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A Measure of Symmetry Based on Shape Similarity
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Abstract

Symmetry is usually viewed as a discrete feature: an
object is either symmetric or non-symmetric. We pro-
pose to view symmetry as a continuous feature and de-
fine a Continuous Symmetry Measure (CSM) to quan-
tify the symmetry of objects. Some applications are
also presented.

1 Introduction

The world is rich in symmetries. However, the exact
mathematical definition of symmetry is not adequate
to describe most symmetries, which are very seldom
exact. Faces, and the human body, are a classic ex-
ample for inexact symmetry. The projection of the
world onto an image plane (the retina or a digital im-
age) creates additional deviations from exact symme-
try. To handle those inexact symmetries, we propose
a “continuous symmetry measure” that can measure
and quantify all types of symmetries of objects.

Definitions of Symmetry (see [8]):

A 2D object has a perfect mirror-symmetry if it
is invariant under a reflection about a line (called the
axis of mirror-symmetry) passing through the centroid
of the object.

A 2D object has a perfect rotational-symmetry of
order n (Cy,) if it is invariant under rotations of 27 /n
radians about its center of mass.

Figure 1: a) Cg-symmetry. b) mirror-symmetry

2 Symmetry In Computer Vision

An intrinsic characteristic of objects and shapes,
symmetry can be used to describe and discriminate
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objects [2]. Symmetrical features of images can be
exploited for better image compression and symmet-
rical descriptions of shapes or symmetrical features of
objects can be useful in guiding shape matching and
model-based object matching [6]. Using symmetry as
a constraint, reconstruction of 3D objects has also
been implemented [7]. Detection of symmetries has
been widely studied ([3, 5, 1] to name a few). Several
studies even deal with quantification of mirror symme-
try (chirality) in non symmetric shapes ([5, 4]). These
symmetry detection and evaluation methods are each
limited to a certain type of symmetry (mirror or cir-
cular symmetry). In this paper we present a general
continuous symmetry measure for evaluating all types
of symmetries.

3 A Continuous Symmetry Measure

Denote by € the space of all 2D shapes, where
each shape P is represented by a sequence of n points
{P;}=. We define a metric d on this space as follows:

d:Ox0Q—=R
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This metric defines a distance function between every
two shapes in €.

We define the Symmetry Transform ST as the sym-
metric shape closest to P in terms of the metric d.

The Continuous Symmetry Measure (CSM) is
now defined as the distance to the closest symmetric
shape:

CSM(P) = d(P,ST'(P))
The CSM of a shape P = {P;}/~} is evaluated by
finding the symmetry transform P of P (Fig.2) and
computing: CSM(P) = x| P, — B2
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Figure 2: The symmetry
transform of {P, P, P>}
iS {po,phpg}.

CSM = 1x2_||P; - Bj||?

C5- Symmetry = 12.80

An example of a 2D polygon and it’s symmetry trans-
forms and CSM values are shown in Fig. 3.
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Figure 3: Symmetry Transforms of a 2D poly-
gon and corresponding CSM values.

4 2D Symmetry Transform

Following is a geometrical algorithm for deriving
the C,, symmetry transform of a shape P having n
points. A mathematical derivation and proofs can be
found in [9]. This transforms P into a regular n-gon,
keeping the centroid in place.

1. Fold the points {Pi}?;ol by rotating each point
P; counterclockwise about the centroid by 27i/n
radians (Fig. 4a).

2. Let Py be the average of the points {P;}7=}.

3. Unfold the points, obtaining the C,-symmetric
points {P;}7=} by duplicating P, and rotating
clockwise about the centroid by 27i/n radians
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Figure 4: The Cs-symmetry Transform of 3
points: a) Folding {P;}%, into {P;}2,. b)
Unfolding the average point By = % Z?:o P
obtaining {}51-}12:0.

A 2D shape P having gn points is represented as ¢ sets
{ST};{;é of n interlaced points S, = {Prp+i ?;01. The
C,-symmetry transform of P is obtained as follows
(Fig. 5):

1. Transform each set of n points into a regular n-
gon by folding, averaging and unfolding.

2. Translate all regular n-gons so that their centroids
coincide with the centroid of the original shape.

The procedure for evaluating the symmetry transform
for mirror-symmetry is similar (see [9]).

Figure 5: Geometric description of the Cjs-
symmetry transform for a 6-sided polygon.
The centroid of the polygon is marked by
@. a) The original polygon shown as two
sets of 3 points. b) Each set is transformed
into a regular triangle leaving it’s centroid
(marked as +) invariant. c¢) Each regular tri-
angle is translated so that its centroid coin-
cides with the centroid of the entire shape. A
Cs-symmetric shape is obtained.

5 Selecting the Points of the Shape

As symmetry has been defined on a sequence of
points, representing a given shape by points must pre-
cede the application of the symmetry transform. If the
shapes are polygons we can represent the shape by its
vertices. In this case we can measure C,-symmetries
only for polygons whose number of vertices is a mul-
tiple of n.

Figure 6: Point selection by

length: points are selected
T{) along the contour such that
*each point is equidistant to
the next in terms of curve
length. In this example six
points are distributed along
the contour spaced by & of
the full contour length.

ol ~

There are several ways to select a sequence of points
to represent general 2D shapes. Using selection-by-
length, the shape is represented by points along its
contour, equidistant in terms of curve length of the
contour (Fig. 6). When a simple contour length is



Figure 7: Selection by smoothing: contour is
smoothed, points are selected by length along
the smoothed contour and then projected on
to the original contour.

not meaningful (as in noisy shapes in Fig. 8), we se-
lect points on a smoothed version of the contour. The
selected points are then projected onto the original
contour (Fig. 7). The level of smoothing can vary and
for maximal smoothing, when the contour is reduced
to a circle, we get the special case of selection-by-
angle (Fig. 8): points are selected on the contour at
equal angles around the centroid.

Figure 8: Selection-by-
angle:  points are dis-
tributed along the contour
at regular angular inter-
vals around the centroid.

6 Center of Symmetry

We use the CSM to locate the Center of Sym-
metry of occluded shapes. In general, the center of
symmetry of symmetric and almost symmetric shapes
aligns with the centroid of the shape. However, the
center of symmetry of truncated or occluded objects
does not. Using selection-by-angle, the CSM value
is smaller for selection about the center of symme-
try than about the centroid. To locate the center of
symmetry we use an iterative procedure of gradient
descent that converges from the centroid to the center
of symmetry by minimizing the CSM values (Fig. 9).

Figure 9: a) Original occluded shape, its cen-
troid (4) and its center of symmetry(&). b,c)
The Cs-symmetry transform of the shape using
selection-by-angle about the centroid (b) and
about the center of symmetry (c).

7 Applications
7.1 2D Method

A simple generalization of the 2D symmetry trans-
form to grey level images is to view the image as a
“topographic” map of its grey levels (Fig. 10). The
symmetry transform is applied separately to each to-
pographic contour giving a symmetric image.

d)

Figure 10: Finding the symmetry transform
for mirror-symmetry.

a) Image as a “topographic” map.

b) The grey level image corresponding to (a).
c¢) Performing the mirror symmetry transform
separately for each contour.

d) The grey level image corresponding to (c).

7.2 3D Symmetry

When analyzing depth maps, where pixel values
denote elevation, we measure the 3D symmetry by
extending the symmetry transform and CSM to 3D
symmetries (see [9]). We applied the CSM to find the
direction of gaze of artificially and real face images
by finding their mirror-symmetry transform. The 3D
shape is represented by a set of 3D points. (Fig. 11).
The mirror-symmetry transform of the image is ob-
tained by minimizing the CSM over all possible reflec-
tion planes. Results are shown in Fig. 12.
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Figure 11: Finding 3D mirror-symmetry. The re-
flection plane minimizing the CSM indicates the
closest mirror-symmetry.

8 Conclusion

In this paper we have viewed symmetry as a con-
tinuous feature, and defined a Continuous Symme-
try Measure (CSM) of shapes. The general defini-
tion of symmetry measure enables a comparison of
the “amount” of symmetry of different shapes and the
“amount” of different symmetries of a single shape.
Furthermore, the CSM is associated with the symmet-
ric shape which is ‘closest’ to the given one, enabling
visual evaluation of the CSM.
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