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Abstract—Stress plays an important role in our daily life. 
Long-term’s psychological stress will lead to serious health as 
well as social problems, it is important to detect and monitor the 
psychological stress in its early stage. Most existing stress 
detection equipment are contact-type, such as wrist strap. 
However, in a real application, such as a working environment, a 
contact-free stress detection system will bring greater 
convenience. In this paper, we proposed a novel framework for 
detecting and classifying human stress based on respiratory 
signals measured remotely by using a Kinect sensor with a 
detection range of 3 meters. We test the framework on 
respiratory signals data set from 20 individuals under 3 different 
tasks (listen relax music, do exercise and do Stroop Color-word 
test), corresponding to relaxation, physical stress and 
psychological stress state. Experimental results suggest that the 
proposed method is a promising way for monitoring human 
stress and even discriminating psychological stress from the 
physical stress. 

Index Terms—stress detection, stress classification, remote 
sensing respiration signal, physiological features of stress  

I. INTRODUCTION 

Human stress is an imbalance state of an individual. 
Stimulus threatening homeostasis state of the individual is 
regarded as a stressor, which can be classified into physical one 
or psychologic one. A physical stressor has a direct effect on 
the individual's body. It may be an external uncomfortable 
condition (heat, cold, etc.), or due to internal demands of the 
body. A psychological stressor has no direct physical impact 
on the body. It is perceived by the individual as a threat [1]. 

Because of unhealthy effects of stress and wide application 
of stress detection, the research of stress detection has attracted 
interest of both engineers and psychologists. Traditional 

physiological-based detection methods [2] [3] require sensors 
to be attached to individuals during stress detection, which are 
awkward for operation. To overcome this inconvenience, 
imaging techniques, such as thermal imaging (TI) [4], 
hyperspectral imaging (HSI) [5] [6], and broadband imaging 
[7], have been used for the detection. Pavlidis et al. [8] [9] used 
TI to measure the blood flow under skin surface and the 
perspiration of nose for the detection. McDuff et al. [7] used 
five band digital camera to measure heart rate variability (HRV) 
for the detection. We used HSI to measure tissue oxygen 
saturation for the detection [5].These imaging techniques share 
a common characteristic of being able to detect stress remotely 
based on physiological signals, which provides more comfort 
to testees.  

However, all these studies focus on the detection of 
psychological stress. Physical stress shares similar features 
with those of psychological stress, such as raised heart rate [5], 
respiration rate, muscle tension [10], perspiration [9], etc. It 
could be detected as psychological one if the context is 
unknown or physiological features are not selected properly. 
For example, in the application of detecting a computer user’s 
psychological (mental) stress in a working environment, the 
user could return to work in a physical stress state after a brisk 
walk. The physical stress that the user has could be a ‘noise 
signal’ for the psychological detection. It is thus of interest to 
investigate how physical stress can be discriminated from 
psychological one by using imaging techniques. 

In one of our pilot studies [1], we investigated the 
possibility for discriminating psychological stress from 
physical one using the TI technique, and presented facial 
temperature maps of two candidates under different stress state. 
We would like to investigate possible techniques further, which 
can be used in an office or home environment for remote 



 

 

 

detecting psychological stress without taking physical stress as 
a false alarm. 

In this paper, we propose a framework for remotely 
detecting human stress and discriminating two types of stress 
of 20 volunteers using a depth sensing technique.  

Specifically, we used a Kinect to obtain depth signals of 
thoracic cages and abdominal cavities of the users in sitting 
positions, developed an algorithm for extracting respiration 
signals from the depth signals, generated 30 features from 
respiration signals, and classified relaxation, physical, and 
psychological stress states by using three fisher classifiers. 

 

II. REMOTE MEASUREMENT OF RESPIRATION 

SIGNALS 

A. Microsoft Kinect and Depth Sensing 

The Microsoft Kinect is a low-cost imaging system. It was 
originally designed for motion detection in game control. A 
Kinect consists of a RGB camera and a depth sensing system. 
The RGB camera works as a normal broad band image system 
with a complementary metal-oxide-semiconductor (CMOS) 
sensor. The depth sensing system has an infrared emitter and a 
CMOS sensor. Structured speckles are emitted from the emitter 
and reflected by objects in the field of view of the Kinect. The 
distance between the objects and the Kinect modulates the 
patterns of the reflected speckles that captured by the CMOS 
sensor. By comparing the reflected pattern and a referenced 
pattern, the distance (depth) can be determined. There are three 
resolution settings for a depth image, i.e. 640*480,320*240, 
and 80*60. In this paper, the resolution of 640*480 was chosen 
for giving more details. The frame rate for the depth video is 
30fps. Every pixel within a depth image is allocated a vector 
value (X, Y, D). The X and Y represent the coordinate values, 
and D represents the distance between the pixel and the Kinect. 

The Kinect can recognize one to six users in the field of 
view. Skeletal Tracking in Kinect can locate the joints of up to 
two users and record the motion of the joints over time. 

B. Obtaining respiration signals 

Respiration modulates fluctuation of the thoracic and 
abdominal parts when the body is still. The Kinect can sense 
the fluctuation and deduce the respiration signals. The thoracic 
and abdominal parts are obtained by using Skeletal Tracking 
function in Kinect. As shown in Fig 2, Kinect can locate 20 
joint points of human body in whole body mode, or locate 10 
joint points in seated mode (point in red, Fig2 (c)). We choose 
seated mode in this paper, for it is more adaptable and more 
robustness in everyday application environment that only need 
the upper body appears in the view of the camera. Four joint 
points used for determining the thoracic and abdominal parts 
are head point (point 2, Fig1 (a)), left shoulder point (point 10, 
Fig1 (a)), right shoulder point (point 9, Fig1 (a)), and shoulder 
center point (point 2, Fig 1 (a)). Firstly, we get the distance 
between head point and shoulder center point h, and get the 
distance between left shoulder point and the right shoulder 

point w, then, the thoracic part and abdominal part are 

determined by w and h, respectively, as shown in Fig 1 (c)). 

Fig. 1. (a) Joints located by Kinect under whole body mode; (b) thoracic part 
and abdominal part determined by joint points for respiration signal 
measurement; (c) Definition of thoracic part and abdominal part; (d) Joints 
located by Kinect under seated mode; 

Depth values within the thoracic and abdominal parts are 
averaged to remove the noise due to creases of clothes. The 
average depth value of thoracic or abdominal is a function of 
time, which is regarded as respiration signal.  

To improve their solution of depth sensing, the angle 
between axis of Kinect sensor and plane of chest wall is 
required to smaller than 90°. Xia at al [29] made this angle as 
small as 5° when a testee was in a supine position. In this 
research, we found that an angle of no more than 67° was 
enough for obtaining respiration signal when a testee was in a 
sitting position. The angle was thus set as 67° (see Fig 2).  

Fig. 2. Illustration of viewing angle setup between a Kinect and a testee. 

We have developed a software system using C# for 
displaying the respiration signal as function of time in real time. 
Fig 3 shows the GUI of the system and a segment of 
respiration signal obtained from Kinect under different 
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breathing patterns, which are normal breath, deep breath, and 
holding breath. It is observed that different breathing patterns 
are distinctive to each other in terms of signal curve. A contact 
respiration monitor (Biopac MP150) is used together with the 
Kinect for recording respiration signal of ten testees. The 
comparison of respiratory signals collected by MP150 and 
Kinect are shown in Fig 4. As we can see, their trends are very 
consistent. The correlation coefficient of Kinect signal (sitting 
still) and MP150 signal is 0.99. A txt file is generated for 
recording the respiration signal alone side the GUI running. It 
will be saved on the hard drive of the PC connecting the Kinect 
for later analysis. 

Fig. 3. A GUI of the software system for controlling Kinect and recoding 
respiration signal. A segment of respiration signal is shown in the bottom of 
the GUI. The blue trace is the mean depth of stomach, the blue is chest.  

Fig. 4. Comparison of RSP signals collected by Kinect and MP150 

C. Experimental Procedures and Protocols 

20 volunteers were recruited to participate in the human 
stress test. They are undergraduate students at the age of 18 to 
23 within Southwest University. Half of the participants are 
male, the other half are female. All participants are healthy 
without color blindness or diseases of respiratory or cardiac 
systems. The experiments procedures were proved by local 
Ethics Committee of Southwest University. A written consent 
of every participant was obtained before any experiment. All 
the experiments were conducted in an indoor environment. The 
room temperature was 26 degree centigrade. Two ordinary 
fluorescent lamps were used as illumination source. The setup 
of the experiment is shown in Fig 5.   

The participant was welcomed and spent 10 minutes to 
adapt to the experimental environment. During the 10 minute, 

the participant was introduced the procedure details of the 
experiment. After the 10 minute, the experiment was about to 
start if the participant agreed to the informed consent. The 
whole experiment consisted of four tests in sequence, i.e. 
baseline test, relaxation test, psychological stress test, and 
physical stress test. During the signal acquisition, the 
participant sat calmly as shown in Fig 5. The distance between 
the participant and the Kinect sensor was about 2 meters. The 
participant leaned on the back of chair comfortably but was not 
required to sit still, occasional body movement was allowed 
just like real working environment. But only the video 
sequence in which the participants was sitting still will be used 
for further analysis to avoid the effect of body movement to the 
depth sensing of thoracic and abdominal parts. Between each 
test, the participant had 5 minutes to rest and make his/her state 
back to baseline.  

Fig. 5. Experiment setup 

During the baseline test, the participant was required to be 
seated calmly and comfortably for 5 minutes.  

During the relaxation test, the participant sat calmly and 
listened to the relaxing music for 5 minutes.  

The psychological stress test was performed by using the 
Stroop Color-Word Test. There are 100 stimuli for the test. 
Each stimuli was presented in a slide. On each slide, one of 
four words (Red, Blue, Green, and Yellow) was shown in a 
color other than the meaning of the word, e.g. word 'Red' was 
shown in blue. The participant was required to choose the 
meaning of the word or color of the word randomly. Before the 
test, the participant was told if he can make more right choose 
than average, he/she can get CNY20 as a reward. The 
answering time for each slide was 5 seconds in the beginning 
of the test, and it gradually decreased to 3.5 seconds in the end 
of the test to increase the difficulty.  

The physical stress test is to ask the participant to make 20 
to 40 body weight squats. The participant can stop if he felt 
that more than moderate physical demand was needed for 
doing the squat. 



The respiration signal was continuously measured during 
the baseline, relaxation, and psychological stress test. For the 
physical stress test, the signal was measured when the 
participant finished the squat and sat back comfortably on the 
chair. The measurement lasted for 5 minutes. 

After the tests, the participant was required to evaluate 
psychological and physical stress level during the tests using 1-
10 scales. Only the signal with level 6 or more will be used as 
candidate signal for the stress detection analysis. All the 
participants reported that their stress level (both psychological 
and physical) are more than 6. Therefore, there are 30 
segments of respiration signals in every test. For four tests, 
there are 120 segments of respiration signals available for the 
stress analysis. Each segment of respiration signal lasts for 
about 5 minutes (300 seconds).  

III. DETECTING AND CLASSIFYING HUMAN STRESS 

A. Preprocessing of the respiration signal  

To remove noise, such as baseline drift and system noise, a 
band-pass filter was employed. For the baseline and relaxation 
test, the pass band was set as 0.1-0.6Hz, considering that 
respiration frequency under calm state is about 0.1-0.35Hz. For 
the stress test the pass band was set as 0.1-1Hz, considering 
that respiration rate increases under stress state but may not 
reach 60times per minute (1Hz).  

Each segment of the respiration signals was smoothed 
every 0.5 second after it passed the band-pass filter. After the 
smoothing, the short-term fluctuations were removed. The 
local maxima and minima of the respiration signal will purely 
represent the exhaling and inhaling peaks of the body, 
respectively.    

To make every signal segment (300s long in time) 
correspond to the effective arousal and be the same length, a 
60s sub-segment was selected from every segment. For the 
baseline and relaxation test, the sub-segment was selected from 
101s-200s of every segment, considering that the participant 
had adapted to the environment and may not be affected by the 
following stress test during this period. For the psychological 
stress, the sub-segment was selected from 201s-300s, 
considering that psychological stress should have effect on the 
participant during this period. For the physical stress test, the 
sub-segment was selected from the 21s-120s, considering that 
subjects' breathing has been relatively smooth, and the effect of 
physical stress was strong during this period. 

B. Feature extraction and selection 

A total of 20 typical time domain features were obtained 
from respiratory signals, they are the mean(1), variance(2), 
standard deviation(3), median(4), interquartile range(5), 
kurtosis(6), skewness(7), root mean square(8), minimum(9) 
and maximum values(10) as well as the mean of the first 
and(11) the second derivative(12), respiration cycle time(13), 
respiration rate(14), inspiratory flow(15), inspiration time(16), 
respiration amplitude(17), inspiratory duty cycle time(18), and 
mean of post-expiratory pause series under two different 
threshold(19, 20).  

10 domain features were also been considered. They are 
summing and mean energy in the bands 0.1-0.2Hz(21, 22), 0.2-
0.3Hz(23, 24), 0.3-0.4Hz(25, 26), 0.4-0.5Hz(27, 28) and 0.5-
0.6Hz(29, 30). 

All the features extracted under the baseline test were 
subtracted from the features extracted under the stress tests and 
relaxation test to avoid the effect of individual difference. Then, 
student's t-test were employed to select the useful features. A 
feature under three test, i.e., relaxation test, psychological 
stress test, and physical stress test, can produce three vectors. 
The feature will be regarded as useful if the t-test between any 
two vectors gives significant difference (p<0.05).  

After the t-test, there are 14 features selected out that can be 
used to discriminate relaxation from other affective states 
(Features number: 2, 3, 5, 8-10, 13-17, 20, 27 and 28), there are 
12 features selected out that can be used to discriminate 
psychological stress from other affective states (Features 
number: 2, 3, 5, 8-10, 15-16, 23-24 and 27-28), there are 15 
features selected out that can be used to discriminate physical 
stress from other affective states(Features number: 2, 3, 5, 8-10, 
15-16, 19 and 25-30). Since there is information redundancy 
among the selected features, the PCA algorithm was used for 
dimensionality reduction of these feature matrices. After 
testing, it is found that the first four principle components can 
achieve the best performance if they are used to detect 
relaxation state and physical stress state, the first seven 
principle components can achieve the best performance if they 
are used to detect psychological stress state. 

C. Detection and classification 

After feature selection and dimensionality reduction, three 
one-to-many fisher classifiers were used to classify the three 
states, i.e., relaxation, psychological stress, and physical stress 
state. Each of them can distinguish one state from other states. 
Leave-One-Subject-Out method was used to verify the 
performance of these three fisher classifiers. It means that each 
time we use 29 participants’ feature set as a training set, the 
remaining one participant’s feature set as test set to test 
classifiers’ classification performance. The test was repeated 
30 times. The average confusion matrixes of these 3 classifiers 
are shown in Table 1 to Table 3 

TABLE I.  FISHER CLASSIFIER 1 FOR RELAXATION RECOGNITION 

 Relaxation Other State 

Classified as 
Relaxation 

97% 8% 

Classified as  
Other State 

3% 92% 

 

 

 

 



TABLE II.  FISHER CLASSIFIER 2 FOR PSYCHOLOGICAL STRESS 
RECOGNITION 

 Psychological Stress Other State 

Classified as 
Psychological 

Stress 
80% 8% 

Classified as  
Other State 

20% 92% 

 

TABLE III.  FISHER CLASSIFIER 3 FOR PHYSICAL STRESS RECOGNITION 

 Physical Stress Other State 

Classified as 
Physical Stress 

83% 2% 

Classified as  
Other State 

17% 98% 

 

It is observed from Table 1 to Table 3 that the classification 
accuracy of three tests are all above 80%. The Psychological 
stress and physical stress can be recognized with 80% and 83% 
accuracy respectively. These results support that the stress can 
be recognized and that the psychological stress can be 
effectively discriminated from physical stress by using no-
contact measured respiration signals. 

IV. CONCLUSION AND DISCUSSION 

We have presented a framework for detecting stress by 
using a Kinect sensor. The way of signal acquisition of Kinect 
characterizes the method a contact free stress detection method. 
The Kinect is small in size, light in weight, and affordable to 
ordinary users, which make the method suitable for continuous 
monitoring of human stress in everyday life. 

  The effect of physical stress when detecting psychological 
stress is considered in this research. When the context is 
unknown, the physical stress could be recognized as the 
psychological stress. By using features extracting from the 
respiration signal, we showed that the psychological stress can 
be differentiated from the physical stress.  

Baseline information of every individual user will be 
required if a system based on the proposed framework is built 
and used for the psychological stress monitoring. This 
information could be recorded prior the use of the system and 
act as a calibration information within every individual's folder.  
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