
Utilizing symmetry in the reconstruction ofthree-dimensional shape from noisy imagesHagit Zabrodsky1 and Daphna Weinshall1Institute of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, Israelcontact email: gigi@cs.huji.ac.il
ECCV-94 conf. proc., p.403-410, May 1994

Abstract. In previous applications, bilateral symmetry of objects wasused either as a descriptive feature in domains such as recognition andgrasping, or as a way to reduce the complexity of structure from motion.In this paper we propose a novel application, using the symmetry prop-erty to \symmetrize" data before and after reconstruction. We �rst showhow to compute the closest symmetric 2D and 3D con�gurations givennoisy data. This gives us a symmetrization procedure, which we applyto images before reconstruction, and which we apply to the 3D con-�guration after reconstruction. We demonstrate a signi�cant improve-ment obtained with real images. We demonstrate the relative merits ofsymmetrization before and after reconstruction using simulated and realdata.1 IntroductionThe most common symmetry in our environment is three dimensional mirrorsymmetry. It is thus not surprising that the human visual system is most sensitiveto bilateral symmetry. A common case in human and computer vision is thatonly 2D (projective) data is given about a 3D object. Many studies deal withinferring 3D symmetry from 2D data. These studies deal with perfect non-noisydata. In this paper, we deal with noisy 2D data by extending the notion ofSymmetry Distance de�ned in [4] to 2D projections of 3D objects which are notnecessarily perfectly symmetric. We describe in this work the reconstruction of3D mirror symmetric connected con�gurations from their noisy 2D projections.The reconstruction of a general 3D structure from 2D projections, or theproblem of structure from motion, is widely studied in computer vision andmany reconstruction algorithms have been proposed. In this work we describethe enhancement in performance that can be obtained using existing structurefrom motion (or structure from a sequence of 2D images) methods, when thereconstructed object is known to be mirror-symmetric.We consider here objects whose 3D structure is a mirror-symmetric con-nected con�guration (a 3D graph structure composed of one or more connectedcomponents). We are given several noisy 2D projections of such an object, where



the projection is approximately weak perspective (scaled orthographic). In thiswork we combine the invariant reconstruction algorithm described in [3] with themethod dealing with inexact symmetries suggested in [4], for improving the in-put and output data in the structure reconstruction from several views. Previouswork on exploiting symmetry is described in [4].We employ two approaches to exploit the fact that the 3D structure to bereconstructed is mirror-symmetric:{ correct for symmetry prior to reconstruction{ correct for symmetry following reconstructionCorrection for symmetry following reconstruction is performed by applyingany existing method of structure from motion with no a-priori symmetry as-sumption on the reconstructed object. Following the reconstruction, the symme-try assumption is exploited and the mirror-symmetric structure closest to thereconstruction is found. This last stage is performed using a closed form methoddescribed in Section 2 for �nding the closest mirror-symmetric con�guration toa given 3D connected con�guration.Correction for symmetry prior to reconstruction requires application of somesymmetrizing procedure to the 2D data with respect to the 3D symmetry. Fol-lowing the symmetrization procedure, any existing method of reconstruction ofgeneral 3D structure from 2D data can be applied. Notice that this proceduredoes not ensure that the �nal reconstructed 3D structure is mirror-symmetric;however, as will be shown in Section 4, the error in reconstruction is greatlyreduced. In Section 3 we describe a symmetrization procedure of 2D data forprojected 3D mirror-symmetry. In Section 4 we give examples and comparisonsbetween correction for symmetry prior and following 3D reconstruction, usingreal and simulated data.2 3D symmetrizationIn [5, 4] we described a method for �nding the symmetric con�guration of pointswhich is closest to a given con�guration in a least squares sense. We de�ned ameasure of symmetry - the Symmetry Distance (SD), and described a method forevaluating this measure for any con�guration of points with respect to any pointsymmetry group in any dimension. An outcome of evaluating the SymmetryDistance of a given con�guration is the con�guration which is symmetric andwhich is closest to the original con�guration in a least squares sense. An iterativefolding/unfolding method, which �nds the closest symmetric con�guration, wasdescribed in [5, 4]. Below we describe a closed-form solution that gives equivalentresults in the case of 3D mirror-symmetry.We �rst note that every mirror symmetric 3D con�guration of points fPign�1i=0implicitly implies a pairing (matching) of the points: for every point Pi thereexists a pointmatch(Pi) = Pj which is its counterpart under re
ection. Followingis the closed-form algorithm as applied to 3D mirror symmetry (Fig. 1).Given a con�guration of points fPign�1i=0 in R3 (see Fig. 1a):
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P2 P2a. b. d.c.Fig. 1. Obtaining the closest mirror symmetric set of points - see text.1. Divide the points into sets of one or two points. If a set contains one point,duplicate that point. In the example of Fig. 1, the sets are fP0; P0g; fP1; P3gand fP2; P2g. This de�nes a matching on points of the object.2. Re
ect all points across a randomly chosen mirror plane, obtaining thepoints ~Pi (Fig. 1b).3. Find the optimal rotation and translation which minimizes the sum ofsquared distances between the original points and the re
ected correspond-ing points (Fig. 1c). This is a well known problem of pose estimation. To�nd the solution we use the method of Arun et. al. [1], which requires nomore than the evaluation of SVD.4. Average each original point Pi with its re
ected matched point Pj, obtain-ing the point P̂i (Fig. 1d). The points fP̂ign�1i=0 are mirror symmetric.5. Evaluate the symmetry distance value: 1n n�1Pi=0 kPi � P̂ik2.6. Minimize the symmetry distance value obtained in Step 5 by repeatingSteps 1-5 with all possible division of points into sets. The mirror symmetriccon�guration corresponding to the minimal symmetry value is the closestmirror symmetric con�guration in a least squares sense (proof is given in[4]).In practice, the minimization in Step 6 is greatly simpli�ed when the con�g-uration of points is connected (or partially connected). Consider the originalcon�guration as a graph G = fV;Eg where V is the set of vertices (points) andE is the set of edges. In this case, the problem of matching the points reducesto the classical problem of listing all graph isomorphisms of order 2. A graphisomorphism is a permutation of the graph vertices which leaves the graph topo-logically equivalent. More speci�cally, given a graph G = fE; V g, replacing eachvertex i 2 V with its matched vertex match(i) results in a graph G0 = fV 0; E0gsuch that the set of edges E0 equals E. A graph isomorphism of order 2 is an iso-morphism where match(match(i))= i (i.e., either match(i)= i, or, match(i)= jandmatch(j)= i). There are several methods for �nding all graph isomorphismoforder two. We used a simple recursive algorithm for �nding these isomorphisms.



3 2D SymmetrizationDealing with mirror-symmetry and assuming weak perspective projection, a 3Dmirror-symmetric object has the property that if the projection of the mirror-symmetric pairs of 3D points are connected by segments in the 2D plane, then allthese segments are parallel, i.e., have the same orientation (see Fig. 2). We willdenote this property as the \projected mirror-symmetry constraint". If perspec-tive projection is used, these line segments would not be of the same orientation;rather they would be oriented such that the rays extending and including thesesegments all meet at a single point, which is the epipole [2].
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Fig. 2. The projected mirror-symmetryconstraint. a) A weak perspective projec-tion of a 3D mirror-symmetric con�gura-tion. Points Pi and P 0i are correspondingmirror-symmetric pairs of points in the 3Dstructure. b) By connecting points Pi withthe corresponding P 0i , we obtain a collectionof parallel segments.We use the projected mirror-symmetry constraint to symmetrize the 2D dataprior to reconstruction of the 3D structure. Given a 2D con�guration of con-nected points fPign�1i=0 , and given a matching between the points of the con�g-uration (the computation of the matching is described in the previous section),we �nd a connected con�guration of points fP̂ign�1i=0 which satisfy:1. The con�guration of points P̂i have the same topology as the con�gurationof points Pi, i.e., points P̂i and P̂j are connected if and only if points Pi andPj are connected.2. Points fP̂ign�1i=0 satisfy the projected mirror-symmetry constraint, i.e., allthe segments connecting points P̂i and P̂j (where P̂j =match(Pi)) are of thesame orientation.3. The following sum is minimized: n�1Pi=0 kPi � P̂ik2It can be shown that the points fP̂ign�1i=0 are obtained by projecting eachpoint Pi onto a line at orientation � passing through the midpoint between Piand match(Pi), where � is given by:tan2� = 2 n�1Pi=0(xi �match(xi))(yi �match(yi))n�1Pi=0(xi �match(xi))2 � (yi �match(yi))2 (1)Note that two possible solutions exist for Eq (1). It is easily seen that the solutionis achieved when sin � cos � is of opposite sign to the numerator.



Several examples of noisy 2D projections of mirror-symmetric con�gurationsof points are shown in Fig. 3 with the closest projected mirror-symmetric con�g-uration, which was obtained using the above algorithm. The matching is shownby the connecting segments.
a. b.Fig. 3. Finding the closest projected mirror-symmetric con�guration. a-b) Several ex-amples of noisy 2D projections of mirror-symmetric con�gurations of points (left) andthe closest projected mirror-symmetric con�guration (right).4 ExperimentsIn this section we describe experiments in which 3D mirror-symmetric connectedcon�gurations are reconstructed from noisy 2D perspective projections. We usethe two approaches of correction for symmetry which were described in Section 1.The reconstruction method used in the simulations is the invariant reconstruc-tion method described in [3].The correction procedures were the following:1. The invariant reconstruction method was applied directly to the 2D datawith no symmetry assumption. Following the reconstruction, correction forsymmetry was applied to the 3D reconstruction by �nding the closest 3Dmirror-symmetric con�guration using the method described in Section 2.2. Correction for symmetry was applied to the 2D projected data by �nding,for every image, the closest projected mirror-symmetric con�guration, usingthe method described in Section 3. Following the correction for symmetry,the reconstruction method was applied to the modi�ed images.3. Correction for symmetry was performed both prior and following the recon-struction of the 3D con�guration from 2D data.The reconstruction obtained from these procedures was compared with theoriginal mirror-symmetric 3D con�guration. The di�erences were measured bythe mean squared-distance between the reconstructed and the original sets of3D points.4.1 Simulation ResultsTwo examples of the simulation are shown in Figure 4. Two randomly chosen 3Dmirror-symmetric connected con�guration of 10 points are shown in Figure 4a.
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e.Fig. 4. Reconstruction of 3D mirror-symmetric con�gurations from noisy 2D projec-tions - see text.Points were selected randomly in the box [0; 1]3. Eight noisy 2D projections werecreated for each of the 3D con�gurations. Perspective projection was used witha focal length of 5. The projections are from randomly chosen viewpoints andthe noise was added to the 2D projections and was set at a prede�ned level of� = 0:005 for the �rst simulation and of � = 0:05 for the second simulation.Reconstruction of the connected con�guration directly from the 2D projec-tions, with no symmetry assumption, is shown in Figure 4b. The 3D reconstruc-tion obtained when correcting for symmetry prior to reconstruction is shown inFigure 4c. The 3D reconstruction obtained when correcting for symmetry fol-lowing the reconstruction is shown in Figure 4d. Finally, Figure 4e shows the3D reconstructed con�guration following correction for symmetry prior and fol-lowing the reconstruction. The di�erences and percentage of improvement aresummarized in Table 1.Sigma No Symmetrization Symmetrization SymmetrizationSymmetrization prior to following prior & followingreconstruction reconstruction reconstruction% improvement % improvement % improvementsim 1 0.005 0.084967 0.072156 0.057879 0.04864515.08% 31.88% 42.75%sim 2 0.05 0.094200 0.086757 0.058274 0.0466457.90% 38.14% 50.48%Table 1. The error and % improvement of the reconstructions of 3Dmirror-symmetric con�gurations from noisy 2D projections.In order to obtain some statistical appraisal of the improvement obtained by



correcting for symmetry, we applied the simulationmany times while varying thesimulation parameters. Points were, again, selected randomly in the box [0; 1]3.The number of points was varied between 8 and 24, the number of views was var-ied between 8 and 24, and the noise level was taken as � = 0:001; 0:005; 0:01; 0:05and 0:1. Every combination of parameters was simulated 300 times. The di�er-ences between the reconstruction and the original con�guration were measuredas in the above two examples.The percentage of improvement between the reconstruction with no symme-try assumption and the reconstruction with correction for symmetry was calcu-lated and averaged over the simulations (7500 trials). The results are given inTable 2. Using � greater than 0:1 the percentage of improvement breaks down,although when using orthographic projections the improvement is signi�cant upto � = 0:3. Symmetry Symmetry Symmetry� prior to following prior & following(noise) reconstruction reconstruction reconstruction% improvement % improvement % improvement0.001 11.4 37.7 42.00.005 12.6 38.4 43.30.01 11.3 38.3 43.20.05 4.0 28.9 29.30.1 4.8 23.1 22.2All 8.8 33.3 36.0Table 2. Improvement in reconstruction of 3D mirror-symmetric con�g-urations from noisy 2D perspective projections.4.2 Real dataOur algorithm was applied to measurements taken from 2D real images of anobject. In the following example we took images of the object at three di�er-ent positions (Fig. 5). 16 feature points were manually extracted from each ofthe three images. Using the 16 points and the three views, the 3D object wasreconstructed using the invariant reconstruction method with symmetrizationperformed prior, following, or both prior and following the reconstruction, asdiscussed above. The reconstructions were compared to the real (measured) 3Dcoordinates of the object. The results are given in Table 3.4.3 DiscussionAs seen in the examples, reconstruction of 3D mirror-symmetric con�gurationsfrom noisy 2D projected data can be greatly improved by correcting for symme-



Fig. 5. Three 2D images of a 3D mirror-symmetric object from di�erent view points.No Symmetrization Symmetrization SymmetrizationSymmetrization prior to following prior & followingreconstruction reconstruction reconstructionerror 1.619283 1.388134 1.339260 1.329660% improvement 14.3 17.3 17.9Table 3. Improvement in reconstruction of a real 3D mirror-symmetric object fromthree 2D images.try either prior and/or following reconstruction. Although correcting for symme-try prior to reconstruction improves the result, correcting for symmetry followingreconstruction generally gives a greater improvement.Not surprisingly, the great-est improvement in reconstruction is obtained when correction for symmetry isperformed both prior and following reconstruction.References1. K.S. Arun, T.S. Huang, and S.D. Blostein. Least squares �tting of two 3D pointsets. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(5):698{700,Sept. 1987.2. H. Mitsumoto, S. Tamura, K. Okazaki, N. Kajimi, and Y. Fukui. 3-d reconstructionusing mirror images based on a plane symmetry recovering method. IEEE Trans.on Pattern Analysis and Machine Intelligence, 14(9):941{946, 1992.3. D. Weinshall and C. Tomasi. Linear and incremental acquisition of invariant shapemodels from image sequences. In International Conference on Computer Vision,pages 675{682, Berlin, Germany, 1993.4. H. Zabrodsky. Computational Aspects of Pattern Characterization - ContinuousSymmetry. PhD thesis, Hebrew University, Jerusalem, Israel, 1993.5. H. Zabrodsky, S. Peleg, and D. Avnir. Hierarchical symmetry. In InternationalConference on Pattern Recognition, volume C: Image, Speech, and Signal Analysis,pages 9{12, The Hague, August-September 1992.This article was processed using the LaTEX macro package with LLNCS style


