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Abstract:

Symmetry is typically viewed as a discrete feature: an object is either symmetric or non-
symmetric. However visual perception treats symmetry as a continuous feature, relating to
statements such as ‘one object is MORE symmetric than another’ or ‘an object s MORFE
mirror symmetric than rotational symmetric’. With this notion in mind, we view symmetry
as a continuous feature and define a Continuous Symmetry Measure (CSM) to quantify the
“amount” of symmetry of different shapes and the ‘amount’ of different symmetries of a
single shape. Computational methods have been developed to compute the CSM values with
respect to any point symmetry for any shape or pattern in any dimension. A preliminary
study showed that the Symmetry Measure developed, is commensurate with human perceptual
experience. The computational approach embeds both the hierarchical and continuous nature
of symmetry of objects. Thus global and local features can be evaluated for their symmetry
content. The CSM has been applied to real images and to shapes and forms extracted from
measured data. The CSM has been extended to deal with symmetries of noisy and fuzzy data as
well as reconstructing symmetries of occluded shapes. Additionally, the CSM is used to evaluate

symmetries of 3D objects, given as measured data or evaluated from the 2D projection.

1 Introduction

Symmetry is one of the basic features of shape and form. It has been widely studied from
various aspects ranging from artistic to mathematical. Symmetry is classically viewed as a
binary feature - either an object is symmetric or it is not. However this view is inadequate to
describe the symmetries found in the natural world. Tt is inconsistent with visual perception
and natural behavior which treat symmetry as a continuous feature, relating to statements
such as ”one object is more symmetric than another” or ”an object is more mirror symmetric
than rotational symmetric” (see Figure 1). With this notion in mind, we view symmetry as
a continuous feature. Accordingly, a Continuous Symmetry Measure (CSM) has been defined
[12, 3] which quantifies the ”amount” of symmetry of different shapes and the ”amount” of

different symmetries of a single shape.



Figure 1: Symmetry as a continuous feature.
Shape a is “more” mirror symmetric than shape b.
Shape c is “more” rotationally-symmetric than mirror symmetric.

2 The Continuous Symmetry Measure (CSM)

The Continuous Symmetry Measure (CSM) is defined as the minimum ‘effort” required
to transform a given shape into a symmetric shape. This ‘effort’ is measured as the mean
squared distance moved by points of the original shape in order to create the symmetric shape.

Note that no a priori symmetric reference shape is assumed.

A shape P is represented by a sequence of n points {P;}?. We define a distance between

every two shapes P and ):
1 n
d(P,Q) = d({P}.{Q:}) = — > |1 — Qi
i=1

We define the Symmetry Transform P of P as the symmetric shape closest to P in terms of
the distance d. The Continuous Symmetry Measure (CSM) of P denoted S(P) is defined

as the distance to the closest symmetric shape:

S(P)=d(P,P)
The CSM of a shape P = { P,}7=} is evaluated by finding the symmetry transform P of P and
computing: S(P) = X[\ P, - P||2. This definition of the CSM implicitly implies invariance
to rotation and translation. Normalization of the original shape prior to the transformation

additionally allows invariance to scale.

A geometrical algorithm was developed to find the Symmetry Transform P, and the CSM of a
shape (see [3, 12, 6] for details). Given a finite point-symmetry group G (having n elements)
and given a shape P represented by m = ¢gn points, the symmetry transform of the shape

with respect to G-symmetry is obtained as follows:

Algorithm for finding the G-symmetry transform:

1. Divide the points into ¢ sets of n points.

2. For every set of n points:



(a) Fold the points by applying the elements of the G-symmetry group.
(b) Average the folded points, obtaining a single averaged point.

(c) Unfold the averaged point by applying the inverse of the elements of the G-

symmetry group. A G-symmetric set of n points is obtained.

Perform this procedure over all possible orientations of the symmetry axis and planes
of G. Select that orientation which minimizes the Symmetry Distance value. This mini-
mization is analytic in 2D (see [3, 12]) but requires iterative minimization in 3D (except

for the 3D mirror-symmetry group where a closed form solution has been derived [6]).

As an example, the Symmetry Transform for rotational symmetry of order n is calculated as

follows (see Figure 2):

Algorithm for finding the rotational-symmetry transform of order n:

1. Fold the points {P;}?=) by rotating each point P; counterclockwise about the centroid
by 2mi/n radians (Figure 2b).

2. Let Py be the average of the points {P;}*5 (Figure 2c).

3. Unfold the points, obtaining the rotationally symmetric points {]51-}?:_01 by duplicating
P, and rotating clockwise about the centroid by 2mi/n radians (Figure 2d).

The set of points {P,}*5} is the symmetry transform of the points {P;}"5}. i.e. they are
the rotationally symmetric configuration of points closest to {P;}"=} in terms of the metric d

defined above (i.e. in terms of the average distance squared). Proof is given in [3, 12].

Figure 2: The Symmetry Transform of 3 points with respect to rotational symmetry
of order 3.

10.5 a) Original 3 points {P;}?_, b) Fold {P;}2 into {P;}7, c) Average {P}2
obtaining Py = £ 7 P; d) Unfold the average point obtaining {F;}7_
The centroid w is marked by @®.



The general definition of the CSM enables evaluation of a given shape for different types of
symmetries (mirror-symmetries, rotational symmetries etc) in any dimension. Moreover, this
generalization allows comparisons between the different symmetry types, and allows expres-

sions such as “a shape is more mirror-symmetric than rotational-symmetric”.

An additional feature of the CSM is that we obtain the symmetric shape which is ‘closest’ to

the given one, enabling visual evaluation of the CSM.

The CSM approach to measuring symmetry allows the hierarchical nature of symmetry to be
expressed and quantified, as will be discussed below. Additionally, the CSM method can deal

with noisy and occluded data, also discussed below.

3 Measuring the CSM of Shapes, Images and 3D Objects

The versatility of the CSM method has induced its use in various fields such as Chemistry
[10, 5], Psychology [4], Archaeology [2] and more. Underlying these studies is the ability of the
CSM to evaluate continuous symmetry in shapes, images and objects. Previous approaches to
evaluating symmetry in shapes, images and objects which mainly rely on the binary concept

of symmetry are reviewed in [12, 3].

3.1 CSM of a Set of Points

Given a set of points, possibly with connectivities between these points, the CSM is calculated
using the geometrical algorithm previously developed and described above [12, 3]. Given a
shape such as a polygon, the vertices can be used as the input to the algorithms. Figure 3
shows an example of a shape and its Symmetry Transforms and CSM values with respect to

several types of symmetries.

C, Mirror
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Figure 3: Symmetry Transforms of a 2D polygon.

a) 2D polygon and its Symmetry Transform with respect to b) Rotational symmetry
of order 2 (S = 1.87). ¢) Rotational symmetry of order 3 (S = 1.64). d) Rotational
symmetry of order 6 (S = 2.53). e) Mirror-symmetry (S = 0.66).



3.2 CSM of a Continuous Shape

Prior to measuring the CSM of a general continuous shape, the shape must be represented as
a collection of points. Figure 4 shows an example of a general shape whose contour has been
sampled, producing a collection of representative points for which the Symmetry Transform

and CSM value were calculated with respect to mirror symmetry.

Figure 4: Symmetry Transform of a general 2D shape.
a) A general continuous shape is sampled. b) The Symmetry Transform of the shape.

Several methods have been suggested to sample the continuous contour of general shapes
in order to obtain a collection of points as input to the CSM algorithm [8, 9, 12]. When
contours and shapes are noisy, sampling at regular intervals does not produce satisfactory
results. Instead, selection at equal angles is used where points are selected on the contour at
equal angular intervals around the centroid (Figure 5). An extension of this approach was
developed to deal with contours of occluded objects. In these cases, selection is at equal angles
around the Center of Symmetry rather than the centroid. The Center of Symmetry is that
point about which selection produces the minimal symmetry distance (intuitively, this point

is proximal to the centroid of the unoccluded symmetric shape) [9, 12].

b.

Figure 5: Symmetry Transform of a general 2D shape.

a) Selection points are distributed along the contour at regular angular intervals
around the centroid. b) Selection points are distributed along the contour at regular
angular intervals around the Center of Symmetry (marked by @). The symmetry
distance obtained using these points is smaller than the symmetry distance obtained
using points selected at equal angles about the centroid (marked by +).



3.3 CSM of Gray-scale Images

Two approaches have been used in applying the CSM to gray-scale images. One approach
segments areas of interest from the image and regards their contour as 2D shapes (see Figure 12

for example).

Another approach in dealing with images, lets pixel values denote elevation, and considers
an image as a 3D object on which 3D symmetries can be measured. Figure 6 shows a range
image and a gray-scale image for which the 3D mirror Symmetry Transform was computed,

the 3D reflection plane was found and the 3D object rotated to a frontal vertical view.

d.
Figure 6: Applying CSM with respect to 3D mirror-symmetry to find orientation of
a 3D object.

a) Original range image. c¢) Original Gray-scale image. b,d) The 3D symmetry
reflection plane was found and the object in the image rotated to a frontal vertical
view.

a. b. C.

3.4 CSM of 3D Objects

Measuring the CSM of 3D objects is straight forward given a collection of 3D points as
representatives [12, 3, 7, 10]. Figure 7 shows a 3D object and its Symmetry Transform with
respect to tetrahedral symmetry. A variation of this scheme involves measuring the symmetry
of the projection of a 3D object onto the image plane [13]. Given a noisy projection of a
collection of 3D points onto a 2D plane, the closest projected symmetric configuration is
found based on the CSM approach (Figure 8). This approach is used in reconstruction of 3D
objects from their 3D projections. Figure 9 shows an example of 3 projections of a 3D object

which was reconstructed using the CSM approach.

a b.

Figure 7: A 3D-object (a) and its Symmetry Transform (b) with respect to
Tetrahedral-symmetry.
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Figure 8: Finding the closest projected mirror-symmetric configuration.

a) The projection of a 3D mirror-symmetric configuration, induces projected sym-
metry. Points P, and P! are corresponding mirror-symmetric pairs in 3D. In the
2D projection these points are on parallel segments. c¢-d) Examples of noisy 2D pro-
jections of mirror-symmetric configurations of points (left) and the closest projected

mirror-symmetric configuration (right).

Figure 9: Reconstruction of a 3D-mirror-symmetric object from 2D images of different
view points.

4 Exploiting the Characteristics of the CSM

The CSM approach to measuring symmetry can be embedded in a scheme that takes advantage
of the multi-resolution characteristics of symmetry The symmetry transform of a low resolution
version of an image is used to evaluate the Symmetry Transform of the high resolution version.

This technique was used in estimating face orientation [12, 7].

In many cases the source data is noisy. The CSM method can be exploited to deal with noisy
and missing data. Considering noisy data, where the collection of representative points are
given as probability distributions, the CSM approach can evaluate the following properties
(12, 11]:

e The most probable symmetric configuration represented by the points.
e The probability distribution of CSM values for the points.

Figure 10 shows the effect of varying the probability distribution of the object points on the
resulting symmetric shape.

Figure 11 displays a fuzzy image of points (a Laue photograph which is an interference pattern
created by projecting X-ray beams onto crystals). and the probability distribution of the CSM

values obtained for the pattern.



a b. i C. d. e

Figure 10: The most probable rotationally symmetric shape of order 3 for a set of
measurements after varying the probability distribution and expected locations of the

measurements.
a-c) Changing the uncertainty (s.t.d.) of the measurements.

d-e) Changing both the uncertainty and the expected location of the measurements.
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Figure 11: Probability distribution of symmetry values

a) Interference pattern of crystals. b) Probability distribution of point locations
corresponding to a. ¢) Probability distribution of symmetry distance values with
respect to Rotational symmetry of order 10. Expectation value = 0.003663.

Finally, the CSM approach to measuring symmetry allows the hierarchical nature of symmetry
to be expressed and quantified thus, global and local features can be evaluated for their
symmetry content. Figure 12 shows an example where the CSM approach measures local

mirror symmetry to find faces in an image.

Figure 12: Multiple mirror-symmetric regions in images.
a) Original image. b) Faces are found as locally symmetric regions.



Figure 13: Measuring symmetry of human faces at 3 levels:
a) Face Contour. b) Facial Features Centroids ¢) Facial Features Contours

This issue of global vs local symmetry is important in the case of measuring symmetry of

human faces.
5 Symmetry of Human Faces

The human face is a complex structure comprising of a number of facial features. It can
be modeled at several levels of hierarchy: at the top level is the global structure of the face
(the face contour) and at lower levels facial details (such as facial features) are revealed.
Accordingly, symmetry of the human face should be considered hierarchically. The CSM
approach to measuring symmetry can be employed to evaluate mirror-symmetry of a face at

several different levels (Figure 13):
e Face Contour - symmetry is evaluated by considering the contour of the face alone.

e Facial Features Centroids - the centroids of each of the facial features serve as the set of

input points for symmetry evaluation.

e Facial Features Contours - the face contour and the contours of all the facial features

are considered in the evaluation of symmetry.

Recent studies have proposed that there is a positive correlation between symmetry of faces
and physical attraction [1]. However the methods used for evaluating symmetry do not cap-
ture the complexity of this characteristic. We propose that using the CSM approach in a
hierarchical scheme will provide a more flexible reliable and meaningful measure of symmetry

of human faces.
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Conclusion

We view symmetry as a continuous feature and adopt the Continuous Symmetry Measure

(CSM) to evaluate it. The CSM can evaluate any symmetry in any dimension and has been

applied to shapes, images and 3D objects. The CSM can deal with noisy data, such as fuzzy

and occluded data. The method of evaluating symmetry using the CSM can be applied to

global and local symmetries. This can be extended to deal with symmetry in a hierarchical

manner as in the case of measuring symmetry of human faces. The CSM is currently being

used in numerous fields including Chemistry, Physics, Archaeology, Botany and more.
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