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Completion of Occluded Shapes using Symmetry
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Abstract

Symmetry is usually viewed as a discrete feature: an
object is either symmetric or non-symmetric. Follow-
g the view that symmetry 1s a continuous feature, a
Continuous Symmetry Measure (CSM) has been devel-
oped to evaluate symmetries of shapes and objects. In
this paper we extend the symmetry measure to evaluate
the symmetry of occluded shapes. Additionally, using
the symmetry measure, we reconstruct occluded shapes
by locating the center of symmetry of the shape.

1 Introduction

One of the basic features of shapes and objects is sym-
metry. Symmetry is considered a pre-attentive fea-
ture which enhances recognition and reconstruction of
shapes and objects [2, 3, 1]. Symmetry is also an im-
portant parameter in physical and chemical processes
and is an important criterion in medical diagnosis.
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Figure 1: Faces are not perfectly symmetrical. a)
Original image. b) Right half of original image and
its reflection. ¢) Left half of original image and its
reflection.

The exact mathematical definition of symmetry [4, 5]
is inadequate to describe and quantify the symmetries
found in the natural world nor those found in the vi-
sual world (a classic example is that of faces - see Fig-
ure 1). Furthermore, even perfectly symmetric objects
loose their exact symmetry when projected onto an
image plane or retina due to occlusion, self-occlusion,
digitization, etc.
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Previous work [7, 6] introduced a symmetry measure
to quantify the deviation of shapes and objects from
perfect symmetry. In this paper we deal with evaluat-
ing the deviation from perfect symmetry of incomplete
data such as occluded shapes and uncertain data.
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Figure 2: a) A collection of occluded asymmetric
flowers. b) The contours of some occluded flower
marked by ‘+’ in a.

Figure 2a shows a collection of flowers. Each flower
is not only imperfectly symmetric but also partially
occluded. Figure 2b shows the contours of some oc-
cluded flowers (marked by ‘4’ in Figure 2a). In this
paper we describe a method for evaluating the symme-
try of such occluded shapes, locating their symmetry
centers and reconstructing the symmetric shape clos-
est to the unoccluded original.

In the next section we briefly review the symmetry
measure as applied to 2D shapes. In Section 3 we
describe a method based on the symmetry measure,
that deals with the symmetry of occluded shapes.

2 A Symmetry Measure

The Symmetry Measure as described in [7, 6] quan-
tifies the minimum effort necessary to turn a given
shape into a symmetric shape. This effort is mea-
sured by the sum of the square distances each point
i1s moved from its location in the original shape to its
location in the symmetric shape. Note that no a priori
symmetric reference shape is assumed.

A shape P will be represented by a sequence of n



points {P;}12}. We define a distance between every
two shapes P and Q:
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We define the Symmetry Transform P of P as the
symmetric shape closest to P in terms of distance d.

The Symmetry Measure of P denoted s(P) is now
defined as the distance to the closest symmetric shape:

s(P) = d(P, P)

The CSM of a shape P = {P;}/= is evaluated by find-

ing the symmetry transform P of P (Fig.3) and com-

puting: s(P) = 1x2°1|P; — P> Following is a ge-
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Figure 3: The symmetry
transform of {Py, Py, P2}
iS {po,pl,pz}.

CSM = £X7_||P; — Bil|?

C5- Symmetry = 12.80
ometrical algorithm for deriving the symmetry trans-
form of a shape P having n points with respect to ro-
tational symmetry of order n (Cp-symmetry). Mathe-
matical derivation and proof can be found in [8]. This
method transforms P into a regular n-gon, keeping the
centroid in place.

Figure 4: The Cs-symmetry Transform of 3 points:
a) original 3 points {P;}7_,. b) Fold {P}%,
into {P;}2,. c) Average {P;}2_, obtaining Py =
%Z?:o P;. d) Unfold the average point obtaining
{pi}?:m

1. Fold the points {P;}7=;} by rotating each point
P; counterclockwise about the centroid by 2xi/n
radians (Fig. 4a).

2. Let Py be the average of the points { P}

3. Unfold the points, obtaining the C-symmetric
points {F;}72)} by duplicating Py and rotating
clockwise about the centroid by 27i/n radians

(Fig. 4b).
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Figure 5:

Geometric description of the Cjs-
symmetry transform for a 6-sided polygon. The
centroid of the polygon is marked by &. a) The
original polygon shown as two sets of 3 points. b)
The Cs-symmetric shape obtained.

A 2D shape P having gn points is represented as ¢ sets
{8,122 of n interlaced points S, = {Prnyi 175t The
Cp-symmetry transform of P is obtained by applying
the above algorithm to each set of n points seperately,
where the folding is performed about the centroid of
all the points (Fig. 5). The procedure for evaluating
the symmetry transform for mirror-symmetry is simi-

lar (see [7]).

As symmetry has been defined on a sequence of points,
representing a given shape by points must precede the
application of the symmetry transform. There are sev-
eral ways to select a sequence of points to represent
general 2D shapes (see [7]). One method represents
a shape by points selected along its contour at equal
angular intervals about the centroid of the shape (Fig-

ure 6).

Figure 6: Points are dis-
tributed along the contour
at regular angular inter-
vals around the centroid.

3 Symmetry of Occluded Shapes

When a symmetric object is partially occluded, we
use the symmetry measure to evaluate the symmetry
of the occluded shapes, locate the center of symmetry
and reconstruct the symmetric shape most similar to
the unoccluded original.

As described in the previous section, a shape is repre-
sented by points selected at regular angular intervals
(angular selection) about the centroid. Angular selec-
tion of points about a point other than the centroid
will give a different symmetry measure value. We de-
fine the center of symmetry of a shape as that point



Figure 7: The symme-
try value obtained by an-
gular selection about the
center of mass (marked
by +) is greater than the
symmetry value obtained
by angular selection about
the center of symmetry

(marked by @).
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about which angular selection gives the minimum sym-
metry measure value. When a symmetric shape is not
occluded the center of symmetry aligns with the cen-
troid of the shape. However, the center of symmetry
of truncated or occluded objects does not align with
its centroid but aligns with the (unknown) centroid of
the unoccluded shape. Thus the center of symmetry
of a shape is robust under truncation and occlusion.
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Figure 8: a) Original occluded shape, its centroid
(4+) and its center of symmetry(é). b,c) The clos-
est Cs-symmetric shapes following angular selec-
tion about the centroid (b) and about the center of
symmetry (c).

To locate the center of symmetry, we use an iterative
procedure of gradient descent that converges from the
centroid of an occluded shape to the center of sym-
metry. Denote by center of selection that point about
which points are selected using angular selection. We
initialize the iterative process by setting the centroid
as the center of selection. At each step we compare
the symmetry value of points angularly selected about
the center of selection and about points in its imme-
diate neighborhood. That point about which angular
selection gives minimum symmetry value, is set to be
the new center of selection. If center of selection does
not change the neighborhood size is decreased. The
process 1s terminated when neighborhood size reaches
a predefined minimum size. The center of selection at
the end of the process is taken as the center of sym-
metry.

The closest symmetric shape obtained by angular se-

Figure 9: a-b) A collection of occluded asymmetric
flowers. ¢) The closest symmetric shapes and their
center of symmetry. d) The center of symmetry of
the occluded flowers are marked by ‘+’.

lection about the center of symmetry is visually more
similar to the original than that obtained by angu-
lar selection about the centroid of the occluded shape
(Fig. 8). We can reconstruct the symmetric shape
closest to the unoccluded shape by obtaining the sym-
metry transform of the occluded shape following an-
gular selection about the center of symmetry (see Fig-
ure 8¢). In Figure 9 the center of symmetry and the
closest symmetric shapes were found for several oc-
cluded flowers.

The process of reconstructing the occluded shape can
be improved by altering the method of evaluating the
symmetry of a set of points. As described in Section 2
the symmetry of a set of points is evaluated by folding
about the centroid, averaging and unfolding about the
centroid. We alter the method as follows:

1. The folding and unfolding (steps 1 and 3) will
be performed about the center of selection rather
than about the centroid.

2. Rather than averaging the folded points (step 2),
we apply other clustering methods. In practice
we average over the folded points ommitting the
extremes (see Figure 10).

The improvement in reconstruction of an occluded
shape is shown in Figure 11. This method improves
both the shape and the localization of the reconstruc-
tion.
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Figure 10: Improving the averaging of folded
points:

a) An occluded shape and 6 points selected us-
ing angular selection about the center of symmetry
(marked as @).

b) folding the points about the centroid of the shape
(marked as 4), points are clustered sparsely.

¢) folding the points about the center of symmetry
of the shape, points are clustered tightly. Eliminat-
ing the extremes (cluster of two points) and averag-
ing will result in smaller averaging error and better
reconstruction.

4 Conclusion

In this paper we evaluated the deviation from per-
fect symmetry of incomplete data. We described a
method for finding the center of symmetry of occluded
shapes and reconstructing the symmetric shape closest
to the unoccluded original. The methods can be easily
extended to higher dimensions and to more complex
symmetry classes.
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Figure 11: Reconstruction of an occluded almost
symmetric shape. The original shape is shown as a
dashed line. The reconstructed shape is shown as
a solid line.

a) The closest symmetric shape following angu-
lar selection about the centroid. b) The closest
symmetric shape following angular selection about
the center of symmetry. ¢) The closest symmet-
ric shape following angular selection about the cen-
troid and altered symmetry evaluation (see text).
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