Lecture 11 Halftoning

Cluster Dot Dithering
Disperse Dot Dithering
Error Diffusion
Color Halftoning
Color Screening

Monochrome Printing

GrayScale

Threshold

Halftoning (Screening)

Halftoning

GrayScale

Threshold

Halftone

Local average gray in halftone = image

Local average gray in grayscale image

Physical Screening

Larger hole in screen -> more ink goes through

See demo:

http://www.ted.photographer.org.uk/photoscience_halftones.htm

Physical Screening

Larger hole in screen -> more light goes through

Halftoning

Percentage of ink coverage of a region determines the grayscale:

Halftoning Methods

- 1) Dithering
- 2) Error diffusion
- 3) Direct Binary Search (Iterative - error minimization)

Proportion of local ink coverage = in halftone image

Local average gray in grayscale image

Dithering

Every pixel in a region is thresholded using a different threshold value.

Threshold Values in Dither Cell

Dither Cell

Example:

1/8	5/8
7/8	3/8

gray = 0...0.125

gray = 0.125...0.375

gray = 0.375...0.625

gray = 0.625...0.875

gray = 0.875...1.0

Cluster Dot Dither Cells

90 deg 45 deg

Cluster Dot Dither Cells

Grayscale

C₆ 90 deg

C₁₂ 45 deg

Cluster Dot Dithering

Clustered Dot Postscript Screens

Rotated Elliptical

Hybrid FM Clustered Dot

Dispersed Dot Dithering

True Random

Bayer = perfectly smooth

Blue Noise

Bayer Dithering

Bayer Dither Cell

Bayer Dither

(Bayer, 1973)

Void and Cluster Dithering

Void & Cluster Dither Cell

Grayscale

Void & Cluster Dither

(Ulichney 1993)

Error Diffusion (Floyd Steinberg)

Error Diffusion (Floyd Steinberg)

- Decide for each image point whether to print or not
- Take error between the desired output at that position and the printed level.
- Distribute that error forward to pixels yet-to-be printed

Example: 1D error diffusion

$$I = \begin{bmatrix} 0.7 & 0.7 & 0.3 & 0.5 & 0.1 & 0.1 & 0.1 \end{bmatrix}$$

$$I(1) = u(1) = 0.7$$
 threshold at 0.5 $b(1) = 1$

$$e(1) = b(1) - u(1) = 0.3$$

Since pixel I(1) was over represented, compensate by subtracting error from next pixel I(2)

$$u(2) = I(2) - e(1) = 0.4$$
 $u(2) = 0.4 \longrightarrow \begin{array}{c} \text{threshold at} \\ 0.5 \end{array} \longrightarrow b(1) = 0$
 $e(2) = b(2) - u(2) = -0.4$
 $u(3) = I(3) - e(2) = 0.7$
and so on....

Error Diffusion in 2D

Scan Image:

error diffusion

Error Diffusion - Variations

Jarvis Judice and Ninke (1976) Error diffused differently

		*	7	5
3	5	7	5	3
1	3	5	3	1

Terada, Tamura, and Saito Use Peano scan (Space filling curve)

Error Diffusion

Error Diffusion

Direct Binary Search (DBS)

Given an error metric:

example: $d(I,b) = \Sigma((I(x,y)-b(x,y))^2)$

Initialize binary image b(x,y) (example - choose random binary image).

Randomly chose a pixel (x_0,y_0) in b(x,y) if $d(I,\tilde{b}) < d(I,b)$ then assign $b = \tilde{b}$ where \tilde{b} is b except for $\tilde{b}(x_0,y_0) = 1-b(x_0,y_0)$ Repeat last step until |d(I,b) - d(I,b)| is "small".

Error metric can be "smart" for example based on Human Visual System.

Direct Binary Search (DBS)

Halftoning - Comparison

Cluster Dot

Bayer

Void and Cluster

Error diffusion

Comparison of various halftoning: http://www.cs.indiana.edu/~dmiguse/Halftone/

Halftoning - Comparison

Clutered Dot Screening AM Halftoning

Dispersed Dot Screening FM Halftoning

Blue-noise Mask FM Halftoning 1993

Green-noise Halftoning AM-FM Halftoning 1992

Error Diffusion FM Halftoning 1975

Direct Binary Search FM Halftoning 1992

Aliasing - Moire

Aliasing due to dot overlap (DBS method)

Variable Dot Size

Fixed Dot Halftoning (On or Off)

Variable Dot Halftoning (4 different dot sizes)

Variable Dot Size

Ink Jet

Thermal transfer

Variable dot Thermal transfer

Dye diffusion

(Moroney and Viggiani 1994)

Aliasing Removed

Aliasing Removed using variable dot size (dot overlap model).

(Baquai, Taylor and Allebach 1996)

Color Halftoning

- 1) Perform halftoning in each plane (R,G,B) separately.
- 2) Perform halftoning in color space

Error Diffusion in RGB Space

The error e(x,y) - is a vector

Adding and subtracting is in 3D vector space.

Error Diffusion in Color Images

Error Diffusion in Color Images

Cluster Dot Dithering in Color Images

Color Screen Angles

- Every screen at a different angle.
- Optimally 30° apart.
- Since there are 4 screens and not 3:
 Y (color of least contrast) is set at 15° between 2 others.
- K (colour of most contrast) is set at the visually ideal angle of 45 degrees.

Color Screening

