrences of the pattern were embed-
ded. The illumination gradient produces large variance in
the appearance of the pattern in the image (Figure 10b bot-
tom). Using the original approach the patterns were not de-
tected (even using a very high threshold only 2 of the oc-
currences were detected and many false alarms resulted as
well). Performing DC invariant pattern matching, all 10 oc-
currences of the pattern were detected using a small thresh-
old and only 5 projections (Figure 10c).

7

a. b. c.

Figure 10: An original image was embedded with 10 occurrences of a pattern. a) Noise was added to the image at a level
of 40 (see text). b. A gradient of illumination was added to the image. The 10 patterns as appearing in the image are shown
below. c. All 10 patterns of varying illuminations were found. Five projections were required to find all 10 patterns.

6. Conclusion
The pattern matching scheme proposed in this paper as-
sumes the Euclidean distance is used for measuring simi-
larity between pattern and image. Under this assumption
the proposed scheme is advantageous over the existing tra-
ditional schemes first and foremost due to the reduction in
time complexity of 2 orders of magnitude. The efficiency
due to the projection technique suggested in this paper, is
amplified by the fact that all computations of the transform
coefficients are performed using integer additions and sub-
tractions. In addition to the ability of the suggested method
to cope with various illuminations, it also allows multi-scale
pattern matching, with patterns scaled by powers of 2. This
can be performed at almost no extra cost since the appropri-
ate WH kernels for these scaled patterns are already given at
the intermediate tree nodes. The scheme was described for
1D and 2D data however extensions to higher dimensional
data (including image sequences) is straightforward.

The projection approach described here, independent of
the rejection scheme, can be used also in classification sys-
tems where the projection values serve as input features that
are informative and can be extracted in real-time. However,
we emphasize that we do not aim at introducing a new clas-
sification technique or distance measure, rather we assume
a normed distance evaluation is used to determine whether a
window is similar to the given pattern. Given that this is the
classification technique we showed a method that improves
run-time and efficiency over other known techniques.

Limitations of the suggested approach includes the fact
that memory of size 2n2 log k is required during the process
and that pattern sizes are limited to powers of 2.

Finally, although the Pattern Matching approach de-
scribed in this paper, was developed for the Euclidean

norm, extensions to other norms are straightforward. The
method has already been extended to normalized correla-
tion scheme, which allows matching of patterns of any size
by spatial masking.

Software implementing the Pattern Matching scheme
presented here, is available and can be downloaded from:
http://www.faculty.idc.ac.il/toky/Software/software.htm

References
[1] S. Baker and S.K. Nayar. Pattern rejection. In IEEE-CVPR -

San Francisco, CA, USA, 18-20 June, 1996.

[2] Christopher J. C. Burges. A tutorial on support vector ma-
chines for pattern recognition. Data Mining and Knowledge
Discovery, 2(2):121–167, 1998.

[3] F. Crow. Summed-area tables for texture mapping. SIG-
GRAPH, 18(3):207–212, 1984.

[4] M. Elad, Y. Hel-Or, and R. Keshet. Pattern detection using
maximal rejection classifier. In Int. Workshop on Visual Form,
pages 28–30, Capri, Italy, May 2000.

[5] B. Girod. Whats wrong with mean-squared error? In A.B.
Watson, editor, Digital Images and Human Vision, chapter 15,
pages 207–220. MIT press, 1993.

[6] Y. Hel-Or and H. Hel-Or. Real time pattern matching using
projection kernels. Technical Report CS-2002-1, Interdisci-
plinary Center Technical Report, 2002.

[7] H. Kitajima. Energy packing efficiency of the hadamard trans-
form. IEEE T-Comm., pages 1256–1258, 1976.

[8] D. Sundararajan and M.O. Ahmad. Fast computation of
the discrete walsh and hadamard transforms. IEEE T-IP,
7(6):898–904, 1998.

[9] P. Viola and M. Jones. Robust real-time object detection. In
ICCV Workshop on Statistical and Computation Theories of
Vision, Vancouver Canada, July 2001.

8

