
Quantitative Analysis of Continuous Symmetry inShapes and ObjectsHagit Hel-Or and David AvnirDept of Computer Science, Haifa University, Haifa 31905, IsraelDept of Organic Chemistry, Hebrew University, Jerusalem 91904, IsraelAbstract:Symmetry is typically viewed as a discrete feature: an object is either symmetric or non-symmetric. However visual perception treats symmetry as a continuous feature, relating tostatements such as `one object is MORE symmetric than another' or `an object is MOREmirror symmetric than rotational symmetric'. With this notion in mind, we view symmetryas a continuous feature and de�ne a Continuous Symmetry Measure (CSM) to quantify the"amount" of symmetry of di�erent shapes and the `amount' of di�erent symmetries of asingle shape. Computational methods have been developed to compute the CSM values withrespect to any point symmetry for any shape or pattern in any dimension. A preliminarystudy showed that the Symmetry Measure developed, is commensurate with human perceptualexperience. The computational approach embeds both the hierarchical and continuous natureof symmetry of objects. Thus global and local features can be evaluated for their symmetrycontent. The CSM has been applied to real images and to shapes and forms extracted frommeasured data. The CSM has been extended to deal with symmetries of noisy and fuzzy data aswell as reconstructing symmetries of occluded shapes. Additionally, the CSM is used to evaluatesymmetries of 3D objects, given as measured data or evaluated from the 2D projection.
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1 IntroductionSymmetry is one of the basic features of shape and form. It has been widely studied fromvarious aspects ranging from artistic to mathematical. Symmetry is classically viewed as abinary feature - either an object is symmetric or it is not. However this view is inadequate todescribe the symmetries found in the natural world. It is inconsistent with visual perceptionand natural behavior which treat symmetry as a continuous feature, relating to statementssuch as "one object ismore symmetric than another" or "an object ismoremirror symmetricthan rotational symmetric" (see Figure 1). With this notion in mind, we view symmetry asa continuous feature. Accordingly, a Continuous Symmetry Measure (CSM) has been de�ned[12, 3] which quanti�es the "amount" of symmetry of di�erent shapes and the "amount" ofdi�erent symmetries of a single shape.
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Figure 1: Symmetry as a continuous feature.Shape a is \more" mirror symmetric than shape b.Shape c is \more" rotationally-symmetric than mirror symmetric.2 The Continuous Symmetry Measure (CSM)The Continuous Symmetry Measure (CSM) is de�ned as the minimum `e�ort' requiredto transform a given shape into a symmetric shape. This `e�ort' is measured as the meansquared distance moved by points of the original shape in order to create the symmetric shape.Note that no a priori symmetric reference shape is assumed.A shape P is represented by a sequence of n points fPign�1i=0 . We de�ne a distance betweenevery two shapes P and Q:d(P;Q) = d(fPig; fQig) = 1n nXi=1 kPi �Qik2We de�ne the Symmetry Transform P̂ of P as the symmetric shape closest to P in terms ofthe distance d. The Continuous Symmetry Measure (CSM) of P denoted S(P ) is de�nedas the distance to the closest symmetric shape:S(P ) = d(P; P̂ )The CSM of a shape P = fPign�1i=0 is evaluated by �nding the symmetry transform P̂ of P andcomputing: S(P ) = 1n�n�1i=0 kPi� P̂ik2. This de�nition of the CSM implicitly implies invarianceto rotation and translation. Normalization of the original shape prior to the transformationadditionally allows invariance to scale.A geometrical algorithm was developed to �nd the Symmetry Transform P̂ , and the CSM of ashape (see [3, 12, 6] for details). Given a �nite point-symmetry group G (having n elements)and given a shape P represented by m = qn points, the symmetry transform of the shapewith respect to G-symmetry is obtained as follows:Algorithm for �nding the G-symmetry transform:1. Divide the points into q sets of n points.2. For every set of n points:



(a) Fold the points by applying the elements of the G-symmetry group.(b) Average the folded points, obtaining a single averaged point.(c) Unfold the averaged point by applying the inverse of the elements of the G-symmetry group. A G-symmetric set of n points is obtained.Perform this procedure over all possible orientations of the symmetry axis and planesof G. Select that orientation which minimizes the Symmetry Distance value. This mini-mization is analytic in 2D (see [3, 12]) but requires iterative minimization in 3D (exceptfor the 3D mirror-symmetry group where a closed form solution has been derived [6]).As an example, the Symmetry Transform for rotational symmetry of order n is calculated asfollows (see Figure 2):Algorithm for �nding the rotational-symmetry transform of order n:1. Fold the points fPign�1i=0 by rotating each point Pi counterclockwise about the centroidby 2�i=n radians (Figure 2b).2. Let P̂0 be the average of the points f ~Pign�1i=0 (Figure 2c).3. Unfold the points, obtaining the rotationally symmetric points fP̂ign�1i=0 by duplicatingP̂0 and rotating clockwise about the centroid by 2�i=n radians (Figure 2d).The set of points fP̂ign�1i=0 is the symmetry transform of the points fPign�1i=0 . i.e. they arethe rotationally symmetric con�guration of points closest to fPign�1i=0 in terms of the metric dde�ned above (i.e. in terms of the average distance squared). Proof is given in [3, 12].
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Figure 2: The Symmetry Transform of 3 points with respect to rotational symmetryof order 3.10.5 a) Original 3 points fPig2i=0 b) Fold fPig2i=0 into f ~Pig2i=0 c) Average f ~Pig2i=0obtaining P̂0 = 13P2i=0 ~Pi d) Unfold the average point obtaining fP̂ig2i=0The centroid ! is marked by �.



The general de�nition of the CSM enables evaluation of a given shape for di�erent types ofsymmetries (mirror-symmetries, rotational symmetries etc) in any dimension. Moreover, thisgeneralization allows comparisons between the di�erent symmetry types, and allows expres-sions such as \a shape is more mirror-symmetric than rotational-symmetric".An additional feature of the CSM is that we obtain the symmetric shape which is `closest' tothe given one, enabling visual evaluation of the CSM.The CSM approach to measuring symmetry allows the hierarchical nature of symmetry to beexpressed and quanti�ed, as will be discussed below. Additionally, the CSM method can dealwith noisy and occluded data, also discussed below.3 Measuring the CSM of Shapes, Images and 3D ObjectsThe versatility of the CSM method has induced its use in various �elds such as Chemistry[10, 5], Psychology [4], Archaeology [2] and more. Underlying these studies is the ability of theCSM to evaluate continuous symmetry in shapes, images and objects. Previous approaches toevaluating symmetry in shapes, images and objects which mainly rely on the binary conceptof symmetry are reviewed in [12, 3].3.1 CSM of a Set of PointsGiven a set of points, possibly with connectivities between these points, the CSM is calculatedusing the geometrical algorithm previously developed and described above [12, 3]. Given ashape such as a polygon, the vertices can be used as the input to the algorithms. Figure 3shows an example of a shape and its Symmetry Transforms and CSM values with respect toseveral types of symmetries.
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b. c. d. e.Figure 3: Symmetry Transforms of a 2D polygon.a) 2D polygon and its Symmetry Transform with respect to b) Rotational symmetryof order 2 (S = 1.87). c) Rotational symmetry of order 3 (S = 1.64). d) Rotationalsymmetry of order 6 (S = 2.53). e) Mirror-symmetry (S = 0.66).



3.2 CSM of a Continuous ShapePrior to measuring the CSM of a general continuous shape, the shape must be represented asa collection of points. Figure 4 shows an example of a general shape whose contour has beensampled, producing a collection of representative points for which the Symmetry Transformand CSM value were calculated with respect to mirror symmetry.
a. b.Figure 4: Symmetry Transform of a general 2D shape.a) A general continuous shape is sampled. b) The Symmetry Transform of the shape.Several methods have been suggested to sample the continuous contour of general shapesin order to obtain a collection of points as input to the CSM algorithm [8, 9, 12]. Whencontours and shapes are noisy, sampling at regular intervals does not produce satisfactoryresults. Instead, selection at equal angles is used where points are selected on the contour atequal angular intervals around the centroid (Figure 5). An extension of this approach wasdeveloped to deal with contours of occluded objects. In these cases, selection is at equal anglesaround the Center of Symmetry rather than the centroid. The Center of Symmetry is thatpoint about which selection produces the minimal symmetry distance (intuitively, this pointis proximal to the centroid of the unoccluded symmetric shape) [9, 12].

a. 8
2π b.Figure 5: Symmetry Transform of a general 2D shape.a) Selection points are distributed along the contour at regular angular intervalsaround the centroid. b) Selection points are distributed along the contour at regularangular intervals around the Center of Symmetry (marked by �). The symmetrydistance obtained using these points is smaller than the symmetry distance obtainedusing points selected at equal angles about the centroid (marked by +).



3.3 CSM of Gray-scale ImagesTwo approaches have been used in applying the CSM to gray-scale images. One approachsegments areas of interest from the image and regards their contour as 2D shapes (see Figure 12for example).Another approach in dealing with images, lets pixel values denote elevation, and considersan image as a 3D object on which 3D symmetries can be measured. Figure 6 shows a rangeimage and a gray-scale image for which the 3D mirror Symmetry Transform was computed,the 3D re
ection plane was found and the 3D object rotated to a frontal vertical view.
a. b. c. d.Figure 6: Applying CSM with respect to 3D mirror-symmetry to �nd orientation ofa 3D object.a) Original range image. c) Original Gray-scale image. b,d) The 3D symmetryre
ection plane was found and the object in the image rotated to a frontal verticalview.3.4 CSM of 3D ObjectsMeasuring the CSM of 3D objects is straight forward given a collection of 3D points asrepresentatives [12, 3, 7, 10]. Figure 7 shows a 3D object and its Symmetry Transform withrespect to tetrahedral symmetry. A variation of this scheme involves measuring the symmetryof the projection of a 3D object onto the image plane [13]. Given a noisy projection of acollection of 3D points onto a 2D plane, the closest projected symmetric con�guration isfound based on the CSM approach (Figure 8). This approach is used in reconstruction of 3Dobjects from their 3D projections. Figure 9 shows an example of 3 projections of a 3D objectwhich was reconstructed using the CSM approach.

a. b.Figure 7: A 3D-object (a) and its Symmetry Transform (b) with respect toTetrahedral-symmetry.
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P2Figure 8: Finding the closest projected mirror-symmetric con�guration.a) The projection of a 3D mirror-symmetric con�guration, induces projected sym-metry. Points Pi and P 0i are corresponding mirror-symmetric pairs in 3D. In the2D projection these points are on parallel segments. c-d) Examples of noisy 2D pro-jections of mirror-symmetric con�gurations of points (left) and the closest projectedmirror-symmetric con�guration (right).
Figure 9: Reconstruction of a 3D-mirror-symmetric object from 2D images of di�erentview points.4 Exploiting the Characteristics of the CSMThe CSM approach to measuring symmetry can be embedded in a scheme that takes advantageof the multi-resolution characteristics of symmetry The symmetry transform of a low resolutionversion of an image is used to evaluate the Symmetry Transform of the high resolution version.This technique was used in estimating face orientation [12, 7].In many cases the source data is noisy. The CSM method can be exploited to deal with noisyand missing data. Considering noisy data, where the collection of representative points aregiven as probability distributions, the CSM approach can evaluate the following properties[12, 11]:� The most probable symmetric con�guration represented by the points.� The probability distribution of CSM values for the points.Figure 10 shows the e�ect of varying the probability distribution of the object points on theresulting symmetric shape.Figure 11 displays a fuzzy image of points (a Laue photograph which is an interference patterncreated by projecting X-ray beams onto crystals). and the probability distribution of the CSMvalues obtained for the pattern.



a. b. c. d. e.Figure 10: The most probable rotationally symmetric shape of order 3 for a set ofmeasurements after varying the probability distribution and expected locations of themeasurements.a-c) Changing the uncertainty (s.t.d.) of the measurements.d-e) Changing both the uncertainty and the expected location of the measurements.
a. b. c.
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Symmetry ValueFigure 11: Probability distribution of symmetry valuesa) Interference pattern of crystals. b) Probability distribution of point locationscorresponding to a. c) Probability distribution of symmetry distance values withrespect to Rotational symmetry of order 10. Expectation value = 0.003663.Finally, the CSM approach to measuring symmetry allows the hierarchical nature of symmetryto be expressed and quanti�ed thus, global and local features can be evaluated for theirsymmetry content. Figure 12 shows an example where the CSM approach measures localmirror symmetry to �nd faces in an image.

a. b.Figure 12: Multiple mirror-symmetric regions in images.a) Original image. b) Faces are found as locally symmetric regions.



a. b. c.Figure 13: Measuring symmetry of human faces at 3 levels:a) Face Contour. b) Facial Features Centroids c) Facial Features ContoursThis issue of global vs local symmetry is important in the case of measuring symmetry ofhuman faces.5 Symmetry of Human FacesThe human face is a complex structure comprising of a number of facial features. It canbe modeled at several levels of hierarchy: at the top level is the global structure of the face(the face contour) and at lower levels facial details (such as facial features) are revealed.Accordingly, symmetry of the human face should be considered hierarchically. The CSMapproach to measuring symmetry can be employed to evaluate mirror-symmetry of a face atseveral di�erent levels (Figure 13):� Face Contour - symmetry is evaluated by considering the contour of the face alone.� Facial Features Centroids - the centroids of each of the facial features serve as the set ofinput points for symmetry evaluation.� Facial Features Contours - the face contour and the contours of all the facial featuresare considered in the evaluation of symmetry.Recent studies have proposed that there is a positive correlation between symmetry of facesand physical attraction [1]. However the methods used for evaluating symmetry do not cap-ture the complexity of this characteristic. We propose that using the CSM approach in ahierarchical scheme will provide a more 
exible reliable and meaningful measure of symmetryof human faces.
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