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Abbreviations

CCM D continuous chirality measure; CSMD continuous
symmetry measure.

Glossary

Folding
Applying a set of inverse symmetry operations on a set
of points. This procedure is one of the main steps in the
folding unfolding method for evaluating the CSM of a set
of points.
Folding unfolding method
A visual and computational procedure for evaluating the CSM
of a set of points.
Fuzzy subset
A set whose elements have a range of values corresponding
to the degree of membership in the set.
Fuzzy symmetry element/operator
A symmetry element/operation at a given constant fuzzy level.
Fuzzy symmetry group
A fuzzy set that has a fuzzy symmetry element at a given
constant fuzzy level.
Hausdorff distance
A metric defining the distance between a point and a set or
between two sets.
Symmetry deficiency measure
A measure of symmetry on crisp or fuzzy sets.
Unfolding
Applying a set of symmetry operations on a set of points. This
procedure is one of the main steps in the foldingunfolding
method for evaluating the CSM of a set of points.

1 INTRODUCTION: THE RATIONALE BEHIND
TREATING SYMMETRY AS A CONTINUOUS
STRUCTURAL PROPERTY

A traditional working tool in structural chemistry has been
symmetry analysis, including that of achirality which is a
special case of symmetry. Symmetry point groups and space
groups have been used as reference configurations which either
exist or not in the structure under study. This traditional
approach fails to capture the richness of shapes and structures,
both static and dynamic, which is found in the molecular and
supramolecular domains. Most of these are not symmetric. At
most they are approximately symmetric, either permanently or
temporarily if the time-resolution of observation is sufficiently
narrow.

Let us mention some very basic problems to illustrate
this point. Consider two ethylene molecules approaching
each other for a [2C 2] reaction. The answer to the ques-
tion of whether that reaction is allowed thermally or photo-
chemically, or whether a suprafacial or antarafacial process
will take place, or whether the reaction will take place at
all, is very much dependent on the symmetry of alignment
of the two reacting molecules or moieties. The extremes
are D2h for a parallel approach andC2 for an orthogonal
approach, and it has been predicted successfully that the for-
mer is needed for a suprafacial photochemical formation of
cyclobutane. Most of the time, however, the two ethylenes
are not in an idealD2h arrangement. This may be due to
an intramolecular frozen conformation of the two double
bonds, to non-symmetric sterical hindrance caused by sub-
stituents on the double bond, and to the dynamical nature of
the system (rotations and translations, especially in viscous
media).

Another example is the vibrating water molecule. This is
a C2v molecule and itsv1 and v2 vibrational modes preserve
this symmetry. But thev3 vibrational mode distorts theC2v

symmetry and again, a legitimate question is by how much
does the molecule deviate fromC2v after 1% of one cycle,
after 10% of it and so forth. Yet another example is the
well-known phenomenon of removal of the degeneracy of
energy levels of a chemical species whenever it is contained
in an environment of symmetry other than its own (a certain
arrangement of ligands or a certain packing in the crystal).
The degree of removal of degeneracy is directly linked to the
‘decrease’ in the symmetry of the environment, compared to
the isolated chemical species. Traditionally, this problem is
treated in terms of jumps in the symmetry point group. For
instance, the splitting of the degenerate p orbitals increases
from a2u C eu in a D4h environment toa1 C b1 C b2 in a C2v

environment.
Still another example is the concept of allowed and forbid-

den electronic transitions. The very weak (εmax D 200) forbid-
den� ! �Ł transition to the lowest lying singlet in benzene
(A1

g ! B1
2u), a D6h symmetry molecule, changes in toluene

(a molecule with a distinctly different point group,C2v) only
to εmax D 225. The discrepancy between the major symmetry
change and the small effect in the ‘allowedness’ of the tran-
sition is currently treated in terms of perturbations and ‘local’
symmetry.

Chirality provides similar examples. For instance, con-
sider the fact that ethane has various levels ofD3 in its
chiral D3 rotamers, except for the eclipsed and staggered
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conformers; and that 2-deuteriobutane seems less chiral than
2-bromobutane.

These are but few examples which illustrate the need for
a continuous scale of symmetry. Thus symmetry can be, and,
in many instances should be, treated as a continuous property,
and not necessarily as a binary property which exists or does
not exist.

Several solutions to this problem, especially to the mea-
surement of chirality, have been offered in the literature, and
a selected bibliography is collected for the interested reader in
Ref. 1. Here we concentrate on two approaches which proved
to be versatile and suitable for treating the types of problems
sketched in this introduction.

2 THE CONTINUOUS SYMMETRY MEASURE
APPROACH

2.1 Elements of the Approach

This continuous symmetry measure approach to the prob-
lem of non-ideal symmetry has been guided by three princi-
ples:

1. Non-symmetric shapes should not be treated as a perturba-
tion of an ideal reference. Such shapes, as well as perfectly
symmetric ones, should appear on a single continuous
scale with no built-in hierarchy of subjective ideality.

2. Assessing symmetry should be detached from referencing
to a specific shape.

3. It should be possible to evaluate the symmetry of a given
configuration with respect to any symmetry group.

The proposed continuous symmetry measure (CSM) method
which follows these guidelines is based on the following
definition.2 Given a shape composed ofnp points Pi ⊲i D
1 . . . np⊳ and a symmetry groupG, the symmetry measure
S⊲G⊳ is a function of the minimal displacement the pointsPi

of the shape must undergo in order to acquireG symmetry.
The CSM method identifies the pointsOPi of the nearest shape
having the desired symmetry. Once the nearestOPi values are
calculated, a continuous symmetry measure is evaluated as:

S0⊲G⊳ D
1

np

np
∑

iD1

jPi � OPij
2 ⊲1⊳

(square values are taken so that the function is isotropic, con-
tinuous, and differentiable). Prior to evaluation, one normalizes
the shape by scaling about its center so that either the maxi-
mal distance of anyPi to the center is 1 (used in the examples
below), or the rms of all vertexcenter distances is 1. One thus
obtains the limits: 0� S0⊲G⊳ � 1. For convenience, this scale
is expanded by a factor of 100

S⊲G⊳ D 100⊲S0⊲G⊳⊳ ⊲2⊳

Thus, if a shape has the desired symmetry,S⊲G⊳ D 0. A
shape’s symmetry measure increases as the shape departs from
G symmetry and it reaches a maximal value (not necessarily
100 see Appendix D in Ref. 2b). Equations (1) and (2) are
general and allow one to evaluate the symmetry measure of
any shape relative to any symmetry group or element. No
reference shape is assumed at the beginning of the analysis,
though it is obtained as an end outcome.

2.2 The Folding Unfolding Solution

The main computational problem is then how to find
the nearest object with the desired symmetry, namely the
set of OPi values. For specific cases such as the distance to
mirror achirality3 or to perfect polyhedra,4 specific shortcut
calculations have been designed. However, for the general
case, an approach which proved particularly useful is based on
the ‘folding unfolding’ algorithm.3,4 It is based on the very
method of constructing a shape which is symmetric. As an
example, we build a two dimensional (2D)D3 shape, i.e., a
planar structure with oneC3 rotational symmetry element and
one reflection symmetry element� (which is equivalent toC2
in 3D). In 2D the rotation is about a point in the plane and
the reflection is through a line in the plane. TheD3 symmetry
group may be of different orientations and positions (thus the
rotation can be about any given point in the plane and the
reflection about a line of any orientation), but a natural choice
would be to consider aD3 symmetry group where the rotation
is about the origin and the reflection is about one of the axes
(the y-axis). In this case, theD3 symmetry group is of order
6 with the following elements or operations (Figure 1a):

ž g1 D E D the identity
ž g2 D � D reflection about they-axis
ž g3 D C3 D rotation about the origin by 2�/3 radians

P1

P6

P5P4

P3

P2P2 = σ P1

2

C3

3
C

σ

(a)

P1 = E P1

P3 = C3 P1

P4 = C3σ P1
2

P5 = C3 P1

2
P6 = C3σ P1

(b) (c)

Figure 1 Creating aD3 symmetric hexagon: (a) theD3 symmetry group has six elements (see text); (b) applying the six group elements on
the pointP1; (c) a D3 symmetric hexagon of six points is obtained
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ž g4 D C3� ⊲D �C�2
3 ⊳ D rotation by 4�/3 followed by ref-

lection
ž g5 D C2

3 ⊲D C�1
3 ⊳ D rotation about the origin by 4�/3

radians
ž g6 D C2

3� ⊲D �C3⊳ D rotation by 2�/3 followed by reflec-
tion.

Given an arbitrary point,P1, in anxy plane, where� is the
y-axis andC3 rotates about the origin, a 2DD3 symmetric
arrangement of points is obtained by applying the sixgi

operations, for instance, as follows (Figure 1b):

1. rotateP1 by 2�/3 radians:P3 is obtained
2. rotateP1 by 4�/3 radians:P5 is obtained
3. reflectP1, P3, P5 about they-axis:P2, P6, P4 are obtained,

respectively; aD3 symmetric collection of six points is
constructed (Figure 1c).

Such a structure can be obtained by many other orderings of
the operations and many other orientations and positionings of
the symmetry group. However, when connected objects, such
as molecules, are of interest (in our case a hexagon) it is more
natural to select that sequence of operations which follows the
desired connectivity. In ourD3 example, we built the hexagon
from P1 by following the order of operations as given above
which conserves the order along the hexagon boundary, i.e.,
g1 ! g6 (Figure 1c).

We call the procedure of obtaining a symmetric shape
by applying a set of operationsgi on a point unfolding (in
our example, aD3 object is unfolded fromP1). One is usu-
ally interested in unfolding that follows a given connectivity
(although the tool we develop here is applicable to discon-
nected assemblies as well). The inverse procedure of unfolding
is folding: pointsP1, . . . , P6 are folded ontoP1 by applying
the inverse operationsg�1

i . All points coalesce onto a single
point,P1. Note, however, that if pointsP1, . . . , P6 are not per-
fectly D3 symmetric the folding results in a cluster of points
rather than a single point. The foldingunfolding procedure is
the very basis of our method for evaluating CSM values with
respect to symmetry groups; the idea being to minimize the
cluster spread.

In general, one can try to measure various shapes with
respect to various symmetry groups. Let us explain the
folding unfolding method using the basic case where the
number of points (np) equals the number of elements in the

symmetry group (ng) and the connectivity is cyclic. Specifi-
cally, we shall determine here how much (2D)D3 symmetry
exists in the distorted hexagon shown in Figure 2(a). The
folding unfolding method is performed as follows.

1. Determine the centroid of the object (hexagon in our case).
Translate the object so that its centroid coincides with the
origin and scale the object so that the maximal distance
from the origin to any of the vertices is 1 (Figure 2a).

2. Translate the symmetry group so that all operations are
about the origin (i.e., all rotations are about the origin and
all reflection lines or planes pass through the origin).

3. Select an ordering of theng operations of the desired
symmetry group that follows the connectivity of thePi

vertices. In our case, two orderings are possible:g1 . . . g6
as listed above, and the reverse,g6 . . . g1. We proceed with
the first and return to the second in step 8.

4. Fold the verticesP1 . . . P6 by applying the symmetry
operation g�1

i to each Pi. A cluster of folded points
QP1 . . . QP6 is obtained (Figure 2b). (Recall that had the
object been aD3 symmetric one, allQPi values would
coincide.)

5. Average the folded pointsQPi, obtaining the average point
OP1 (Figure 2c):

P̂1 D
1

ng

ng
∑

iD1

g�1
i Pi D

1

ng

ng
∑

iD1

QPi ⊲3⊳

6. Unfold the average pointOP1 by applying on it each of the
gi operations and obtainingOPi:

P̂i D gi
OPi i D 1 . . . ng ⊲4⊳

The orderingg1 . . . g6 is followed in order to retrieve
the original connectivity and ordering. AD3 symmetric
shape is obtained (Figure 2d). Note that whereas the non-
symmetric object is scaled to 1 (step 1), the symmetrized
nearest shape is not necessarily so.

7. CalculateS⊲G⊳ according to equation (2).
8. Minimize theS value by repeating the foldingunfolding

procedure (steps 47) for all orderings and all orientations
of the group elements. This step is equivalent to finding the
best cluster of folded points. (In the present case, due to
the cyclic connectivity, minimization is reduced to the two

P1
P2

(a)

P6

(d)(c)(b)

P3

P4

P5

~
P2

~
P5
~

P4

^
P3

^
P2

P6

^
P1

~
P4

~
P1

~
P3

^

P1

^
P6

^
P5

^

Figure 2 MeasuringD3 symmetry of a distorted hexagon using the foldingunfolding method: (a) the distorted hexagon; (b) folding the
hexagon vertices in (a)a cluster of points is obtained; (c) averaging the cluster of points in (b)a single point is obtained; (d) unfolding the
averaged point in (c) a D3 symmetric configuration is obtained



4 SYMMETRY AND CHIRALITY: CONTINUOUS MEASURES

orderings mentioned in Step 3.) The optimal orientation
is given analytically and in our case is simply 0 deg (i.e.,
� is about they-axis).2

Applying this procedure we find that theS⊲D3⊳ value of
the hexagon in Figure 2(a) is 4.89. TheS value obtained by
this procedure is the minimal distance to the desired symmetry
group. The proof is given in Appendix A in Ref. 2b.

A common situation, however, is that the object under
consideration hasnp < ng and, in particular,ng D l Ð np with
l D 1, 2, 3, . . .. In order to deal withng D l Ð np we first
explain the process of creating aG symmetric configuration
of points using the unfolding process for this case. As an
example, we continue withD3 but this time with three vertices
(l D 2, np D 3, ng D 6). In general, we regard each of thenp

vertices of anng D l Ð np object as composed ofl coinciding
points. Thus, we regard aD3 triangle as a hexagon in which
each two vertices coincide. We construct such an object by
following the general unfolding procedure with one change:
the point P1, from which the shape is unfolded, is not in a
general position but is selected on a symmetry element,� in
our case (Figure 3a). It then follows that the pointsP1 and
P2 coincide; thereforeP3 and P4 coincide and so doP5 and
P6 an equilateral triangle is obtained. In general,l is the
number of symmetry operations which leaveP1 in place (in
our casel D 2: E and�). In effect we divide the elements of
groupG into np sets ofl elements each, such that each setGi

contains the elements of the group which bringP1 to Pi. Thus
G1 is the set of elements which leavesP1 in place,G2 is the

set of elements which, when applied, movesP1 to P2, etc. In
our example (Figure 3b):

G1 D fg1, g2g G2 D fg3, g4g G3 D fg5, g6g ⊲5⊳

Having detailed how a symmetricng D l Ð np shape is
constructed, it is now clear how the foldingunfolding method
is applied for evaluation ofS values in such cases. The
procedure is basically the same as detailed above, with some
modifications, as follows.

1. Select an ordering (Figure 3c):
(a) Determinel and divideG into np sets so that each

setGi containsl elements.
(b) Select an ordering of the setsGi of the symmetry

group that follows the connectivity of thePi vertices.
(In our example the ordering is as mentioned above:
G1, G2, G3.)

2. Folding. For each vertexPi, apply the inverse of thel
elements of the setGi, obtainingl folded points QPijj D

1 . . . l. Thus, in our example,g�1
1 andg�1

2 are applied to
P1 obtaining QP11 and QP12 (Figure 3d),g�1

3 andg�1
4 to P2

obtaining QP21 and QP22 and so on.
3. Averaging. Average theng folded points. The average

point OP1 will always lie, in the present case, on one
or more symmetry axes or planes such that applying
any element ofG1 will leave it in place. In our case
the averaged point,OP1, must rest on the reflection line
(Figure 3e). To understand this, notice that the six group

P32P31P22,

P11 P12

(f)

P1 ,

(c)

^

^^^^
,

^

P3
P2

(e)(d)

P1

~~ ~
~

~
~

P1 = E P1

P2 = σP1

P1

(b)(a)

P12P11P21

P31

P21

P22

P32

P5 = C3 P1

P6 = C3 σ
 
P1

2

2

P3 = C3 P1

P4 = C3 σ
 
P1

^

Figure 3 Creating aD3 symmetric configuration of three points: (a) a single pointP1 is chosen on a symmetry axis; (b) unfoldingP1,
one obtains three pairs of coinciding points havingD3 symmetry. MeasuringD3 symmetry of a distorted triangle: (c) the original triangle;
(d) folding the points in (c) a cluster of points is obtained; (e) averaging the cluster of points in (d)a single point located on a symmetry
axis is obtained; (f) unfolding the averaged point in (e)a D3 symmetric triangle is obtained
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elements can be paired, i.e.,E, C3, C2
3 and their reflections

�E, �C3, �C2
3. On each pointPi we applied a single pair

so that the obtained pointsPi1 and Pi2 are related by�,
i.e., they are reflection of each other, and their average
lies on the reflection line.

4. Unfolding. Following the unfolding step as described for
the basic case we notice that sinceOP1 remains in place
under the application of elements inG1, the unfolded
points will align in np sets of l points each. Thus in
order to obtainnp G-symmetric points, it suffices to
unfold OP1 by applying a single element from each set
Gi. In our caseOP1 unfolds into three pairs of coinciding
points:f OP11, OP12g, f OP21, OP22g, f OP31, OP32g. By applying, for
instance, onlyg1, g3, andg5, OP1, OP2, and OP3 are obtained
(Figure 3f).

We return now to the opening question: given any number
of vertices, i.e., a general non-symmetric polygon or poly-
hedron, what is its symmetry measure with respect to any
symmetry group, subgroup, or class? The generalized approach
is to divide the given points intons sets and to apply the
folding unfolding method separately on each set, while eval-
uating theS value over all the given points. For example, in
the case wherenp is a multiple ofng (i.e., np D k Ð ng) one
divides the points intons D k sets ofng points each. On each
set one performs the foldingunfolding method as described
above. The general case, however, will typically require the
division of thenp vertices intons > l subsets, not necessarily
of equal size, but with (possibly different)l integer values for
each of these sets. Once the division is made, each of thens

subsets is symmetrized with respect to the desired symmetry
group either according to theng D np procedure or according
to theng D l Ð np procedure. Since each of the subsets is sym-
metrized with respect to the same symmetry group, one obtains
a symmetrization of the full set of points. Division into subsets
can be performed in various ways, but in order to preserve the
cyclic connectivity of the original structure (branched connec-
tivities are treated below), the subsets must be interlaced. For
details, see Ref. 2.

Finally, we comment on the case where the connectivity
constrains the division into sets so that no possible division
exists. For example, a cyclic connected configuration of six
points cannot be divided into sets having a divisor of five
points (for measuringC5 symmetry). To overcome these spe-
cific cases one may physically duplicate or eliminate one or
more of the given points. Though this has no physical or che-
mical interpretation, it does give a geometric solution. Thus in
order to measure a triangle with respect toC4 symmetry one
duplicates one of its vertices. The symmetrized object will be
with four vertices.

2.3 A 3D Example: The Non-symmetric Tetrahedron

The extension to 3D follows similar lines, and will briefly
be illustrated here for the tetrahedron.Td symmetry includes
the following symmetry elements (Figure 4):

ž four C3 axes passing through the origin and through each
of the four vertices (Figure 4a)

ž threeC2 axes passing through the origin, each bisecting a
pair of opposite edges (Figure 4b)

ž six reflection planes, each containing one of the edges and
bisecting the opposite edge. For our purpose only one of
these reflections (�) suffices (Figure 4c).

The 24 elements of theTd symmetry group are thusE
(the identity), fourC3 rotations (denotedC3⊲1⊳ . . . C3⊲4⊳) and
four C2

3 rotations (denotedC2
3⊲1⊳ . . . C2

3⊲4⊳), three C2 rota-
tions (denotedC2⊲12⊳, C2⊲23⊳, C2⊲31⊳), and all the elements
obtained by multiplying these elements by�. As in the D3
hexagon case discussed in Section 2, here too, taking an arbi-
trary point and applying the 24 elements (in any order) will
produce aTd symmetric 24-polyhedron. Thus, given 24 points
in 3D space we can evaluate theTd symmetry following the
algorithms in Section 2. In 3D, minimization over all orienta-
tions of the symmetry group is not analytic and an iterative
process is used. In most structural analyses, however, the 24-
elementTd symmetry group is applied on four vertices in 3D,
i.e., on the vertices of a (possibly) non-symmetric tetrahedron.
This case is analogous to the case described above forD3
symmetry of three points. Here one hasng D 24, np D 4, and
l D 6. Thus, in order to obtain aTd symmetric set of four
points (four coinciding clusters of six points) from a single
point P1, it must be positioned so that six symmetry elements
of theTd symmetry group leave it in place. Such a point lies on
a C3 axis and on a� plane (for example, point 1 in Figure 4a).
The six elements of the group that leaveP1 in place areE,
C3, andC2

3 ⊲D C�1
3 ) and the three compositions�E, �C3, and

�C2
3. When one applies the rest of the elements onP1 one

finds that the four sets of elements are:

G1 D fE, C3⊲1⊳, C2
3⊲1⊳, �, �C3⊲1⊳, �C2

3⊲1⊳g

G2 D fC3⊲3⊳, C2
3⊲4⊳, �C2

3⊲2⊳, �C3⊲4⊳, C2⊲12⊳, �C2⊲31⊳g

G3 D fC2
3⊲2⊳, C3⊲4⊳, �C3⊲3⊳, �C2

3⊲4⊳, C2⊲31⊳, �C2⊲12⊳g

G4 D fC3⊲2⊳, C2
3⊲3⊳, �C3⊲2⊳, �C2

3⊲3⊳, C2⊲23⊳, �C2⊲23⊳g ⊲6⊳

Thus unfoldingP1 with any one of the elements inG2 will
form P2, with any of the elements inG3 will form P3, etc.,
creating a symmetric tetrahedron. Again, as in the previous
cases, we use the construction of a symmetric shape as a
guideline for the foldingunfolding procedure for evaluating
the Td symmetry of any four vertices, as follows.

Figure 4(d) shows a distorted tetrahedron. Its centroid coin-
cides with the origin and the maximal distance to a vertex is
scaled to 1. The four vertices are denotedP1 . . . P4, and a
certain order of the setsGi is selected, sayG1 . . . G4, with
a certain orientation of theTd symmetry group. EachPi is
then folded by applying the six elements of the groupGi,
forming a cluster of 24 points (Figure 4e). These are averaged
(Figure 4f) and unfolded by selecting one element from each
Gi set. For example, applying the group elementsE, C3⊲3⊳,
C2

3⊲2⊳, C3⊲2⊳ to OP1 we obtain, respectively, pointsOP1, OP2,
OP3, OP4 (Figure 4g).S is then calculated from equation (2) and
minimized over the twoGi orderings:G1, G2, G3, G4 andG1,
G2, G4, G3 (the reason for needing only two orderings for this
minimization is described in Appendix B in Ref. 2). For each
of the two orderings, one minimizesS over all orientations of
the symmetry group. Most tetrahedral structures of relevance
in chemistry include a central atom. For treatment of this case,
see Section 3.3 in Ref. 2.

In the above example we divided the points into subsets
of ng points each. However, one may divide the points into
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(c)(b)(a)
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1
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Figure 4 The symmetry elements of theTd symmetry group include: (a) fourC3 axes, each passing through the origin and a vertex; (b) three
C2 axes, each passing through the origin, and bisecting a pair of opposite edges; (c) six reflection planes, each containing one of the edges
and bisecting the opposite edge. A single plane (�) is shown. MeasuringTd symmetry of a distorted tetrahedron: (d) the distorted tetrahedron;
(e) folding the tetrahedron in (d)a cluster of 24 points is obtained; (f) averaging the cluster of points in (e); (g) unfolding the averaged point
in (f) a Td symmetric tetrahedron is obtained

sets having less thanng points; specifically, into sets having a
number of points which is a divisor ofng. In this case we apply
on each set the foldingunfolding method as described above
for the caseng D l Ð np. Extending this idea further, we need
not divide the points into sets of equal size. For example, let

us evaluate theS⊲C3v⊳ of the tetrahedron in Figure 4(d). The
C3v symmetry group hasng D 6 elements:E, C3, C2

3, and all
the multiplications of these elements by�. In order to evaluate
theC3v symmetry of the four points one divides them into two
sets; one having three points (P2, P3, P4) and one having one
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point (P1). For the first set one hasnp D 3 andl D 2 and in the
second set one hasnp D 1 andl D 6. The folding unfolding is
applied as in theng D l Ð np case. One obtains two sets, each
being C3v symmetric, the first set consisting of three points
each on a reflection plane, and the second set consisting of a
single point located on the rotation axis and on the reflection
planes. After minimization one obtainsS⊲C3v⊳ D 14.49.

2.4 The Measurement of Achirality: The Continuous
Chirality Measure (CCM) Approach

An important extension and application of the CSM app-
roach is thatS serves also as a continuous measure of
chirality.3 Since chirality is defined as a lack of certain sym-
metries (the improper elements), and since the CSM method
allows one to evaluate how much of any of these symmetries is
lacking in a given chiral configuration, one has to screen over
all Gachiral values to find the one that provides the minimal dis-
tance to achirality. For a given set of structures, the one with
the largestS⊲Gachiral⊳ value is the most distant from having an
improper symmetry element, and hence the most chiral; and
vice versa: asS⊲Gachiral⊳ approaches zero, the structure under
study is minimally or negligibly chiral. In practice, since the
minimal requirement for an object to be achiral is that it pos-
sesses a reflection mirror (� � S1), an inversion center (i � S2)
or higher order improper rotation axesS2n, one has to screenS
over the symmetry groups having these elements. In the major-
ity of cases, one finds that the continuous chirality measure is
simply S⊲�⊳, i.e., the distance of a chiral object from having a
reflection mirror.

The practice follows the same rationale detailed in the pre-
vious sections. Suppose we wish to construct a configuration
which is symmetric with respect to the mirror symmetry group

P1, P2 P1=P1
~

P2
~

P1

P2

P1
~

P2
~

P1
^ P1

^

P2
^

(c)

(b)

(d) (e)

mirror axis

(a)

(f)

Figure 5 Top: unfolding and folding of a pair of points: (a) given
a single point, one treats it as a coinciding cluster of two points
P1 andP2; (b) unfolding the pair of points by applying the identity
transformation toP1 and reflectingP2 across the mirror plane, a mirror
symmetric pair of points,QP1 and QP2, is obtained. Bottom: treating a
non-mirror symmetric pair of points, (c): (d) folding the pair of points
shown in (c) results in a noncoinciding cluster of two points,QP1 and
QP2; (e) the noncoinciding cluster is averaged toOP1; (f) the averaged
point in (e) is unfolded to a mirror symmetric pairOP1 and OP2

fE, �g from a given point,P1, and a given reflection axis�,
as shown in Figure 5(a). Unless the point is on the reflection
axis, the minimal number of points needed to obtain a con-
figuration having the required symmetry is two (the number
of elements in the symmetry group). Let us therefore treat the
given point as a coinciding cluster of two pointsP1 and P2
(Figure 5a). To obtain a� symmetric configuration we unfold
the cluster by applyingE on P1 (being the identity element,
E leavesP1 in place, i.e.,QP1 D P1) and by applying� on P2

obtaining the reflected pointQP2 (Figure 5b). A mirror symmet-
ric configuration has been unfolded from the given point. The
symmetric points can undergo a reversed procedure, and can be
folded into a cluster of two coinciding pointsfP1, P2g. This is
achieved by applying the inverse operation��1 on QP2 andE�1

on QP1. Notice that, whereas folding of two mirror symmetric
points results in a coinciding pair of points, the folding of two
non-symmetric points (Figure 5c) results in a non-coinciding
cluster (Figure 5d). If the mirror axis is not predetermined,
then the minimization of this distance through the search of
an optimal mirror alignment is the key step in the evaluation of
the minimalS⊲�⊳. Once this minimum is found, the coordinates
of the folded points are averaged obtaining the coordinates of
a single average pointOP1 (Figure 5e), and the average point is
then unfolded into a� symmetric configuration (Figure 5f).

An alternative method to the foldingunfolding methodol-
ogy is possible, and the problem can be reformulated so that
only the folded points are considered.3 In general, the struc-
tures we deal with are not necessarily cyclically connected as
in our previous examples, but may be graph-like connected.
In these cases the ordering of the operations of the group is
restricted by the connectivity of the points in the original con-
figuration, i.e., to thetopologyof the configuration.3

Finally we comment on chirality which is due to the
lack of improper elements of symmetry other than reflection.
We recall that a set of points is achiral if it has anySn

symmetry. However, for oddn, Sn is equivalent toCnh and
therefore includesS1. Thus the CCM of a structure is found by
finding the closest structure havingS1 or S2n symmetry. The
above described procedure forS1 � � can be straightforwardly
extended to find the closestS2n-symmetric configuration for
any n.3

2.5 Demonstrated Applications of the CSM and CCM
Approaches

2.5.1 Continuous Symmetry Analysis of Hyperpolarizabilities

A direct relation between the first hyperpolarizability,ˇ, of
noncentrosymmetric molecular structures and the centrosym-
metricity content,S⊲i⊳, of such structures was shown for the
first time in Ref. 5. For a series of systematic, in-plane distor-
tions (stretch, pull, shift, and squish deformations) of the model
non-linear optics chromophore benzene, a monotonic relation-
ship between calculated values ofˇ andS⊲i⊳ was found. The
result suggests that the dominant variation in the hyperpolariz-
ability for these structures arises from the change in oscillator
strength.

2.5.2 Symmetry as a Process Coordinate

An important application of the continuous symmetry
approach is as a process coordinate. This concept was
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demonstrated and applied in a study of the dynamic
interconversion between the chiral enantiomers of the water
trimer,6 one of the most intensively studied small clusters.
In particular, the chirality content along several reaction
pathways leading to enantiomerization, automerization, and
isomerization was measured and analyzed. It was found that
the interconversions occur along routes which are chiral in
all their points. A favored mechanism, known as the flip
mechanism, was found to be such that the chirality content is
kept almost constant throughout the whole enantiomerization
pathway. The non-handed structure, namely the chiral structure
on that pathway for which left-handedness/right-handedness
cannot be assigned under the convention used for it, was
identified and recognized to be in the vicinity of the
transition state of the enantiomerization. A consequence of
the quantitative structural approach to chirality is the ability to
identify isochiral structures, namely such that have the same
degree of chirality.

2.5.3 Analysis of the Statistical Interpretation of Symmetry
and Chirality of Large Random Objects

The structural chirality of large, random supramolecular
structures, spiral diffusion-limited aggregates, was analyzed by
the CCM approach. It was found7 that classical definitions and
terminologies of chirality are too restrictive for the description
of such complex objects. A refined methodology and a con-
ceptual vocabulary were developed, along with a generalized
definition of chirality which takes care of supramolecular struc-
tures. The statistical significance of symmetry and chirality
were defined, and applied on many examples.

2.5.4 The Use of the Symmetry Measure as an Order
Parameter

The use of the CSM as a mathematical tool to quantify
order was demonstrated in a study of the extent of cluster
symmetry as a function of temperature.8 The continuous vari-
ation of symmetry as a function of temperature was employed
as a structural criterion for the follow up of melting in clus-
ters of (ortho-D2)13. Thermal distribution of configurations for
this cluster was obtained using the path integral Monte Carlo
technique. The CSM selected to follow the structural changes
of these nearly icosahedral structures was the degree of the
centrosymmetricity. It was found to have better numerical
properties in comparison with the standardly used rms fluc-
tuations in the intermolecular distance, commonly applied as
a criterion of cluster melting. The problem with the standardly
used order parameter (d) is that on the one hand it is expected
to increase significantly at a temperature at which the atoms in
the cluster start exchanging places; and on the other hand one
finds that the longer the simulation is, the lower is the tem-
perature at which such exchange is obtained. The symmetry
measure parameter (S⊲i⊳, in this case) does not suffer from that
problem. Another conceptual problem withd is its definition,
which assumes distinguishability between molecules. Distance
between moleculen and n0 is not a measurable quantity in
a system ofN identical molecules; however, the definition
of d employs distances between labeled pairs of molecules.
This problem is absent in the case of theS⊲i⊳ parameter as
well, because it is defined uniquely for a given configuration
of particles, and does not rely on particle labeling. Moreover,
sampling the range of deviations of cluster configurations from

perfect symmetry with respect to a given symmetry operation
converges quite fast since one examines a range of typical
behaviors rather than trying to sample some rare event.

2.5.5 Continuous Chirality and Symmetry for QSAR and
Drug Design

We regard as one the most significant results of the CSM
approach the observation that symmetry and chirality can
be used as a predictive structural parameter for biochemical
quantitative structureactivity relationship (QSAR) studies.9

An example is the analysis of the correlation between the
chirality of the pharmacophores of trypsin inhibitors and their
activity. The chirality which was used was the induced one on
the side chain of the inhibitor within the active site. A nice,
almost linear, correlation was observed between inhibition
efficiency and the degree of chirality.9

2.5.6 The Quantitative Evaluation of the Degree of Chirality
of Macroscopic Crystals

The CSM and CCM approaches can, of course, be used
for the analysis of macroscopic structures. An example is the
treatment of the chirality of the macroscopic shape of crystals
as a continuous structural property, rather than as an ‘either/or’
property. This was demonstrated on the classical chiral crystal
of ammonium sodium tartrate.10

2.5.7 Symmetry of Experimental Points with Uncertain
Locations

Information obtained from any analytical instrument has
a certain degree of uncertainty. In structural chemistry, the
uncertainty may be in the location of the atoms, as obtained
by, e.g., diffraction methods, due to all known causes (crystal
imperfections, thermal motion, etc.). Thus quite often the data
is given as a collection of probability distribution functions
of point locations. Given points with such uncertain locations,
the following questions regarding symmetry are of interest.

ž What is the most probable symmetric shape represented by
the data?

ž What is the probability distribution of symmetry measure
values for the given data?

For treatment of these points, see Refs. 3 and 4.

3 THE FUZZY SETS APPROACH TO THE
MEASUREMENT OF SYMMETRY AND
CHIRALITY

We now detail a second approach to the evaluation of
the degree of symmetry deficiency, from a different point of
view, namely the fuzzy sets approach. Fuzzy set methods11,12

are especially suitable to reflect the Heisenberg uncertainty
relation and other aspects of quantum chemistry13 17 and
computational chemistry. Symmetry in molecules relies on
the concepts of distance and metric. For the approximate
symmetries of fuzzy electron densities, fuzzy set methods,
fuzzy distance or fuzzy metric, and fuzzy symmetry are of
importance. In Section 3.3 below, we compare and generalize
the two approaches.
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3.1 Some Elements of Fuzzy Set Theory

For an ordinary subsetY of a setX, X ¦ Y, an elementx of
X is either a member or not a member of the subsetY; hence,
by definition, the membership function�Y⊲x⊳ of elementsx
of X can take only two discrete values, 1 or 0. Such ordinary
sets are often referred to as ‘crisp sets’.

If A is a fuzzy subset of a setX, then the elementsx of
X may have a whole range of possible ‘commitments’ to this
fuzzy subsetA without fully belonging to it. This is expressed
by the corresponding fuzzy membership function�A⊲x⊳ that
can take any value from theI D [0, 1] closed unit interval,
expressing the ‘degree’ of pointx belonging to fuzzy setA.

Set operations are naturally extended to fuzzy sets, for
example: the fuzzy unionA [ B, the result of the operation ‘A
or B’ is a fuzzy subsetD of setU, with membership function
�D⊲u⊳ D maxf�A⊲u⊳, �B⊲u⊳g for everyu 2 U.

An important tool for interrelating fuzzy problems and
crisp problems is thę -cut GA⊲˛⊳ D fx : �A⊲x⊳ D ˛g of a
fuzzy subsetA of a set X, defined as the crisp set of all
those pointsx of X with membership function�A⊲x⊳ equal
to ˛. A set where�A⊲x⊳ is greater than or equal to the
value ˛ is DA⊲˛⊳ D fx : �A⊲x⊳ ½ ˛g. These two choices for
˛-cuts are analogous to the electron density level sets and the
density domains used in the topological analysis of molecular
shapes.14

3.2 Fuzzy Chirality and Fuzzy Symmetry Measures

For a description of differences between fuzzy electron
density clouds exhibiting approximate symmetries to various
degrees, some fuzzy dissimilarity measure is needed. If in
an underlying setX a metric is given, for example, the
Pythagorean distance within the 3D Euclidean spaceE3, then
the distance between a pointx of X, and a subsetA of X is
defined as the greatest lower boundd⊲x, A⊳ D infa2Afd⊲x, a⊳g
of distances between pointsa of A and pointx.

Electron density contour surfaces have the mathematical
property of compactness, a generalization of the properties
of ‘closed’ and ‘bounded’. The Hausdorff distanceh⊲A, B⊳
between two (compact) subsetsA andB of X is defined as the
lowest upper boundh⊲A, B⊳ D supa2A,b2Bfd⊲a, B⊳, d⊲b, A⊳g of
distances between pointsa of A and the setB and distances
between pointsb of B and the setA. In particular, the Haus-
dorff distance between two superimposed molecular contour
surfaces (which are closed sets) is the minimumr value such
that any point on either contour surface has at least one point
of the other contour surface within a distancer.

For fuzzy electron density clouds, the fuzzy, ‘commitment-
weighted’ Hausdorff-type metricf⊲A, B⊳ D sup̨ 2[0,1]f˛h⊲GA

⊲˛⊳, GB⊲˛⊳⊳g is a proper distance between fuzzy setsA and
B.17

A similarity measure between fuzzy electron density clo-
uds17 A andB is defined assf⊲A, B⊳ D exp⊲�[f⊲A, B⊳]2⊳.

A fuzzy set A is said to have the symmetry elementR

corresponding to the symmetry operatorR if and only if
for each pointx of A and for the transformed pointRx D y
the fuzzy membership functions fulfill the condition�A⊲y⊳ D
�A⊲x⊳.

For approximate symmetries, the geometrical placement of
a candidate symmetry elementR with respect to setA is of
importance. A formal centerc in set A must be given as the
origin of a local coordinate system in whichR is specified;

furthermore, direction cosines of rotation axes and normals
of reflection planes with respect to local coordinate axes are
needed.

A fuzzy set A has the fuzzy symmetry elementR⊲ˇ⊳

corresponding to the symmetry operationR at the fuzzy level
ˇ of the fuzzy Hausdorff-type similarity measuresg if and only
if the fuzzy similarity measuresg betweenRA andA is greater
than or equal tǒ , sg⊲RA, A⊳ ½ ˇ. In the limitˇ D 1, similarity
becomes indistinguishability, and the fuzzy symmetry element
R⊲ˇ⊳ becomes an ordinary symmetry element corresponding
to the symmetry operationR.

A measure of the degree of symmetry aspectR for fuzzy
set A according to fuzzy Hausdorff-type similarity measure
sg is the maximum fuzzy leveľ ⊲A, R, sg⊳ D sup̌ 2[0,1]fˇ :
sg⊲RA, A⊳ ½ ˇg at which the fuzzy symmetry elementR⊲ˇ⊳

is present for the fuzzy setA.
A fuzzy symmetry operatorR⊲sg⊳ of fuzzy symmetry ele-

mentR⊲ˇ0⊳ present for fuzzy setA at the fuzzy leveľ 0 of the
fuzzy Hausdorff-type similarity measuresg is defined by its
actionR⊲sg⊳A D MA,RRA on the fuzzy setA, whereR is the
ordinary symmetry operator corresponding to the fuzzy sym-
metry elementR⊲ˇ0⊳. The fuzzy indistinguishability of setsA
and RA at the fuzzy leveľ 0 is taken into account by the
operatorMA,R that resets the values of fuzzy membership
functions.17

A fuzzy set A is fully specified if for the elementsx of
the underlying spaceX the pairs (x, �A⊲x⊳) are specified. The
action of operatorMA,R is MA,R⊲x, �RA⊲x⊳⊳ D ⊲x, �A⊲x⊳⊳ if
and only if levelˇ0 fuzzy indistinguishability is implied by the
presence of the fuzzy symmetry elementR⊲ˇ⊳ at the fuzzy level
ˇ0. The application of symmetry operatorR of fuzzy symmetry
elementR⊲ˇ0⊳ present at the fuzzy leveľ0 is completed by a
formal recognition of the indistinguishability of setRA and
setA at the given fuzzy level. This additional step, for which
the sufficient and necessary condition is the presence of fuzzy
symmetry elementR⊲b0⊳ at the fuzzy levelb0, involves operator
MA,R setting the membership functions of elements of the
fuzzy setRA equal to those of fuzzy setA.

The product of fuzzy symmetry operatorsR(sg) andR0⊲sg⊳

is another fuzzy symmetry operator,R00⊲sg⊳ D R⊲sg⊳R0⊲sg⊳. If
this product is applied on a fuzzy setA that has each of the
corresponding three fuzzy symmetry elementsR⊲ˇ⊳, R0⊲ˇ⊳, and
R00⊲ˇ⊳ at fuzzy leveľ , thenR⊲sg⊳A, R0⊲sg⊳A, andR00⊲sg⊳A are
indistinguishable fromA at fuzzy levelˇ.

The ˇ0 fuzzy symmetry groupG⊲sg, ˇ0⊳ (that is, the fuzzy
symmetry groupG⊲sg, ˇ0⊳ at fuzzy levelˇ0) applies to fuzzy
setA if A has the fuzzy symmetry elementR⊲ˇ0⊳ at the fuzzy
level ˇ0 of the fuzzy Hausdorff similarity measuresg for each
symmetry operationR of the crisp symmetry groupG.

The symmetry deficiency measureυ⊲A, R, sg⊳ of fuzzy set
A in symmetry elementR according to the fuzzy Hausdorff-
type similarity measuresg is defined asυ⊲A, R, sg⊳ D 1 �
ˇ⊲A, R, sg⊳.

A fuzzy set A is an R set with respect to a family of
symmetry elements,R D fR1, R2, . . . , Rmg if A has all the
symmetry elements of familyR.

Fuzzy setB0 is a maximalR subset of fuzzy setA if A ¦ B0,
B0 is an R set, and noR set B00 exists such thatB00 ¦ B0,
B0 6D B00, andA ¦ B00. Note that the fuzzy, maximalR subset
of B0 is not necessarily unique for a given fuzzy setA.

The cardinalitym⊲A⊳ D
∫

X
�A⊲x⊳ dx of a fuzzy setA can be

regarded as the mass of fuzzy setA. For fuzzy electron density
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cloudsA of molecules this massm⊲A⊳ can be interpreted as
electronic charge.

A fuzzy setB is a maximal massR subset of fuzzy setA
if B is a fuzzyR set,A ¦ B, and if for all maximal fuzzyR
subsetsB0 of fuzzy setA, m⊲B0⊳ � m⊲B⊳. The fuzzy, maximal
massR subsetB is not necessarily unique for a given fuzzy
setA; however, the massm⊲B⊳ is already a unique number for
each fuzzy setA.

A fuzzy setC0 is a minimalR superset of fuzzy setA if
C0 is an R set,C0 ¦ A, and if no fuzzyR set C00 exists such
that C0 ¦ C00, C0 6D C00, and C00 ¦ A. The fuzzy, minimalR
supersetC0 is not necessarily unique for a given fuzzy setA.

Fuzzy setC is a minimal massR superset of fuzzy setA if
C is anR set,C ¦ A, and if for all minimal fuzzyR supersets
C0 of fuzzy setA, m⊲C⊳ � m⊲C0⊳. A fuzzy minimal massR
supersetC is not necessarily unique for a given fuzzy setA;
however, the massm⊲C⊳ is a unique number for each fuzzy
setA. If the fuzzy setA itself is anR set then bothB andC

are unique andB D C D A.
The internal fuzzyR deficiency measure of a fuzzy setA is

υR,B⊲A⊳ D 1 � m⊲B⊳/m⊲A⊳ whereB is the maximal mass fuzzy
R subset of fuzzy setA.

The external fuzzyR deficiency measure of a fuzzy setA is
υR,C⊲A⊳ D 1 � m⊲A⊳/m⊲C⊳ whereC is the minimal mass fuzzy
R superset of fuzzy setA.

The fuzzy R deficiency measureυR⊲A⊳ D ⊲υR,B⊲A⊳ C υR,C

⊲A⊳⊳/2 of fuzzy setA is the average of the above two measures.
For any fuzzyR subsetB0, R supersetC0, maximal mass

fuzzy R subsetB, and minimal mass fuzzyR supersetC of any
fuzzy setA, the relationsm⊲B0⊳ � m⊲C0⊳ andm⊲C⊳ � m⊲B⊳ �
m⊲C0⊳ � m⊲B0⊳ hold.

For a chiral fuzzy objectA, the largest achiral fuzzy object
that fits withinA, as well as the smallest achiral fuzzy object
that containsA, are of special importance.

Fuzzy setB0 is a maximal achiral subset of fuzzy setA

if B0 is achiral,A ¦ B0, and if no achiral fuzzy setB00 exists
such thatB00 ¦ B0, B0 6D B00, andA ¦ B00. Note that a maximal
achiral subsetB0 is not necessarily unique for a given fuzzy
setA.

Fuzzy setB is a maximal mass achiral subset of fuzzy
set A if B is achiral,A ¦ B, and if for the fuzzy volumes of
all maximal achiral subsetsB0 of fuzzy setA, the inequality
m⊲B0⊳ � m⊲B⊳ applies. Note that, for a given fuzzy setA, such
a maximal mass achiral subsetB is not necessarily unique.
Nevertheless, the fuzzy massm⊲B⊳ is a unique number for
each fuzzy setA.

A fuzzy setC0 is a minimal achiral superset of a fuzzy set
A if C0 is achiral,C0 ¦ A, and if no achiral fuzzy setC00 exists
such thatC0 ¦ C00, C0 6D C00, andC00 ¦ A. Note that a minimal
achiral supersetC0 is not necessarily unique for a given fuzzy
setA.

Fuzzy setC is a minimal mass achiral superset of fuzzy set
A if fuzzy setC is achiral,C ¦ A, and for all minimal achiral
supersetsC0 of fuzzy setA, m⊲C⊳ � m⊲C0⊳. For a given fuzzy
set A, a minimal mass achiral supersetC is not necessarily
unique. Nevertheless, the massm⊲C⊳ is a unique number for
each fuzzy setA. If fuzzy setA is achiral then both the minimal
achiral fuzzy supersetB and the minimal mass achiral fuzzy
supersetC are unique andB D C D A.

The internal fuzzy chirality measure of a fuzzy setA is
defined as�B⊲A⊳ D 1 � m⊲B⊳/m⊲A⊳ where B is a maximal
mass achiral subset of fuzzy setA. The measure�B⊲A⊳ is a

natural, fuzzy set extension of the measure obtained using the
maximum overlap criterion between mirror images.

The external fuzzy chirality measure of a fuzzy setA is
defined as�C⊲A⊳ D 1 � m⊲A⊳/m⊲C⊳ where C is a minimal
mass achiral superset of fuzzy setA.

The fuzzy chirality measure�⊲A⊳ D ⊲�B⊲A⊳ C �C⊲A⊳⊳/2 is
the average of the above two measures.

3.3 Comparisons of Symmetry Measures for Discrete
Point Sets of Nuclear Arrangements and Continua
of Electron Densities

The CSM described in Section 2 is a symmetry deficiency
measure which is applicable to both discrete sets and to
continua. For crisp continuum sets and fuzzy sets, the crisp and
fuzzy versions of the Hausdorff metric provide generalizations
of the CSM approach.

3.3.1 Symmetry Measures for Discrete Sets and Crisp Sets

A typical discrete set of chemical importance is a nuclear
arrangement in the clamped nucleus version of the BornOpp-
enheimer approximation. A single molecular isodensity con-
tour (MIDCO) surface is a crisp continuum set. A simple
generalization of the CSM approach from finite, discrete point
sets to continua is provided by the crisp average of sets.

3.3.1.1 Crisp average.The crisp averageAcrav of a family
FA D fA1, A2, . . . , Amg of m crisp closed and bounded subsets
Ai of an n-dimensional Euclidean spaceX is generated as
follows. Each pointx of a setAi is represented by suitable
hyperpolar coordinates of one radial coordinate andn � 1
angle coordinates, wheren is the dimension of the underlying
spaceX and the origin is attached to a specified pointc of set
Ai. In three dimensions, the usual polar coordinatesr, �, and
� can be used, with respect to the centerc of each setAi and
with reference to Cartesian coordinate axes defined parallel to
axes of a coordinate system of the laboratory frame.

For each setAi, its convex hullCi is unique. In the 3D
case, for each choice of the (�, �) pair, a unique line segment
qi⊲�, �⊳ is specified that connects a selected reference point
ci 2 Ci of Ai with the unique pointyi⊲�, �⊳ 2 Ci which is the
point of polar angle coordinates (�, �) with the longest distance
from centerci, d⊲ci, yi⊲�, �⊳⊳ D supfd⊲ci, x⊳: x D x⊲�, �⊳, x 2
Cig. Whereas along this line segmentqi⊲�, �⊳ some points do
not necessarily belong to setAi, nevertheless, the formal path
parametrization along the lineqi⊲�, �⊳ varies only within set
Ai and ignores any missing subsegments.

A parametrization for the formal pathqi⊲u, ⊲�, �⊳⊳ for each
fixed pair (�, �) is a mapping from the unit intervalI D [0, 1]
to the underlying spaceX. The image of this mapping is the
line segmentqi⊲�, �⊳ parametrized byu, qi⊲u, ⊲�, �⊳⊳, where
qi⊲0, ⊲�, �⊳⊳ D ci, and qi⊲1, ⊲�, �⊳⊳ D yi⊲�, �⊳, and whereu

is proportional to the arc length,qi⊲u, ⊲�, �⊳⊳: I D [0, 1] !
qi⊲�, �⊳, X ¦ qi⊲�, �⊳.

A parametert⊲w, ⊲�, �⊳⊳ is defined in terms of the member-
ship function�Ai⊲x⊳ of crisp setAi, ti⊲w, ⊲�, �⊳⊳ D

∫

[0,w] �Ai

⊲qi⊲z, ⊲�, �⊳⊳⊳dz, where integration is for the subset [0, w] of
the unit intervalI D [0, 1]. This parameterti⊲w, ⊲�, �⊳⊳ ‘leaves
out the gaps’ along lineqi⊲�, �⊳. Scalingti⊲w, ⊲�, �⊳⊳ by the
effective lengthti⊲1, ⊲�, �⊳⊳ of line segmentqi⊲�, �⊳ within set
Ai, defines the functionvi⊲w, ⊲�, �⊳⊳ D ti⊲w, ⊲�, �⊳⊳/ti⊲1, ⊲�,
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�⊳⊳. A possibly discontinuous pathpi⊲u, ⊲�, �⊳⊳: I D [0, 1] !
qi⊲�, �⊳ \ Ai, X ¦ qi⊲�, �⊳ \ Ai along segmentqi⊲�, �⊳ invol-
ves only those points ofqi⊲�, �⊳ which fall within setAi, that
is, pi⊲u, ⊲�, �⊳⊳ D q⊲v�1

i ⊲u, ⊲�, �⊳⊳⊳.
Each pointx 2 qi⊲�, �⊳ \ Ai can be specified uniquely by a

set of three polar coordinates, (u, �, �), and the serial indexi of
setAi, x D x⊲i, u, �, �⊳. For each trio of values (u, �, �), there
exists precisely one pointx⊲i, u, �, �⊳ that must be an element
of set Ai. Conversely, each pointx of each setAi can be
given in the formx D x⊲i, u, �, �⊳, providing a unified system
of parametrization for points of each setA1, A2, . . . , Am.

The crisp averageAcrav⊲FA⊳ D [u,�,�⊲1/m⊳iD1,mx⊲i, u,

�, �⊳ of setsA1, A2, . . . , Am is defined by the union of the
averaged vector representations of pointsx⊲i, u, �, �⊳.

3.3.1.2 Generalization of the CSM approach from finite, dis-
crete point sets to continua based on the crisp average of
sets.For a setA, and a (possibly approximate) symmetry ele-
ment R of symmetry operatorR leaving at least one point
of the convex hullC of set A invariant, take the powers
R0 D E, R, R2, . . . , Rm�1 of the symmetry operatorR, where
m is the smallest positive integer that satisfies the condi-
tion Rm D E. Partition the Euclidean spaceX into m seg-
mentsX0, X1, . . . , Xm�1, whereX D [iD0,m�1Xi, andRXi D
X⊲iC1⊳modm. If R is a reflection plane, thenm D 2, and the two
half spaces with boundary plane the reflection planeR fulfill
the conditions. IfR is a Ck rotation axis or anSk axis, then
m D k, and each segment of the Euclidean spaceX can be
taken as a wedge of edge theCk or the Sk axis, and wedge
angle 2�/k. If R is a point of inversioni, thenm D 2, and the
two half spaces with boundary plane (x, y) fulfill the condi-
tions. The notationP is used for the specification of the actual
convention used in the positioning ofR with respect to crisp
continuum setA and for the partitioningX0, X1, . . . , Xm�1 of
the spaceX.

Using segmentsA0, A1, . . . , Am�1 of setA, Ai D A \ Xi, the
setsA0, Rm�1A1, Rm�2A2, . . . , Rm�jAj, . . . , RAm�1 are gen-
erated. The setsBj D Rm�jAj are the various ‘folded’ versions
of subsetsAj of set A. The folded setAfold D Acrav⊲FA⊳ D
[u,�,�⊲1/m⊳iD0,m�1x⊲i, u, �, �⊳ is defined as the crisp average
of theseBj sets.

The gradual ‘unfolding’ of this crisp averageAcrav⊲FA⊳

using various inverse powers of symmetry operatorR leads to
the setsAfold, R1�mAfold, R2�mAfold, . . . , Rj�mAfold, . . . , R�1

Afold. The folded unfolded setAf,uf,R,P of set A according to
symmetry elementR and partitioningP is the unionAf,uf,R,P D

[iD0,m�1R�iAfold. The folded unfolded setAf,uf,R,P of set A

has the exactR symmetry and is evidently anR set.
The dissimilarity ofA and Af,uf,R,P provides a symmetry

deficiency measure analogous to the CSM continuous sym-
metry measure of discrete point sets. As a dissimilarity
measure, the Hausdorff metric, or any other dissimilarity mea-
sure suitable for continua may be used. Using the exten-
sion of the CSM methodology to crisp continuum sets, the
folding unfolding approach becomes applicable for continu-
ous molecular isodensity surfaces.

3.3.2 Symmetry Measures for Continuum Sets

A typical fuzzy continuum of chemical importance is an
electron density cloud of a molecule. The fuzzy average of
crisp or fuzzy subsetsF1, F2, . . ., and Fm of a set X can

be interpreted as a fuzzy subsetFfav, defined by its fuzzy
membership function�Ffav⊲x⊳ D [kD1,m�Fk⊲x⊳]/m. Note that
the fuzzy averageFfav of crisp setsF1, F2, . . ., andFm is a
crisp set if and only ifF1 D F2 D Ð Ð Ð D Fm, then, of course,
Ffav D F1 also holds.

Take a crisp or fuzzy subsetA of the Euclidean spaceX, a
possibly approximate symmetry elementR, and the associated
symmetry operatorR. A reference pointc 2 X is chosen as
a fixed point ofR. Point c is taken as the origin of a local
Cartesian coordinate system of axes oriented according to the
usual conventions with respect to the symmetry operatorR.

If m is the smallest positive integer that satisfies the
condition Rm D E for the symmetry operatorR, then the
Euclidean spaceX is partitioned intom segmentsXi, where
X D [iD0,m�1Xi, andRXi D X⊲iC1⊳modm.

The segment Ai of the crisp or fuzzy set A is
defined asAj D A \ Xj, and the ‘folded’ version of the
j-th segmentAj of the crisp or fuzzy setA according
to the ⊲m � j⊳-th power Rm�j of the (possibly only
approximate) symmetry operatorR is denoted byBj D

Rm�jAj. For the familySA of segmentsA0, A1, A2, . . . , Am�1,
the corresponding folded setsB0 D A0, B1 D Rm�1A1, B2 D
Rm�2A2, . . . , Bm�2 D Rm�jAj, . . ., and Bm�1 D RAm�1 are
generated. In terms of the fuzzy membership functions
of these Bj sets the fuzzy folded setAffold is defined
as the fuzzy averageSBfav with the fuzzy membership
function �Affold⊲x⊳ D �SBfav⊲x⊳ D [kD0,m�1�Bk⊲x⊳]/m. The
fuzzy folded setAffold is unfolded using the appropriate inverse
powers of symmetry operatorR, generating the following sets:
Affold , R1�mAffold , R2�mAffold, . . . , Rj�mAffold, . . . , R�1Affold .
The folded unfolded fuzzy setAff ,uf,R,P of crisp or fuzzy
set A with respect to symmetry elementR and partitioning
P is the fuzzy union Aff ,uf,R,P D [jD0,m�1R�jAffold . The
folded unfolded setAff ,uf,R,P is a fuzzyR set by construction.

The fuzzy Hausdorff-type dissimilarity metricf⊲A, B⊳ can
be applied to the pairA and Aff ,uf,R,P, generating a fuzzy
symmetry deficiency measuref⊲A, Aff ,uf,R,P⊳ analogous to the
CSM of discrete point sets. This symmetry deficiency measure
f⊲A, Aff ,uf,R,P⊳ provides a measure for the symmetry aspectR

for crisp or fuzzy setA, with reference to the given positioning
P of R with respect toA and to the choice of the associated
partitioning ofA.

The infimum f⊲A, Aff ,uf,R,P⊳ D infPff⊲A, Aff ,uf,R,P⊳g taken
over all the allowed positionings and partitioningsP gives
another symmetry deficiency measure. These symmetry defi-
ciency measures are equally applicable to discrete sets, crisp
continuum sets, and fuzzy sets, including nuclear distributions
and fuzzy electron density distributions of molecules, molec-
ular fragments, and functional groups.

4 OUTLOOK: APPLICATIONS BEYOND
CHEMISTRY

In Section 2.5 we demonstrated applications and potential
future uses of the CSM approach in chemistry. It is now in
order to point out that the general foundations laid out in
this article, and the versatility of the computational approach,
are, in principle, applicable to the analysis of symmetry and
chirality-related problems in many other domains of the natural
sciences and social sciences. The following examples hint at
the vastness of the new open horizons:
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ž symmetry determination in automated image analyses for
quality control of industrial products18

ž symmetry analysis of facial features for forensic, psycho-
logical, and artistic analyses18

ž symmetry analysis as a quantitative measure of cultural
development of early humans19

ž chirality and symmetry analyses of random spiral aggre-
gates such as galaxies, clouds, tornadoes, and molecular
scale aggregates

ž symmetry issues in medicine, as an analytical, diagnostic,
and classification biomedical toolmany other structural
features of living organisms are analyzable in terms of
bilateral symmetry and deviations from it, and are poten-
tially useful as indicators of pathological conditions

ž symmetry analysis in evolutionary sociobiology, one of the
most active issues in modern biology

ž quantification of symmetry for the study of aesthetics
ž symmetry analysis of information packets (stock behavior,

music, process reproducibility, error occurrence, etc.).

This list is but a sketch of some of the many potential app-
lications of the continuous symmetry methodology approach.
The feasibility of the first three applications in this list have
already been proven successful.18,19
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