ECCV-94 conf. proc., p.403-410, May 1994

Utilizing symmetry in the reconstruction of
three-dimensional shape from noisy images

Hagit Zabrodsky! and Daphna Weinshall®

Institute of Computer Science
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
contact email: gigi@cs.huji.ac.il

Abstract. In previous applications, bilateral symmetry of objects was
used either as a descriptive feature in domains such as recognition and
grasping, or as a way to reduce the complexity of structure from motion.
In this paper we propose a novel application, using the symmetry prop-
erty to “symmetrize” data before and after reconstruction. We first show
how to compute the closest symmetric 200 and 3D configurations given
noisy data. This gives us a symmetrization procedure, which we apply
to images before reconstruction, and which we apply to the 3D con-
figuration after reconstruction. We demonstrate a significant improve-
ment obtained with real images. We demonstrate the relative merits of
symmetrization before and after reconstruction using simulated and real
data.

1 Introduction

The most common symmetry in our environment is three dimensional mirror
symmetry. It is thus not surprising that the human visual system is most sensitive
to bilateral symmetry. A common case in human and computer vision is that
only 2D (projective) data is given about a 3D object. Many studies deal with
inferring 30 symmetry from 2 data. These studies deal with perfect non-noisy
data. In this paper, we deal with noisy 2D data by extending the notion of
Symmetry Distance defined in [4] to 2D projections of 3D objects which are not
necessarily perfectly symmetric. We describe in this work the reconstruction of
3D mirror symmetric connected configurations from their noisy 2D projections.

The reconstruction of a general 3D structure from 2D projections, or the
problem of structure from motion, is widely studied in computer vision and
many reconstruction algorithms have been proposed. In this work we describe
the enhancement in performance that can be obtained using existing structure
from motion (or structure from a sequence of 2D images) methods, when the
reconstructed object is known to be mirror-symmetric.

We consider here objects whose 3D structure is a mirror-symmetric con-
nected configuration (a 3D graph structure composed of one or more connected
components). We are given several noisy 2D projections of such an object, where



the projection is approximately weak perspective (scaled orthographic). In this
work we combine the invariant reconstruction algorithm described in [3] with the
method dealing with inexact symmetries suggested in [4], for improving the in-
put and output data in the structure reconstruction from several views. Previous
work on exploiting symmetry is described in [4].

We employ two approaches to exploit the fact that the 3D structure to be
reconstructed is mirror-symmetric:

— correct for symmetry prior to reconstruction
— correct for symmetry following reconstruction

Correction for symmetry following reconstruction is performed by applying
any existing method of structure from motion with no a-priori symmetry as-
sumption on the reconstructed object. Following the reconstruction, the symme-
try assumption is exploited and the mirror-symmetric structure closest to the
reconstruction is found. This last stage is performed using a closed form method
described in Section 2 for finding the closest mirror-symmetric configuration to
a given 3D connected configuration.

Correction for symmetry prior to reconstruction requires application of some
symmetrizing procedure to the 2D data with respect to the 3D symmetry. Fol-
lowing the symmetrization procedure, any existing method of reconstruction of
general 3D structure from 2D data can be applied. Notice that this procedure
does not ensure that the final reconstructed 3D structure is mirror-symmetric;
however, as will be shown in Section 4, the error in reconstruction is greatly
reduced. In Section 3 we describe a symmetrization procedure of 20 data for
projected 3D mirror-symmetry. In Section 4 we give examples and comparisons
between correction for symmetry prior and following 3D reconstruction, using
real and simulated data.

2 3D symmetrization

In [5, 4] we described a method for finding the symmetric configuration of points
which is closest to a given configuration in a least squares sense. We defined a
measure of symmetry - the Symmetry Distance (SD), and described a method for
evaluating this measure for any configuration of points with respect to any point
symmetry group in any dimension. An outcome of evaluating the Symmetry
Distance of a given configuration is the configuration which is symmetric and
which is closest to the original configuration in a least squares sense. An iterative
folding/unfolding method, which finds the closest symmetric configuration, was
described in [5, 4]. Below we describe a closed-form solution that gives equivalent
results in the case of 3D mirror-symmetry.

We first note that every mirror symmetric 31 configuration of points { P}
implicitly implies a pairing (matching) of the points: for every point P; there
exists a point match(P;) = P; which is its counterpart under reflection. Following
is the closed-form algorithm as applied to 3D mirror symmetry (Fig. 1).

Given a configuration of points {P;}72; in R? (see Fig. la):



0
[y o) o _Po o Po
P (3
P P 1 1
) oM _ e _
_ P3g P, [ .
o Py 5
P3 P3
P, 5 e °
L4 b op, P, .Pz d /}5 ,

Fig. 1. Obtaining the closest mirror symmetric set of points - see text.

1. Divide the points into sets of one or two points. If a set contains one point,
duplicate that point. In the example of Fig. 1, the sets are {Py, Po}, { Py, Ps}
and {Ps, Po}. This defines a matching on points of the object.

2. Reflect all points across a randomly chosen mirror plane, obtaining the
points P; (Fig. 1b).

3. Find the optimal rotation and translation which minimizes the sum of
squared distances between the original points and the reflected correspond-
ing points (Fig. 1c). This is a well known problem of pose estimation. To
find the solution we use the method of Arun et. al. [1], which requires no
more than the evaluation of SVD.

4. Average each original point F; with its reflected matched point F;, obtain-
ing the point P; (Fig. 1d). The points { P;}?=} are mirror symmetric.

n—1 .
5. Evaluate the symmetry distance value: % SR - P
i=0

6. Minimize the symmetry distance value obtained in Step 5 by repeating
Steps 1-5 with all possible division of points into sets. The mirror symmetric
configuration corresponding to the minimal symmetry value is the closest
mirror symmetric configuration in a least squares sense (proof is given in

[4])-

In practice, the minimization in Step 6 is greatly simplified when the config-
uration of points is connected (or partially connected). Consider the original
configuration as a graph G = {V, E'} where V is the set of vertices (points) and
E is the set of edges. In this case, the problem of matching the points reduces
to the classical problem of listing all graph isomorphisms of order 2. A graph
isomorphism is a permutation of the graph vertices which leaves the graph topo-
logically equivalent. More specifically, given a graph G = {F, V'}, replacing each
vertex ¢ € V with its matched vertex match(i) results in a graph G' = {V'  F'}
such that the set of edges E’ equals E. A graph isomorphism of order 2 is an iso-
morphism where match(match(i)) =1 (i.e., either match(i)=1, or, match(i)=j
and match(j)=1). There are several methods for finding all graph isomorphism of
order two. We used a simple recursive algorithm for finding these isomorphisms.



3 2D Symmetrization

Dealing with mirror-symmetry and assuming weak perspective projection, a 31
mirror-symmetric object has the property that if the projection of the mirror-
symmetric pairs of 3D points are connected by segments in the 2D plane, then all
these segments are parallel, i.e., have the same orientation (see Fig. 2). We will
denote this property as the “projected mirror-symmetry constraint”. If perspec-
tive projection is used, these line segments would not be of the same orientation;
rather they would be oriented such that the rays extending and including these
segments all meet at a single point, which is the epipole [2].

B)o/'P(; Fig.2. The projected mirror-symmetry
constraint. a) A weak perspective projec-
tion of a 3D mirror-symmetric configura-

P tion. Points P; and P/ are corresponding
R, —='p . . . . .
p— ¢ mirror-symmetric pairs of points in the 3D
2 . . .
structure. b) By connecting points P; with
B . / . .
p—" 3 o t}fle corileslpondmg P!, we obtain a collection
b. a/' 3 of parallel segments.

We use the projected mirror-symmetry constraint to symmetrize the 20 data
prior to reconstruction of the 3D structure. Given a 2D configuration of con-
nected points {F; ?:_01, and given a matching between the points of the config-
uration (the computation of the matching is described in the previous section),

we find a connected configuration of points {P;}7=' which satisfy:

1. The configuration of points P; have the same topology as the configuration
of points P;, i.e., points P; and Pj are connected if and only if points P; and
P; are connected.

2. Points {pZ ?:_01 satisfy the projected mirror-symmetry constraint, 1.e., all
the segments connecting points P; and Pj (where Pj =match(P;)) are of the
same orientation.

n—1 .
3. The following sum is minimized: 3 ||P; — B||?
i=0

It can be shown that the points {]52'}?:_01 are obtained by projecting each
point P; onto a line at orientation # passing through the midpoint between P;
and match(P;), where 6 is given by:

272_:1(1‘2' — match(x;))(yi — match(y;))
tan 20 = n—1Z:0 N
;o (z; — match(x;))? — (y; — match(y;))?

Note that two possible solutions exist for Eq (1). It is easily seen that the solution
is achieved when sin 6 cos 6 is of opposite sign to the numerator.



Several examples of noisy 2 projections of mirror-symmetric configurations
of points are shown in Fig. 3 with the closest projected mirror-symmetric config-
uration, which was obtained using the above algorithm. The matching is shown
by the connecting segments.
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Fig. 3. Finding the closest projected mirror-symmetric configuration. a-b) Several ex-
amples of noisy 2D projections of mirror-symmetric configurations of points (left) and
the closest projected mirror-symmetric configuration (right).

4 Experiments

In this section we describe experiments in which 3D mirror-symmetric connected
configurations are reconstructed from noisy 2D perspective projections. We use
the two approaches of correction for symmetry which were described in Section 1.
The reconstruction method used in the simulations is the invariant reconstruc-
tion method described in [3].

The correction procedures were the following:

1. The invariant reconstruction method was applied directly to the 2D data
with no symmetry assumption. Following the reconstruction, correction for
symmetry was applied to the 3D reconstruction by finding the closest 3D
mirror-symmetric configuration using the method described in Section 2.

2. Correction for symmetry was applied to the 2D projected data by finding,
for every image, the closest projected mirror-symmetric configuration, using
the method described in Section 3. Following the correction for symmetry,
the reconstruction method was applied to the modified images.

3. Correction for symmetry was performed both prior and following the recon-
struction of the 3D configuration from 2D data.

The reconstruction obtained from these procedures was compared with the
original mirror-symmetric 3D configuration. The differences were measured by
the mean squared-distance between the reconstructed and the original sets of
3D points.

4.1 Simulation Results

Two examples of the simulation are shown in Figure 4. Two randomly chosen 3D
mirror-symmetric connected configuration of 10 points are shown in Figure 4a.
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Fig. 4. Reconstruction of 3D mirror-symmetric configurations from noisy 210 projec-

e.

tions - see text.

Points were selected randomly in the box [0, 1]3. Eight noisy 2D projections were
created for each of the 3D configurations. Perspective projection was used with
a focal length of 5. The projections are from randomly chosen viewpoints and
the noise was added to the 2D projections and was set at a predefined level of
o = 0.005 for the first simulation and of ¢ = 0.05 for the second simulation.

Reconstruction of the connected configuration directly from the 2D projec-
tions, with no symmetry assumption, 1s shown in Figure 4b. The 3D reconstruc-
tion obtained when correcting for symmetry prior to reconstruction is shown in
Figure 4c. The 3D reconstruction obtained when correcting for symmetry fol-
lowing the reconstruction is shown in Figure 4d. Finally, Figure 4e shows the
3D reconstructed configuration following correction for symmetry prior and fol-
lowing the reconstruction. The differences and percentage of improvement are
summarized in Table 1.

Sigma No |Symmetrization Symmetrization| Symmetrization
Symmetrization| prior to following  |prior & following
reconstruction | reconstruction | reconstruction
% improvement|% improvement| % improvement

sim 1] 0.005 0.084967 0.072156 0.057879 0.048645
15.08% 31.88% 42.75%
sim 2| 0.05 0.094200 0.086757 0.058274 0.046645
7.90% 38.14% 50.48%

Table 1. The error and % improvement of the reconstructions of 3D
mirror-symmetric configurations from noisy 210 projections.

In order to obtain some statistical appraisal of the improvement obtained by



correcting for symmetry, we applied the simulation many times while varying the
simulation parameters. Points were, again, selected randomly in the box [0, 1]3.
The number of points was varied between 8 and 24, the number of views was var-
ied between 8 and 24, and the noise level was taken as ¢ = 0.001,0.005,0.01,0.05
and 0.1. Every combination of parameters was simulated 300 times. The differ-
ences between the reconstruction and the original configuration were measured
as in the above two examples.

The percentage of improvement between the reconstruction with no symme-
try assumption and the reconstruction with correction for symmetry was calcu-
lated and averaged over the simulations (7500 trials). The results are given in
Table 2. Using o greater than 0.1 the percentage of improvement breaks down,
although when using orthographic projections the improvement is significant up
to o =10.3.

Symmetry Symmetry Symmetry
o prior to following  |prior €& following

(noise)| reconstruction | reconstruction | reconstruction

% improvement|% improvement| % improvement
0.001 11.4 37.7 42.0
0.005 12.6 38.4 43.3
0.01 11.3 38.3 43.2
0.05 4.0 28.9 29.3
0.1 4.8 23.1 22.2
All 8.8 33.3 36.0

Table 2. Improvement in reconstruction of 31} mirror-symmetric config-
urations from noisy 2. perspective projections.

4.2 Real data

Our algorithm was applied to measurements taken from 2D real images of an
object. In the following example we took images of the object at three differ-
ent positions (Fig. 5). 16 feature points were manually extracted from each of
the three images. Using the 16 points and the three views, the 3D object was
reconstructed using the invariant reconstruction method with symmetrization
performed prior, following, or both prior and following the reconstruction, as
discussed above. The reconstructions were compared to the real (measured) 3D
coordinates of the object. The results are given in Table 3.

4.3 Discussion

As seen in the examples, reconstruction of 3D mirror-symmetric configurations
from noisy 2D projected data can be greatly improved by correcting for symme-



Fig.5. Three 2D images of a 3D mirror-symmetric object from different view points.

No |Symmetrization Symmetrization| Symmetrization
Symmetrization| prior to following  |prior & following
reconstruction | reconstruction | reconstruction
error 1.619283 1.388134 1.339260 1.329660
% improvement 14.3 17.3 17.9

Table 3. Improvement in reconstruction of a real 3D mirror-symmetric object from
three 2D images.

try either prior and/or following reconstruction. Although correcting for symme-
try prior to reconstruction improves the result, correcting for symmetry following
reconstruction generally gives a greater improvement. Not surprisingly, the great-
est improvement in reconstruction is obtained when correction for symmetry is
performed both prior and following reconstruction.
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