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Continuous Measures STRUCTURAL PROPERTY

A traditional working tool in structural chemistry has been
David Avnir symmetry analysis, including that of achirality which is a
special case of symmetry. Symmetry point groups and space
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groups have been used as reference configurations which either

Hagit Zabrodsky Hel-Or exist or not in the structure under study. This traditional
o approach fails to capture the richness of shapes and structures,
Bar-llan University, Ramat Gan, Israel both static and dynamic, which is found in the molecular and
supramolecular domains. Most of these are not symmetric. At
Paul G. Mezey most they are approximately symmetric, either permanently or
University of Saskatchewan, Saskatoon, Canada temporarily if the time-resolution of observation is sufficiently

narrow.

Let us mention some very basic problems to illustrate
this point. Consider two ethylene molecules approaching
each other for a [2 2] reaction. The answer to the ques-
1 Introduction: The Rationale Behind Treating Symmetry tion of whether that reaction is allowed thermally or photo-

as a Continuous Structural Property 2890 chemically, or whether a suprafacial or antarafacial process
2 The Continuous Symmetry Measure Approach 2891yl take place, or whether the reaction will take place at
3 The Fuzzy Sets Approach to the Measurement of . .
o all, is very much dependent on the symmetry of alignment
Symmetry and Chirality 2897 . -
4 Outlook: Applications Beyond Chemistry 2900 Of the two reacting molecules or moieties. The extremes
5 Related Articles 2901 are Dy, for a parallel approach and, for an orthogonal
6 References 2901 approach, and it has been predicted successfully that the for-
mer is needed for a suprafacial photochemical formation of
cyclobutane. Most of the time, however, the two ethylenes
are not in an idealDy, arrangement. This may be due to
o an intramolecular frozen conformation of the two double
Abbreviations

bonds, to non-symmetric sterical hindrance caused by sub-
stituents on the double bond, and to the dynamical nature of
the system (rotations and translations, especially in viscous
media).

Another example is the vibrating water molecule. This is
a C,, molecule and its;; and v, vibrational modes preserve
this symmetry. But thesz vibrational mode distorts th€',,
Folding symmetry and again, a legitimate question is by how much

Applying a set of inverse symmetry operations on a Sepoes the molecule deviate froi,, after 1% of one cycle,

of points. This procedure is one of the main steps in theftfter 10% of it and so forth. Yet another example is the

folding-unfolding method for evaluating the CSM of a set Well-known phenomenon of removal of the degeneracy of
of points. energy levels of a chemical species whenever it is contained

Folding-unfolding method in an environment of symmetry other than. its own (a certain
A visual and computational procedure for evaluating the CS rrangement of ligands or a certain pack]ng n Fhe crystal).
of a set of points he degree of removal of degeneracy is directly linked to the

P ' ‘decrease’ in the symmetry of the environment, compared to
Fuzzy subset

. the isolated chemical species. Traditionally, this problem is
A set whose elements have a range of values correspondi

° 4 Reated in terms of jumps in the symmetry point group. For
to the degree of membership in the set. instance, the splitting of the degenerate p orbitals increases

CCM = continuous chirality measure; CSM continuous
symmetry measure.

Glossary

Fuzzy symmetry element/operator from az, + e, in a Dy, environment taz; + b1 + b2 in a Cy,

A symmetry element/operation at a given constant fuzzy levelgnyironment.

Fuzzy symmetry group ) Still another example is the concept of allowed and forbid-
A fuzzy set that has a fuzzy symmetry element at a giveryen electronic transitions. The very weak.{x = 200) forbid-
constant fuzzy level. denz — 7* transition to the lowest lying singlet in benzene
Hausdorff distance _ . (Al — B}), a Dg, symmetry molecule, changes in toluene
A metric defining the distance between a point and a set Ofa molecule with a distinctly different point grougy,) only
between two sets. to emax = 225. The discrepancy between the major symmetry
Symmetry deficiency measure change and the small effect in the ‘allowedness’ of the tran-
A measure of symmetry on crisp or fuzzy sets. sition is currently treated in terms of perturbations and ‘local’
Unfolding symmetry.

Applying a set of symmetry operations on a set of points. This  Chirality provides similar examples. For instance, con-
procedure is one of the main steps in the foldingfolding  sider the fact that ethane has various levelsDgf in its
method for evaluating the CSM of a set of points. chiral D3 rotamers, except for the eclipsed and staggered
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conformers; and that 2-deuteriobutane seems less chiral thgsquare values are taken so that the function is isotropic, con-
2-bromobutane. tinuous, and differentiable). Prior to evaluation, one normalizes
These are but few examples which illustrate the need fothe shape by scaling about its center so that either the maxi-
a continuous scale of symmetry. Thus symmetry can be, andnal distance of any; to the center is 1 (used in the examples
in many instances should be, treated as a continuous propertyelow), or the rms of all vertescenter distances is 1. One thus
and not necessarily as a binary property which exists or doegbtains the limits: 0< §’(G) < 1. For convenience, this scale

not exist. is expanded by a factor of 100
Several solutions to this problem, especially to the mea-
surement of chirality, have been offered in the literature, and $(G) = 100(S'(G)) 2

a selected bibliography is collected for the interested reader in

Ref. 1. Here we concentrate on two approaches which proved@ihus, if a shape has the desired symmety;) =0. A

to be versatile and suitable for treating the types of problems§hape’s symmetry measure increases as the shape departs from

sketched in this introduction. G symmetry and it reaches a maximal value (not necessarily
100- see Appendix D in Ref. 2b). Equations (1) and (2) are
general and allow one to evaluate the symmetry measure of

2 THE CONTINUOUS SYMMETRY MEASURE any shape relative to any symmetry group or element. No

APPROACH reference shape is assumed at the beginning of the analysis,

though it is obtained as an end outcome.
2.1 Elements of the Approach

This continuous symmetry measure approach to the prob2 2 The Folding-Unfolding Solution
lem of non-ideal symmetry has been guided by three princi-

ples: The main computational problem is then how to find

the nearest object with the desired symmetry, namely the
1. Non-symmetric shapes should not be treated as a perturbdet of P; values. For specific cases such as the distance to

tion of an ideal reference. Such shapes, as well as perfectipirror achirality’ or to perfect polyhedra,specific shortcut
symmetric ones, should appear on a single continuousalculations have been designed. However, for the general

scale with no built-in hierarchy of subjective ideality. ~ case, an approach which proved particularly useful is based on
2. Assessing symmetry should be detached from referencinidie ‘folding-unfolding’ algorithm®# It is based on the very

to a specific shape. method of constructing a shape which is symmetric. As an
3. It should be possible to evaluate the symmetry of a giver@xample, we build a two dimensional (2D} shape, i.e., a

configuration with respect to any symmetry group. planar structure with on€; rotational symmetry element and

one reflection symmetry elememt(which is equivalent ta;

The proposed continuous symmetry measure (CSM) methoith 3D). In 2D the rotation is about a point in the plane and
which follows these guidelines is based on the followingthe reflection is through a line in the plane. Thg symmetry
definition? Given a shape composed af, points P; (i = group may be of different orientations and positions (thus the
1...n,) and a symmetry grou, the symmetry measure rotation can be about any given point in the plane and the
S(G) is a function of the minimal displacement the poifts  reflection about a line of any orientation), but a natural choice
of the shape must undergo in order to acquitesymmetry.  would be to consider &z symmetry group where the rotation
The CSM method identifies the poinks of the nearest shape is about phe origin and the reflection is about one of the axes
having the desired symmetry. Once the neafestalues are ~ (the y-axis). In this case, th®; symmetry group is of order
calculated, a continuous symmetry measure is evaluated as:8 With the following elements or operations (Figure 1a):

e g1 = E = the identity

np

S'(G) = 1 SO IP - B2 1) ©® 8 = o =reflection about the-axis
= e g3 = C3 = rotation about the origin bys2/3 radians
(0)
P,=0 P, | PL=EP; P, P
ele

P;=C3 P
3 31.

3 P,=C30 Py

() (b) (c)

Figure 1 Creating aD3 symmetric hexagon: (a) thBs symmetry group has six elements (see text); (b) applying the six group elements on
the pointPy; (c) a D3 symmetric hexagon of six points is obtained
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o g4=C30 (= 0C3?) = rotation by 4r/3 followed by ref-
lection

symmetry group #,) and the connectivity is cyclic. Specifi-
cally, we shall determine here how much (2D} symmetry
exists in the distorted hexagon shown in Figure 2(a). The

o g5=C3 (= Cgl) = rotation about the origin by /3
radians
e g6 = C30 (= 0C3) = rotation by 2r/3 followed by reflec-

tion. 1.

Given an arbitrary pointP1, in anxy plane, wherer is the
y-axis andC3 rotates about the origin, a 2D3; symmetric

arrangement of points is obtained by applying the gjix 2.

operations, for instance, as follows (Figure 1b):

1. rotateP; by 2r/3 radians:P3 is obtained 3.

2. rotateP; by 47/3 radians:Ps is obtained

3. reflectP;, P3, Ps about they-axis: Py, Pg, P4 are obtained,
respectively; aD3 symmetric collection of six points is
constructed (Figure 1c).

4,

Such a structure can be obtained by many other orderings of
the operations and many other orientations and positionings of
the symmetry group. However, when connected objects, such
as molecules, are of interest (in our case a hexagon) it is more
natural to select that sequence of operations which follows the
desired connectivity. In oubz example, we built the hexagon
from P1 by following the order of operations as given above
which conserves the order along the hexagon boundary, i.e.,
g1 — ge (Figure 1c).

We call the procedure of obtaining a symmetric shape
by applying a set of operationg on a point unfolding (in

our example, a3 object is unfolded fromP;). One is usu- g,

ally interested in unfolding that follows a given connectivity
(although the tool we develop here is applicable to discon-
nected assemblies as well). The inverse procedure of unfolding
is folding: pointsPy, ..., Pg are folded ontaP; by applying

the inverse operationgfl. All points coalesce onto a single
point, P1. Note, however, that if pointBy, ..., Pg are not per-
fectly D3 symmetric the folding results in a cluster of points
rather than a single point. The foldingnfolding procedure is
the very basis of our method for evaluating CSM values with

respect to symmetry groups; the idea being to minimize thg.
cluster spread. 8.

In general, one can try to measure various shapes with
respect to various symmetry groups. Let us explain the
folding-unfolding method using the basic case where the
number of points ) equals the number of elements in the

@ (b)

folding-unfolding method is performed as follows.

Determine the centroid of the object (hexagon in our case).
Translate the object so that its centroid coincides with the
origin and scale the object so that the maximal distance
from the origin to any of the vertices is 1 (Figure 2a).
Translate the symmetry group so that all operations are
about the origin (i.e., all rotations are about the origin and
all reflection lines or planes pass through the origin).
Select an ordering of the, operations of the desired
symmetry group that follows the connectivity of tiie
vertices. In our case, two orderings are possiple. . gs

as listed above, and the reversg, .. g1. We proceed with

the first and return to the second in step 8.

Fold the verticesP;...Pg by applying the symmetry
operation gi_l to eachP;. A cluster of folded points
P1...Pg is obtained (Figure 2b). (Recall that had the
object been aD; symmetric one, allP; values would
coincide.)

Average the folded point8;, obtaining the average point
P1 (Figure 2c):

1 1 &
Pr= =3 gitPi=—3 P )
s iz s i

Unfold the average poirit; by applying on it each of the
gi operations and obtaining;:

Pi=g,‘i)i l=1ng (4)

The orderingg;...gs is followed in order to retrieve
the original connectivity and ordering. B3 symmetric
shape is obtained (Figure 2d). Note that whereas the non-
symmetric object is scaled to 1 (step 1), the symmetrized
nearest shape is not necessarily so.

CalculateS(G) according to equation (2).

Minimize theS value by repeating the foldinginfolding
procedure (steps-#) for all orderings and all orientations
of the group elements. This step is equivalent to finding the
best cluster of folded points. (In the present case, due to
the cyclic connectivity, minimization is reduced to the two

(c) (d)

Figure 2 MeasuringD; symmetry of a distorted hexagon using the foldingfolding method: (a) the distorted hexagon; (b) folding the
hexagon vertices in (a)a cluster of points is obtained; (c) averaging the cluster of points in &3ingle point is obtained; (d) unfolding the

averaged point in (¢} a D3 symmetric configuration is obtained
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orderings mentioned in Step 3.) The optimal orientationset of elements which, when applied, movasto P,, etc. In
is given analytically and in our case is simply 0 deg (i.e.,our example (Figure 3b):
o is about they-axis)?
G1=1{g1,82} G2=1{g3. 84} G3={gs g6} (5

Applying this procedure we find that th&Ds3) value of
the hexagon in Figure 2(a) is 4.89. TKevalue obtained by Having detailed how a symmetria, =/ -n, shape is
this procedure is the minimal distance to the desired symmetr§onstructed, it is now clear how the foldingnfolding method
group. The proof is given in Appendix A in Ref. 2b. is applied for evaluation ofS values in such cases. The

A common situation, however, is that the object underProcedure is basically the same as detailed above, with some

consideration has, < n, and, in particularn, =1 -n, with ~ modifications, as follows.
1=1,23,.... In order to deal withn, =1-n, we first
explain the process of creatingG symmetric configuration

of points using the unfolding process for this case. As an
example, we continue with; but this time with three vertices

(I =2,n, =3,n, =6). In general, we regard each of thg
vertices of amm, =1 - n, object as composed éfcoinciding
points. Thus, we regard B3 triangle as a hexagon in which

each two vertices coincide. We construct such an object by
following the general unfolding procedure with one change:

the pointP1, from which the shape is unfolded, is not in a
general position but is selected on a symmetry elemei,
our case (Figure 3a). It then follows that the poifts and
P> coincide; therefore’; and P4 coincide and so d@s and

Pg - an equilateral triangle is obtained. In generals the 3.

number of symmetry operations which leaRe in place (in
our casd = 2: E ando). In effect we divide the elements of
groupG into n, sets ofl elements each, such that eachGgt
contains the elements of the group which bringto P;. Thus
G1 is the set of elements which leaves in place,G3 is the

¢

(d)

Select an ordering (Figure 3c):

(a) Determinel and divideG into n, sets so that each
setG; contains/ elements.

(b) Select an ordering of the setg of the symmetry
group that follows the connectivity of th® vertices.
(In our example the ordering is as mentioned above:
G1, G2, G3.)

Folding. For each verte®;, apply the inverse of thé

elements of the seaf;, obtaining/ folded pointsf’ijj =

1...1. Thus, in our exampleg;* andg,* are applied to

P obtaining P11 and P, (Figure 3d),g5* andg;* to P,

obtainingP,; and P, and so on.

Averaging. Average the:, folded points. The average

point P; will always lie, in the present case, on one
or more symmetry axes or planes such that applying
any element ofG; will leave it in place. In our case
the averaged point?;, must rest on the reflection line
(Figure 3e). To understand this, notice that the six group

LPlePl
P,=0P,

_~2
P5—C%Pl
Ps=C50 P,
P,=C3P,
P,=C,0 P,
(b)
A
Pl‘

(e) ®

Figure 3 Creating aD3; symmetric configuration of three points: (a) a single pamtis chosen on a symmetry axis; (b) unfoldify,

one obtains three pairs of coinciding points havibg symmetry. Measurinds symmetry of a distorted triangle: (c) the original triangle;
(d) folding the points in (c} a cluster of points is obtained; (e) averaging the cluster of points in &d3ingle point located on a symmetry
axis is obtained; (f) unfolding the averaged point in{& D3 symmetric triangle is obtained
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elements can be paired, i.€., C3, C$ and their reflections e six reflection planes, each containing one of the edges and
oE, oC3, 6C3. On each poinP; we applied a single pair bisecting the opposite edge. For our purpose only one of
so that the obtained poin; and P;, are related by, these reflectionss suffices (Figure 4c).
i.e., they are reflection of each other, and their average
lies on the reflection line.

4. Unfolding. Following the unfolding step as described for
the basic case we notice that sinBe remains in place
under the application of elements i1, the unfolded

The 24 elements of th&, symmetry group are thug
(the identity), fourCs rotations (denoted’s(1) ... C3(4)) and
four C% rotations (denotedC3(1)...C35(4)), three C, rota-
tions (denotedC2(12), C2(23), C2(31)), and all the elements
points will align in n, sets of! points each. Thus in gt;gned by mg!tlplylngdthesse etllem(;ntﬁ byf\s '? Iihe Ds bi
order to obtainn, G-symmetric points, it suffices to gon case discussed in Section 2, here 100, taking an arbi-
N r ) trary point and applying the 24 elements (in any order) will
unfold P, by applying a single element from each set yroquce ar, symmetric 24-polyhedron. Thus, given 24 points
Gi. In our caseP; unfolds into three pairs of coinciding in 3D space we can evaluate tiig symmetry following the
points:{P11, P12}, {P21, P22}, {P31, P32}. By applying, for  algorithms in Section 2. In 3D, minimization over all orienta-
instance, onlygs, g3, andgs, Py, P,, andP5 are obtained tions of the symmetry group is not analytic and an iterative
(Figure 3f). process is used. In most structural analyses, however, the 24-
elementl’; symmetry group is applied on four vertices in 3D,

We return now to the opening question: given any numbei.e., on the vertices of a (possibly) non-symmetric tetrahedron.
of vertices, i.e., a general non-symmetric polygon or poly-This case is analogous to the case described abov®4for
hedron, what is its symmetry measure with respect to angymmetry of three points. Here one has= 24,n, = 4, and
symmetry group, subgroup, or class? The generalized approa¢h= 6. Thus, in order to obtain &, symmetric set of four
is to divide the given points inta; sets and to apply the points (four coinciding clusters of six points) from a single
folding-unfolding method separately on each set, while evalpoint Py, it must be positioned so that six symmetry elements
uating theS value over all the given points. For example, in of theT; symmetry group leave it in place. Such a point lies on
the case where, is a multiple ofn, (i.e.,n, =k-n,) one  aCsaxis and on & plane (for example, point 1 in Figure 4a).
divides the points inta, = k sets ofn, points each. On each The six elements of the group that leake in place areE,
set one performs the foldirginfolding method as described C3, andC3 (= Cgl) and the three compositionst, oC3, and
above. The general case, however, will typically require thexC2. When one applies the rest of the elementsPanone
division of then , vertices inton, > [ subsets, not necessarily finds that the four sets of elements are:
of equal size, but with (possibly different)integer values for ) 5
each of these sets. Once the division is made, each of the G1={E, C3(1), C3(1), 0, 0C3(1), 0C3(1)}
subsets is symmetrized with respect to the desired symmetry  , _ (c4(3), C2(4), 6C2(2), 6C3(4), C2(12), 0C2(31))
group either according to the, = n, procedure or according
to then, =1 - n, procedure. Since each of the subsets is sym- Gs = (C5(2), C3(4), 0C3(3), 6C5(4), C2(31), 0C2(12))
metrized with respect to the same symmetry group, one obtains _ 2 2
a symmetrization of the full set of points. Division into subsets Ga = (C3(2). C5(3), 0C3(2). 0C3(3), C2(23), 0223} (®)
can be performed in various ways, but in order to preserve the Thus unfoldingP; with any one of the elements i@, will
cyclic connectivity of the original structure (branched connecform P,, with any of the elements i3 will form Ps, etc.,
tivities are treated below), the subsets must be interlaced. F@freating a symmetric tetrahedron. Again, as in the previous
details, see Ref. 2. cases, we use the construction of a symmetric shape as a

Finally, we comment on the case where the connectivityguideline for the foldingunfolding procedure for evaluating
constrains the division into sets so that no possible divisionhe 7, symmetry of any four vertices, as follows.
exists. For example, a cyclic connected configuration of six Figure 4(d) shows a distorted tetrahedron. Its centroid coin-
points cannot be divided into sets having a divisor of fivecides with the origin and the maximal distance to a vertex is
points (for measuring’s symmetry). To overcome these spe- scaled to 1. The four vertices are denoted...Ps, and a
cific cases one may physically duplicate or eliminate one okcertain order of the set§; is selected, say ... G4, with
more of the given points. Though this has no physical or chea certain orientation of th&, symmetry group. EaclP; is
mical interpretation, it does give a geometric solution. Thus inthen folded by applying the six elements of the gra@ip
order to measure a triangle with respecttp symmetry one  forming a cluster of 24 points (Figure 4e). These are averaged
duplicates one of its vertices. The symmetrized object will beFigure 4f) and unfolded by selecting one element from each
with four vertices. G; set. For example, applying the group elemekitsC3(3),
C%(2), C3(2) to P; we obtain, respectively, point8;, P,

Ps, P4 (Figure 4g).S is then calculated from equation (2) and
minimized over the twas; orderings:Gi, G2, G3, G4 andGy,

The extension to 3D follows similar lines, and will briefly G2, Ga, G3 (the reason for needing only two orderings for this
be illustrated here for the tetrahedrdf; symmetry includes minimization is described in Appendix B in Ref. 2). For each
the following symmetry elements (Figure 4): of the two orderings, one minimizelsover all orientations of

the symmetry group. Most tetrahedral structures of relevance
e four C3 axes passing through the origin and through eachin chemistry include a central atom. For treatment of this case,

of the four vertices (Figure 4a) see Section 3.3 in Ref. 2.

e threeC, axes passing through the origin, each bisecting a In the above example we divided the points into subsets
pair of opposite edges (Figure 4b) of n, points each. However, one may divide the points into

2.3 A 3D Example: The Non-symmetric Tetrahedron
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A

J ’ -

)]

4
Figure 4 The symmetry elements of tHg; symmetry group include: (a) four's axes, each passing through the origin and a vertex; (b) three
C, axes, each passing through the origin, and bisecting a pair of opposite edges; (c) six reflection planes, each containing algesf the e
and bisecting the opposite edge. A single plangig¢ shown. Measurind@’, symmetry of a distorted tetrahedron: (d) the distorted tetrahedron;

(e) folding the tetrahedron in (d)a cluster of 24 points is obtained; (f) averaging the cluster of points in (e); (g) unfolding the averaged point
in (f) - aT, symmetric tetrahedron is obtained

sets having less thamn, points; specifically, into sets having a us evaluate th§(Cs,) of the tetrahedron in Figure 4(d). The
number of points which is a divisor af,. In this case we apply C3, symmetry group has, = 6 elementsE, Cs, C3, and all
on each set the foldinginfolding method as described above the multiplications of these elements dyln order to evaluate
for the casen, = [ - n,,. Extending this idea further, we need the C3, symmetry of the four points one divides them into two
not divide the points into sets of equal size. For example, lesets; one having three point8,( P3, P4) and one having one
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point (P1). For the first set one has, = 3andl = 2andinthe {E, ¢} from a given point,P1, and a given reflection axis,
second set one has, = 1 and/ = 6. The folding-unfoldingis  as shown in Figure 5(a). Unless the point is on the reflection
applied as in ther, =1 - n, case. One obtains two sets, eachaxis, the minimal number of points needed to obtain a con-
being C3, symmetric, the first set consisting of three pointsfiguration having the required symmetry is two (the number
each on a reflection plane, and the second set consisting ofaf elements in the symmetry group). Let us therefore treat the
single point located on the rotation axis and on the reflectiorgiven point as a coinciding cluster of two poinks and P,

planes. After minimization one obtaif§Cs,) = 14.49. (Figure 5a). To obtain & symmetric configuration we unfold
the cluster by applyindg on Py (being the identity element,

2.4 The Measurement of Achirality: The Continuous E leavesP in place, i.e.,P1 = P1) and by applying> on P,
Chirality Measure (CCM) Approach obtaining the reflected poit; (Figure 5b). A mirror symmet-

ric configuration has been unfolded from the given point. The
ymmetric points can undergo a reversed procedure, and can be
olded into a cluster of two coinciding poin{®1, P>}. This is

An important extension and application of the CSM app-
roach isé thatS serves also as a continuous measure o
chirality.® Since chirality is defined as a lack of certain sym- ; . . .
metrieg (the improper )ellements), and since the CSM m?s/thoa(:hleved b.y applying the Inverse operatiort ODPZ andE~> .
allows one to evaluate how much of any of these symmetries iQn.Pl' Notice Fhat, W.he'fe?‘s foIdmg of .tWO mirror symmetrlc
lacking in a given chiral configuration, one has to screen ovePiNts results in a coinciding pair of points, the folding of two
all Gacniras values to find the one that provides the minimal dis-"°N-Symmetric points (Figure Sc) results in a non-coinciding
tance to achirality. For a given set of structures, the one wittgluster (Figure 5d). If the mirror axis is not predetermined,
the largesS(Gachira) Value is the most distant from having an then the minimization of thI.S distance thrc_)ugh the search of
improper symmetry element, and hence the most chiral; an@" OPtimal mirror alignment is the key step in the evaluation of
vice versa: as(Gacnira) approaches zero, the structure underth® minimalS(o). Once this minimum is found, the coordinates
study is minimally or negligibly chiral. In practice, since the of the folded points are averaged obtaining the coordinates of
minimal requirement for an object to be achiral is that it pos-& single average poirft; (Figure 5e), and the average point is
sesses a reflection mirrar & S1), an inversion centei & S;)  then unfolded into a symmetric configuration (Figure 5f).
or higher order improper rotation ax8s,, one has to screeh An alternative method to the foldirginfolding methodol-
over the symmetry groups having these elements. In the majopgy is possible, and the problem can be reformulated so that
ity of cases, one finds that the continuous chirality measure ignly the folded points are considergdn general, the struc-
simply S(o), i.e., the distance of a chiral object from having a tures we deal with are not necessarily cyclically connected as
reflection mirror. in our previous examples, but may be graph-like connected.

The practice follows the same rationale detailed in the prein these cases the ordering of the operations of the group is
vious sections. Suppose we wish to construct a configuratiorestricted by the connectivity of the points in the original con-
which is symmetric with respect to the mirror symmetry groupfiguration, i.e., to theopology of the configuratior?.

Finally we comment on chirality which is due to the
mirror axis lack of improper elements of symmetry other than reflection.
We recall that a set of points is achiral if it has afy
Py P, b_B symmetry_. However, for odd, S, is equivalent thnh and
’ ot ~ therefore includes;. Thus the CCM of a structure is found by
finding the closest structure havidg or Sp, symmetry. The
above described procedure fr = o can be straightforwardly
extended to find the closesp,-symmetric configuration for
anyn.3

@ ®) 2.5 Demonstrated Applications of the CSM and CCM

Approaches
Py fl B, B, 2.5.1 Continuous Symmetry Analysis of Hyperpolarizabilities
P, P o ° ¢ .|A32 A direct relation between the first hyperpolarizabiligy,of
noncentrosymmetric molecular structures and the centrosym-
metricity content,S(i), of such structures was shown for the
first time in Ref. 5. For a series of systematic, in-plane distor-
tions (stretch, pull, shift, and squish deformations) of the model
© O non-linear optics chromophore benzene, a monotonic relation-
Figure 5 Top: unfolding and folding of a pair of points: (a) given ship between calculated vall.JeS/ﬁ)fan(EiS.(l) was found. The .
a single point, one treats it as a coinciding cluster of two points€Sult suggests that the dominant variation in the hyperpolariz-
P1 and Py; (b) unfolding the pair of points by applying the identity ability for these structures arises from the change in oscillator
transformation t@; and reflecting?, across the mirror plane, a mirror strength.
symmetric pair of pointsP; and P,, is obtained. Bottom: treating a
non-mirror symmetric pair of points, (c): (d) folding the pair of points
shown in (c) results in a noncoinciding cluster of two poirits,and
P5; (e) the noncoinciding cluster is averagedftg (f) the averaged An important application of the continuous symmetry
point in (e) is unfolded to a mirror symmetric pat; and P, approach is as a process coordinate. This concept was

© @

2.5.2 Symmetry as a Process Coordinate
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demonstrated and applied in a study of the dynamigerfect symmetry with respect to a given symmetry operation
interconversion between the chiral enantiomers of the wateconverges quite fast since one examines a range of typical
trimer® one of the most intensively studied small clusters.behaviors rather than trying to sample some rare event.

In particular, the chirality content along several reaction
pathways leading to enantiomerization, automerization, an
isomerization was measured and analyzed. It was found tha
the interconversions occur along routes which are chiral in
all their points. A favored mechanism, known as the flip We regard as one the most significant results of the CSM
mechanism, was found to be such that the chirality content ispproach the observation that symmetry and chirality can
kept almost constant throughout the whole enantiomerizatiobe used as a predictive structural parameter for biochemical
pathway. The non-handed structure, namely the chiral structurguantitative structureactivity relationship (QSAR) studiés.

on that pathway for which left-handedness/right-handednesan example is the analysis of the correlation between the
cannot be assigned under the convention used for it, washirality of the pharmacophores of trypsin inhibitors and their
identified and recognized to be in the vicinity of the activity. The chirality which was used was the induced one on
transition state of the enantiomerization. A consequence ahe side chain of the inhibitor within the active site. A nice,
the quantitative structural approach to chirality is the ability toalmost linear, correlation was observed between inhibition
identify isochiral structures, namely such that have the samefficiency and the degree of chiralily.

degree of chirality.

.5.5 Continuous Chirality and Symmetry for QSAR and
Drug Design

2.5.6 The Quantitative Evaluation of the Degree of Chirality
2.5.3 Analysis of the Statistical Interpretation of Symmetry of Macroscopic Crystals

d Chirality of L Random Object
an raiy arge Random LIbjects The CSM and CCM approaches can, of course, be used

The structural chirality of large, random supramolecularfor the analysis of macroscopic structures. An example is the
structures, spiral diffusion-limited aggregates, was analyzed byteatment of the chirality of the macroscopic shape of crystals
the CCM approach. It was fouhdhat classical definitions and as a continuous structural property, rather than as an ‘either/or’
terminologies of chirality are too restrictive for the description property. This was demonstrated on the classical chiral crystal
of such complex objects. A refined methodology and a conof ammonium sodium tartrafé®.
ceptual vocabulary were developed, along with a generalized
definition of chirality which takes care of supramolecular struc-, g 5 Symmetry of Experimental Points with Uncertain
tures. The statistical significance of symmetry and chirality Locations

were defined, and applied on many examples.
Information obtained from any analytical instrument has
a certain degree of uncertainty. In structural chemistry, the
uncertainty may be in the location of the atoms, as obtained
by, e.g., diffraction methods, due to all known causes (crystal
The use of the CSM as a mathematical tool to quantifyimperfections, thermal motion, etc.). Thus quite often the data
order was demonstrated in a study of the extent of clusteis given as a collection of probability distribution functions
symmetry as a function of temperat&&he continuous vari- of point locations. Given points with such uncertain locations,
ation of symmetry as a function of temperature was employedhe following questions regarding symmetry are of interest.
as a structural criterion for the follow up of melting in clus-
ters of (ortho-B);3. Thermal distribution of configurations for e What is the most probable symmetric shape represented by
this cluster was obtained using the path integral Monte Carlo the data?
technique. The CSM selected to follow the structural changes What is the probability distribution of symmetry measure
of these nearly icosahedral structures was the degree of the values for the given data?
centrosymmetricity. It was found to have better numerical
properties in comparison with the standardly used rms flucFor treatment of these points, see Refs. 3 and 4.
tuations in the intermolecular distance, commonly applied as
a criterion of cluster melting. The problem with the standardly
used order parametef)(is that on the one hand it is expected 3 THE FUZZY SETS APPROACH TO THE
to increase significantly at a temperature at which the atoms in MEASUREMENT OF SYMMETRY AND
the cluster start exchanging places; and on the other hand one CHIRALITY
finds that the longer the simulation is, the lower is the tem- _ _
perature at which such exchange is obtained. The symmetr){] We now detail a second approach to the evaluation of
measure paramete§ (), in this case) does not suffer from that the degree of symmetry deficiency, from a different point of
problem. Another conceptual problem withis its definition, ~ view, namely the fuzzy sets approach. Fuzzy set meffidés
which assumes distinguishability between molecules. Distancare especially suitable to reflect the Heisenberg uncertainty
between molecule and n’ is not a measurable quantity in relation and other aspects of quantum chemidtd/ and
a system ofN identical molecules; however, the definition computational chemistry. Symmetry in molecules relies on
of d employs distances between labeled pairs of moleculeshe concepts of distance and metric. For the approximate
This problem is absent in the case of thig) parameter as symmetries of fuzzy electron densities, fuzzy set methods,
well, because it is defined uniquely for a given configurationfuzzy distance or fuzzy metric, and fuzzy symmetry are of
of particles, and does not rely on particle labeling. Moreoverjmportance. In Section 3.3 below, we compare and generalize
sampling the range of deviations of cluster configurations fronthe two approaches.

2.5.4 The Use of the Symmetry Measure as an Order
Parameter
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3.1 Some Elements of Fuzzy Set Theory furthermore, direction cosines of rotation axes and normals
of reflection planes with respect to local coordinate axes are
needed.

A fuzzy set A has the fuzzy symmetry elemem(B)

For an ordinary subsét of a setX, X O Y, an element of
X is either a member or not a member of the subsdtence,

by definition, the membership functiomy (x) of elementsx

of X can take only two discrete values, 1 or 0. Such ordinary-2r"€sPonding to the symmetry operatianat the fuzzy level
sets are often referred to as ‘crisp sets:’ B of the fuzzy Hausdorff-type similarity measuigif and only

If Ais a fuzzy subset of a sé&f, then the elements of if the fuzzy similarity measure, betwee'rR.A andA IS greater
X may have a w)rlmle range of possible ‘commitments’ to thistan Of equal t@, s (RA, A) = B. In the limit f = 1, similarity
fuzzy subsefi without fully belonging to it. This is expressed becomes |nd|st|ngwsh_ablllty, and the fuzzy symmetry elem(_ant
by the corresponding fuzzy membership function(x) that R(B) becomes an ordln_ary symmetry element corresponding
can take any value from the= [0, 1] closed unit interval, to the symmetry operatioR.
expressing the ‘degree’ of pointbelonging to fuzzy se. A measure of the degree of symmetry aspedor fuzzy

Set operations are naturally extended to fuzzy sets, foret4 according to fuzzy Hausdorff-type similarity measure
example: the fuzzy union U B, the result of the operatiopt© ¢ IS the maximum fuzzy leveB(A, R, s¢) = SUepo (A :
or B’ is a fuzzy subseD of setU, with membership function $s(RA,A) = B} at which the fuzzy symmetry elemeRtp)
o) = max{ (), @)} for everyu e U. is present for the fuzzy seit.

An important tool for interrelating fuzzy problems and A fuzzy symmetry operatoR(s,) of fuzzy symmetry ele-
crisp problems is thex-cut Gu(e) = {x : pa(x) =} of a mentR(B') present for fpz_zy set at the fuz_zy Iev_elB’ of th_e
fuzzy subsetd of a setX, defined as the crisp set of all fuzzy Hausdorff-type similarity measurg is defined by its
those pointst of X with membership functionus(x) equal  actionR(s,)A = M4 rRA on the fuzzy seft, whereR is the
to a. A set whereu,(x) is greater than or equal to the ordinary symmetry operator corresponding to the fuzzy sym-
value « is Dy(a) = {x : ua(x) > ). These two choices for Metry elemenik(8’). The fuzzy |nd|st|ng_wshab|l|ty of sets
a-cuts are analogous to the electron density level sets and tt@d RA at the fuzzy levelp’ is taken into account by the
density domains used in the topological analysis of moleculapPeratorM, r that resets the values of fuzzy membership
shaped functions?!’

A fuzzy setA is fully specified if for the elements of
. the underlying spac# the pairs £, ua(x)) are specified. The
3.2 Fuzzy Chirality and Fuzzy Symmetry Measures action of operatoM, g is My r(x, ttra(¥)) = (x, pa(x)) if

For a description of differences between fuzzy electronand only if levelp’ fuzzy indistinguishability is implied by the
density clouds exhibiting approximate symmetries to variougresence of the fuzzy symmetry elemgqg) at the fuzzy level
degrees, some fuzzy dissimilarity measure is needed. If if’. The application of symmetry operatRrof fuzzy symmetry
an underlying setX a metric is given, for example, the elementR(p’) present at the fuzzy levedl’ is completed by a
Pythagorean distance within the 3D Euclidean spétethen formal recognition of the indistinguishability of s&A and
the distance between a pointof X, and a subset of X is setA at the given fuzzy level. This additional step, for which
defined as the greatest lower boudth, A) = inf,ca{d(x, a)} the sufficient and necessary condition is the presence of fuzzy
of distances between pointsof A and pointx. symmetry elememR(g’) at the fuzzy levep’, involves operator

Electron density contour surfaces have the mathematicdfla.r Setting the membership functions of elements of the
property of compactness, a generalization of the propertieBizzy setRA equal to those of fuzzy set.
of ‘closed’ and ‘bounded’. The Hausdorff distanégA, B) The product of fuzzy symmetry operatdigs,) andR’(s,)
between two (compact) subsetsandB of X is defined as the is another fuzzy symmetry operat®; (s,) = R(s,)R'(sg). If
lowest upper bound@(A, B) = SUR,c yepld(a, B), d(b,A)} of  this product is applied on a fuzzy setthat has each of the
distances between poinisof A and the se® and distances corresponding three fuzzy symmetry elemetis), R'(8), and
between point$ of B and the sef. In particular, the Haus- R”(B) at fuzzy levelg, thenR(s,)A, R'(sg)A, andR"(s,)A are
dorff distance between two superimposed molecular contoundistinguishable froma at fuzzy levelpg.

surfaces (which are closed sets) is the minimumalue such The g’ fuzzy symmetry grougG(s,, 8) (that is, the fuzzy
that any point on either contour surface has at least one poislymmetry groupG(s,, 8') at fuzzy levelg’) applies to fuzzy
of the other contour surface within a distance setA if A has the fuzzy symmetry elemeRtg’) at the fuzzy

For fuzzy electron density clouds, the fuzzy, ‘commitment-level g’ of the fuzzy Hausdorff similarity measusg for each
weighted’ Hausdorff-type metrig'(A, B) = su,o 1j{ah(Ga symmetry operatiofiR of the crisp symmetry groug.
(o), Gp(w))} is a proper distance between fuzzy satand The symmetry deficiency measuéi, R, s,) of fuzzy set
7

B! A in symmetry elemenR according to the fuzzy Hausdorff-
A similarity measure between fuzzy electron density clo-type similarity measures, is defined asé(4, R, s,) =1 —
uds’” A andB is defined as (A, B) = exp(—[f (A, B)]?). BA, R, s,).
A fuzzy setA is said to have the symmetry elemeRt A fuzzy setA is an R set with respect to a family of

corresponding to the symmetry operatlr if and only if  symmetry elementsR = {R1,R2,...,R,} if A has all the
for each pointx of A and for the transformed poiRx = y symmetry elements of familR.
the fuzzy membership functions fulfill the conditigry (y) = Fuzzy sefB’ is a maximalrR subset of fuzzy set if A D B/,
a (X). B’ is an R set, and noR set B” exists such thaB” > B/,
For approximate symmetries, the geometrical placement oB’ # B”, andA D B”. Note that the fuzzy, maximat subset
a candidate symmetry elemeRtwith respect to sef is of  of B’ is not necessarily unique for a given fuzzy det
importance. A formal center in setA must be given as the The cardinalityn(A) = [, a(x) dx of a fuzzy setd can be
origin of a local coordinate system in whigh is specified; regarded as the mass of fuzzy gefor fuzzy electron density
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cloudsA of molecules this mass(A) can be interpreted as natural, fuzzy set extension of the measure obtained using the
electronic charge. maximum overlap criterion between mirror images.

A fuzzy setB is a maximal mas® subset of fuzzy set The external fuzzy chirality measure of a fuzzy geis
if B is a fuzzyR set,A D B, and if for all maximal fuzzyR defined asyc(A) =1 — m(A)/m(C) where C is a minimal
subsetsB’ of fuzzy setA, m(B’) < m(B). The fuzzy, maximal mass achiral superset of fuzzy get
massR subsetB is not necessarily unique for a given fuzzy  The fuzzy chirality measurg(A) = (xz(A) + xc(A))/2 is
setA; however, the masa(B) is already a unique number for the average of the above two measures.
each fuzzy sed.

A fuzzy setC’ is a minimalR superset of fuzzy set if
C’is anR set,C’ D A, and if no fuzzyR setC” exists such
thatC’' > C”, C"# C”, and C” > A. The fuzzy, minimalR
supersetC’ is not necessarily unique for a given fuzzy det

Fuzzy setC is a minimal mas® superset of fuzzy set if The CSM described in Section 2 is a symmetry deficiency
C is anR set,C D A, and if for all minimal fuzzyR supersets Mmeasure which is applicable to both discrete sets and to
C’ of fuzzy setA, m(C) < m(C’). A fuzzy minimal massR continua. For crisp continuum sets and fuzzy sets, the crisp and
superseC is not necessarily unique for a given fuzzy get  fuzzy versions of the Hausdorff metric provide generalizations
however, the mass:(C) is a unique number for each fuzzy of the CSM approach.
setA. If the fuzzy setd itself is anR set then bottB and C
are unigque and = C = A.

The internal fuzzyR deficiency measure of a fuzzy skis
8r.8(A) = 1 — m(B)/m(A) whereB is the maximal mass fuzzy A typical discrete set of chemical importance is a nuclear
R subset of fuzzy set. arrangement in the clamped nucleus version of the BOpp-

The external fuzzyR deficiency measure of a fuzzy seis enheimer approximation. A single molecular isodensity con-
8r.c(A) = 1 — m(A)/m(C) whereC is the minimal mass fuzzy tour (MIDCO) surface is a crisp continuum set. A simple
R superset of fuzzy set. generalization of the CSM approach from finite, discrete point

The fuzzy R deficiency measuréz(A) = (8g.3(A) + Sr.c sets to continua is provided by the crisp average of sets.
(A))/2 of fuzzy set is the average of the above two measures.

For any fuzzyR subsetB’, R supersetC’, maximal mass 3.3.1.1 Crisp averageThe crisp averageélcray Of a family

3.3 Comparisons of Symmetry Measures for Discrete
Point Sets of Nuclear Arrangements and Continua
of Electron Densities

3.3.1 Symmetry Measures for Discrete Sets and Crisp Sets

fuzzy R subseiB, and minimal mass fuzzi superseC of any ~ Fa = {A1, Az, ..., A,} of m crisp closed and bounded subsets
fuzzy set4, the relationsn(B') < m(C’) andm(C) —m(B) <  A; of an n-dimensional Euclidean space is generated as
m(C") — m(B") hold. follows. Each pointx of a setA; is represented by suitable

For a chiral fuzzy object, the largest achiral fuzzy object hyperpolar coordinates of one radial coordinate and 1
that fits withinA, as well as the smallest achiral fuzzy object angle coordinates, whereis the dimension of the underlying
that containsA, are of special importance. spaceX and the origin is attached to a specified pairf set
Fuzzy setB’ is a maximal achiral subset of fuzzy sét A;. In three dimensions, the usual polar coordinates and
if B’ is achiral,A > B, and if no achiral fuzzy seB” exists 6 can be used, with respect to the centesf each sei; and
such thatB” > B, B’ # B”, andA D B”. Note that a maximal With reference to Cartesian coordinate axes defined parallel to
achiral subseB’ is not necessarily unique for a given fuzzy axes of a coordinate system of the laboratory frame.
setA. For each set;, its convex hullC; is unique. In the 3D
Fuzzy setB is a maximal mass achiral subset of fuzzy case, for each choice of the, ) pair, a unique line segment
setA if B is achiral,A D B, and if for the fuzzy volumes of ¢:(¢, ) is specified that connects a selected reference point
all maximal achiral subset8’ of fuzzy setA, the inequality ¢; € C; of A; with the unique pointy;(¢, 6) € C; which is the
m(B') < m(B) applies. Note that, for a given fuzzy setsuch  point of polar angle coordinateg,(9) with the longest distance
a maximal mass achiral subsBtis not necessarily unique. from centerc;, d(c;, yi(¢, 6)) = sugd(ci, x): x = x(¢, 0), x €
Nevertheless, the fuzzy massB) is a unique number for C;}. Whereas along this line segmente, 6) some points do
each fuzzy sed. not necessarily belong to sét, nevertheless, the formal path
A fuzzy setC’ is a minimal achiral superset of a fuzzy set parametrization along the ling (¢, 6) varies only within set
A if C’is achiral,C’ D A, and if no achiral fuzzy sef” exists ~ A; and ignores any missing subsegments.

such thaiC’ > C”, C’ # C”, andC” D A. Note that a minimal A parametrization for the formal path(u, (¢, 0)) for each
achiral superset’ is not necessarily unique for a given fuzzy fixed pair @, 6) is a mapping from the unit intervdl= [0, 1]
SetA. to the underlying spac&. The image of this mapping is the

Fuzzy sefC is a minimal mass achiral superset of fuzzy setline segmenty; (¢, #) parametrized by, ¢;(u, (¢, 0)), where
A if fuzzy setC is achiral,C > A, and for all minimal achiral  ¢i(0, (¢,6)) = ¢;, and g;(1, (¢, 6)) = yi(¢, ), and whereu
supersetg’ of fuzzy setA, m(C) < m(C’). For a given fuzzy is proportional to the arc lengthy; (u, (¢, 0)): I =10, 1] —
setA, a minimal mass achiral supers€tis not necessarily qi(¢,0), X D q;(¢, 6).
unique. Nevertheless, the mas¢C) is a unique number for A parameter(w, (¢, 0)) is defined in terms of the member-
each fuzzy sed. If fuzzy setA is achiral then both the minimal  ship function;(x) of crisp setd;, #;(w, (¢, 0)) = [ ,; Hai
achiral fuzzy superse® and the minimal mass achiral fuzzy (g;(z, (¢, 6)))dz, where integration is for the subset [¢] of
supersetC are unique and® = C = A. the unit intervall = [0, 1]. This parameter; (w, (¢, 0)) ‘leaves

The internal fuzzy chirality measure of a fuzzy setis out the gaps’ along ling; (¢, 6). Scalingt;(w, (¢, 6)) by the
defined asyz(A) = 1— m(B)/m(A) where B is a maximal effective lengtty;(1, (¢, 9)) of line segmeny; (¢, 8) within set
mass achiral subset of fuzzy sét The measure(A) is a  A;, defines the functior;(w, (¢, 0)) = t;(w, (¢, 0))/t: (1, (¢,
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0)). A possibly discontinuous path;(u, (¢, 6)): I = [0, 1] — be interpreted as a fuzzy subsgt,, defined by its fuzzy
qi(¢,0) NA;, X D qi(p, 0) NA; along segmenty; (¢, ) invol- membership functiom pray(x) = [ Zk=1.m L rx (x)]/m. Note that

ves only those points af; (¢, 8) which fall within setA;, that  the fuzzy averagéi,, of crisp setsFi, Fp, ..., andF,, is a

is, pi(u, (¢, 0)) = q(v[_l(u, (¢, 6))). crisp set if and only ifF; = F, = --- = F, then, of course,
Each pointx € g;(¢, 8) N A; can be specified uniquely by a Fray = F1 also holds.

set of three polar coordinates, ¢, ), and the serial indexof Take a crisp or fuzzy subsdtof the Euclidean spack, a

setA;, x = x(i, u, ¢, 6). For each trio of valuesu( ¢, 9), there  possibly approximate symmetry elemétitand the associated
exists precisely one poin{i, u, ¢, ) that must be an element symmetry operatoR. A reference poinic € X is chosen as
of setA,. Conversely, each point of each setd; can be a fixed point ofR. Pointc is taken as the origin of a local
given in the formx = x(i, u, ¢, 6), providing a unified system Cartesian coordinate system of axes oriented according to the

of parametrization for points of each sét, Ao, ..., A,. usual conventions with respect to the symmetry opergtor
The crisp averageAca(Fa) = Uy,¢.0(1/m)Ziz1 mx(, u, If m is the smallest positive integer that satisfies the

¢, 0) of setsAy, As, ..., A, is defined by the union of the condition R™ = E for the symmetry operatoR, then the

averaged vector representations of potisu, ¢, 6). Euclidean spac« is partitioned intom segmentsX;, where

X = Ui=om—1Xi, andRX; = X i+ 1ymodm-
3.3.1.2 Generalization of the CSM approach from finite, dis- The segmentA; of the crisp or fuzzy setA is
crete point sets to continua based on the crisp average ofiefined asA; =ANX;, and the ‘folded’ version of the
sets.For a setd, and a (possibly approximate) symmetry ele- j-th segmentA; of the crisp or fuzzy setA according
ment R of symmetry operatoR leaving at least one point to the (m — j)-th power R™/ of the (possibly only
of the convex hullC of setA invariant, take the powers approximate) symmetry operatdR is denoted byB; =
R=E,R,R?...,R"! of the symmetry operatd®, where ~ R”~/A;. For the familyS, of segmentsio, A1, Az, ..., A, 1,
m is the smallest positive integer that satisfies the condithe corresponding folded sefy = Ag, By = R 1Ay, B, =

tion R™ = E. Partition the Euclidean space into m seg- Rm—24, ... B, ,= R"7JA;, ..., and B,_1 = RA,_; are
mentsXo, X1, ..., X1, WwhereX = Ui—om-1X;, andRX; = generated. In terms of the fuzzy membership functions
Xitnmodn- If R is areflection plane, them = 2, and the two  of these B; sets the fuzzy folded sefifo is defined
half spaces with boundary plane the reflection lenﬁ‘.llflll as the fuzzy averagéBfav with the fuzzy membership

the conditions. IfR is a Cy rotation axis or arf, axis, then  function o (x) = wsaav(x) = [Steom_1sc(x)]/m. The

m =k, and each segment of the Euclidean spaicean be  fzzy folded setiqq is unfolded using the appropriate inverse
taken as a wedge of edge thig or the S, axis, and wedge powers of symmetry operat®, generating the following sets:
angle 2r/k. If R is a point of inversion, thenm = 2, and the Attords R Agod, RZ™Agtord - - .. RI™Agod, - - .- R Agrord.
two half spaces with boundary plane §) fulfill the condi-  The folded-unfolded fuzzy setAg yirp Of Crisp or fuzzy

tions. The notatior? is used for the specification of the actual get 4 with respect to symmetry elemeit and partitioning
convention used in the positioning &f with respect to crisp  p is the fuzzy union A utrp = Uj—om 1R FAfo. The

continuum se# and for the partitioning(o, X1, ..., Xu-1 0f  fo|ded-unfolded sefig ytz.p IS a fuzzyR set by construction.
the spaceX. The fuzzy Hausdorff-type dissimilarity metri¢(A, B) can
Using segmento, A, . +sAn-1 0fsetA, A; = ANX;, the  pe applied to the paid and Ag.uizp, generating a fuzzy
setsAo, R" A1, R"?Az, ..., R" /A, ... ,RA,_1 are gen-  symmetry deficiency measup(A, A ur z ) analogous to the
erated. The set8; = R""/A; are the various ‘folded’ versions CSM of discrete point sets. This symmetry deficiency measure
of subsetsA; of setA. The folded setAfolq = AcradFa) = f(A, Ag.ur.r.p) Provides a measure for the symmetry aspect
Uu,g,0(1/m) Zizom—1x(i, u, ¢, 0) is defined as the crisp average for crisp or fuzzy seft, with reference to the given positioning
of theseB; sets. P of R with respect toA and to the choice of the associated
The gradual ‘unfolding’ of this crisp averagéca(Fa) partitioning ofA.
using various inverse powers of symmetry oper&deads to The infimum f (A, Axr ur,r.p) = INfp{f (A, A% uir p)} taken
the setsAroid, R*"Aold, R¥"Afoia, - .., RI™Agoid, ....R™  over all the allowed positionings and partitioningsgives
Afoig- The folded-unfolded setAs yrr p Of setA according to  another symmetry deficiency measure. These symmetry defi-
symmetry elemenk and partitioning? is the unionds urrr =  ciency measures are equally applicable to discrete sets, crisp
Ui=0,m—1R'Afoid. The folded-unfolded setAs sz » Of setA  continuum sets, and fuzzy sets, including nuclear distributions
has the exack symmetry and is evidently aR set. and fuzzy electron density distributions of molecules, molec-

The dissimilarity ofA and At iz p provides a symmetry ular fragments, and functional groups.
deficiency measure analogous to the CSM continuous sym-
metry measure of discrete point sets. As a dissimilarity
measure, the Hausdorff metric, or any other dissimilarity mea4 OUTLOOK: APPLICATIONS BEYOND
sure suitable for continua may be used. Using the exten- CHEMISTRY
sion of the CSM methodology to crisp continuum sets, the
folding-unfolding approach becomes applicable for continu- In Section 2.5 we demonstrated applications and potential
ous molecular isodensity surfaces. future uses of the CSM approach in chemistry. It is now in
order to point out that the general foundations laid out in
this article, and the versatility of the computational approach,
are, in principle, applicable to the analysis of symmetry and
A typical fuzzy continuum of chemical importance is an chirality-related problems in many other domains of the natural
electron density cloud of a molecule. The fuzzy average ofciences and social sciences. The following examples hint at
crisp or fuzzy subset$', F», ..., and F,, of a setX can the vastness of the new open horizons:

3.3.2 Symmetry Measures for Continuum Sets
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e symmetry determination in automated image analyses for

quality control of industrial product®

e symmetry analysis of facial features for forensic, psycho-

logical, and artistic analys&s

e symmetry analysis as a quantitative measure of cultural

development of early humatis

e chirality and symmetry analyses of random spiral aggre-
gates such as galaxies, clouds, tornadoes, and molecular

scale aggregates

e symmetry issues in medicine, as an analytical, diagnostic,

and classification biomedical toelmany other structural

features of living organisms are analyzable in terms of
bilateral symmetry and deviations from it, and are poten-

tially useful as indicators of pathological conditions

e symmetry analysis in evolutionary sociobiology, one of the

most active issues in modern biology
e quantification of symmetry for the study of aesthetics

e symmetry analysis of information packets (stock behavior,

music, process reproducibility, error occurrence, etc.).

This list is but a sketch of some of the many potential app-
lications of the continuous symmetry methodology approach.

The feasibility of the first three applications in this list have

already been proven successftt?
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