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Symmetry is usually viewed as a discrete feature: anobject is either symmetric or non-symmetric. We pro-pose to view symmetry as a continuous feature and de-�ne a Continuous Symmetry Measure (CSM) to quan-tify the symmetry of objects. Some applications arealso presented.1 IntroductionThe world is rich in symmetries. However, the exactmathematical de�nition of symmetry is not adequateto describe most symmetries, which are very seldomexact. Faces, and the human body, are a classic ex-ample for inexact symmetry. The projection of theworld onto an image plane (the retina or a digital im-age) creates additional deviations from exact symme-try. To handle those inexact symmetries, we proposea \continuous symmetry measure" that can measureand quantify all types of symmetries of objects.De�nitions of Symmetry (see [8]):A 2D object has a perfect mirror-symmetry if itis invariant under a reection about a line (called theaxis of mirror-symmetry) passing through the centroidof the object.A 2D object has a perfect rotational-symmetry oforder n (Cn) if it is invariant under rotations of 2�=nradians about its center of mass.
b.a.Figure 1: a) C8-symmetry. b) mirror-symmetry2 Symmetry In Computer VisionAn intrinsic characteristic of objects and shapes,symmetry can be used to describe and discriminate

objects [2]. Symmetrical features of images can beexploited for better image compression and symmet-rical descriptions of shapes or symmetrical features ofobjects can be useful in guiding shape matching andmodel-based object matching [6]. Using symmetry asa constraint, reconstruction of 3D objects has alsobeen implemented [7]. Detection of symmetries hasbeen widely studied ([3, 5, 1] to name a few). Severalstudies even deal with quanti�cation of mirror symme-try (chirality) in non symmetric shapes ([5, 4]). Thesesymmetry detection and evaluation methods are eachlimited to a certain type of symmetry (mirror or cir-cular symmetry). In this paper we present a generalcontinuous symmetry measure for evaluating all typesof symmetries.3 A Continuous Symmetry MeasureDenote by 
 the space of all 2D shapes, whereeach shape P is represented by a sequence of n pointsfPign�1i=0 . We de�ne a metric d on this space as follows:d : 
� 
! Rd(P;Q) = d(fPig; fQig) = 1n nXi=1 kPi �Qik2This metric de�nes a distance function between everytwo shapes in 
.We de�ne the Symmetry Transform ST as the sym-metric shape closest to P in terms of the metric d.The Continuous Symmetry Measure (CSM) isnow de�ned as the distance to the closest symmetricshape: CSM(P ) = d(P; ST (P ))The CSM of a shape P = fPign�1i=0 is evaluated by�nding the symmetry transform P̂ of P (Fig.2) andcomputing: CSM(P) = 1n�n�1i=0 kPi � P̂ik2.



Figure 2: The symmetrytransform of fP0; P1; P2gis fP̂0; P̂1; P̂2g.CSM = 13�2i=0kPi � P̂ik2
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An example of a 2D polygon and it's symmetry trans-forms and CSM values are shown in Fig. 3.
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632C  -Symmetry= C  -Symmetry= C  -Symmetry= Mirror Symmetry= Figure 3: Symmetry Transforms of a 2D poly-gon and corresponding CSM values.4 2D Symmetry TransformFollowing is a geometrical algorithm for derivingthe Cn symmetry transform of a shape P having npoints. A mathematical derivation and proofs can befound in [9]. This transforms P into a regular n-gon,keeping the centroid in place.1. Fold the points fPign�1i=0 by rotating each pointPi counterclockwise about the centroid by 2�i=nradians (Fig. 4a).2. Let P̂0 be the average of the points f ~Pign�1i=0 .3. Unfold the points, obtaining the Cn-symmetricpoints fP̂ign�1i=0 by duplicating P̂0 and rotatingclockwise about the centroid by 2�i=n radians(Fig. 4b).
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PFigure 4: The C3-symmetry Transform of 3points: a) Folding fPig2i=0 into f ~Pig2i=0. b)Unfolding the average point P̂0 = 13P2i=0 ~Piobtaining fP̂ig2i=0.

A 2D shape P having qn points is represented as q setsfSrgq�1r=0 of n interlaced points Sr = fPrn+ign�1i=0 . TheCn-symmetry transform of P is obtained as follows(Fig. 5):1. Transform each set of n points into a regular n-gon by folding, averaging and unfolding.2. Translate all regular n-gons so that their centroidscoincide with the centroid of the original shape.The procedure for evaluating the symmetry transformfor mirror-symmetry is similar (see [9]).
a. b. c.Figure 5: Geometric description of the C3-symmetry transform for a 6-sided polygon.The centroid of the polygon is marked by�. a) The original polygon shown as twosets of 3 points. b) Each set is transformedinto a regular triangle leaving it's centroid(marked as +) invariant. c) Each regular tri-angle is translated so that its centroid coin-cides with the centroid of the entire shape. AC3-symmetric shape is obtained.5 Selecting the Points of the ShapeAs symmetry has been de�ned on a sequence ofpoints, representing a given shape by points must pre-cede the application of the symmetry transform. If theshapes are polygons we can represent the shape by itsvertices. In this case we can measure Cn-symmetriesonly for polygons whose number of vertices is a mul-tiple of n.
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Figure 6: Point selection bylength: points are selectedalong the contour such thateach point is equidistant tothe next in terms of curvelength. In this example sixpoints are distributed alongthe contour spaced by 16 ofthe full contour length.There are several ways to select a sequence of pointsto represent general 2D shapes. Using selection-by-length, the shape is represented by points along itscontour, equidistant in terms of curve length of thecontour (Fig. 6). When a simple contour length is2



Figure 7: Selection by smoothing: contour issmoothed, points are selected by length alongthe smoothed contour and then projected onto the original contour.not meaningful (as in noisy shapes in Fig. 8), we se-lect points on a smoothed version of the contour. Theselected points are then projected onto the originalcontour (Fig. 7). The level of smoothing can vary andfor maximal smoothing, when the contour is reducedto a circle, we get the special case of selection-by-angle (Fig. 8): points are selected on the contour atequal angles around the centroid.
8
2π

Figure 8: Selection-by-angle: points are dis-tributed along the contourat regular angular inter-vals around the centroid.6 Center of SymmetryWe use the CSM to locate the Center of Sym-metry of occluded shapes. In general, the center ofsymmetry of symmetric and almost symmetric shapesaligns with the centroid of the shape. However, thecenter of symmetry of truncated or occluded objectsdoes not. Using selection-by-angle, the CSM valueis smaller for selection about the center of symme-try than about the centroid. To locate the center ofsymmetry we use an iterative procedure of gradientdescent that converges from the centroid to the centerof symmetry by minimizing the CSM values (Fig. 9).
a. b. c.Figure 9: a) Original occluded shape, its cen-troid (+) and its center of symmetry(�). b,c)The C5-symmetry transform of the shape usingselection-by-angle about the centroid (b) andabout the center of symmetry (c).

7 Applications7.1 2D MethodA simple generalization of the 2D symmetry trans-form to grey level images is to view the image as a\topographic" map of its grey levels (Fig. 10). Thesymmetry transform is applied separately to each to-pographic contour giving a symmetric image.
a) b)
c) d)Figure 10: Finding the symmetry transformfor mirror-symmetry.a) Image as a \topographic" map.b) The grey level image corresponding to (a).c) Performing the mirror symmetry transformseparately for each contour.d) The grey level image corresponding to (c).7.2 3D SymmetryWhen analyzing depth maps, where pixel valuesdenote elevation, we measure the 3D symmetry byextending the symmetry transform and CSM to 3Dsymmetries (see [9]). We applied the CSM to �nd thedirection of gaze of arti�cially and real face imagesby �nding their mirror-symmetry transform. The 3Dshape is represented by a set of 3D points. (Fig. 11).The mirror-symmetry transform of the image is ob-tained by minimizing the CSM over all possible reec-tion planes. Results are shown in Fig. 12.3



P1

P2
0P

P‘1

P‘
2

P‘0

Reflection plane

Image planeFigure 11: Finding 3D mirror-symmetry. The re-ection plane minimizing the CSM indicates theclosest mirror-symmetry.8 ConclusionIn this paper we have viewed symmetry as a con-tinuous feature, and de�ned a Continuous Symme-try Measure (CSM) of shapes. The general de�ni-tion of symmetry measure enables a comparison ofthe \amount" of symmetry of di�erent shapes and the\amount" of di�erent symmetries of a single shape.Furthermore, the CSM is associated with the symmet-ric shape which is `closest' to the given one, enablingvisual evaluation of the CSM.References[1] J. Big�un. Recognition of local symmetries in grayvalue images by harmonic functions. In 9-ICPR,pages 345{347, 1988.[2] M. Brady and H. Asada. Smoothed local symme-tries and their implementation. Int. J. RoboticsResearch, 3(3):36{61, 1984.[3] P. Eades. Symmetry �nding algorithms. InG.T. Toussaint, editor, Computational Morphol-ogy, pages 41{51. Elsevier, 1988.[4] Y. Hel-Or, S. Peleg, and D. Avnir. Character-ization of right handed and left handed shapes.CVGIP:Image Understanding, 53(2), 1991.[5] G. Marola. On the detection of the axes of sym-metry of symmetric and almost symmetric planarimages. IEEET-PAMI, 11(1):104{108, 1989.[6] W.G. Oh, M. Asada, and S. Tsuji. Model basedmatching using skewed symmetry information. In9-ICPR, pages 1043{1045, 1988.

a) b)
c) d)Figure 12: Applying the 3D mirror-symmetry.a,c) original depth maps.b,d) The symmetry reection plane has beenfound and the image rotated to a frontal ver-tical view.[7] D. Terzopoulos, A. Witkin, and M. Kass. Symme-try seeking models and object reconstruction. Int.J. Computer Vision, 1:211{221, 1987.[8] H. Weyl. Symmetry. Princeton Univ. Press, 1952.[9] H. Zabrodsky, S. Peleg, and D. Avnir. A continu-ous symmetry measure. Technical Report TR-91-9, Hebrew University, August 1991.
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