Lecture 3

Color Representation

CIEXYZ Color Space CIE Chromaticity Space HSL,HSV,LUV,CIELab

CIEXYZ Color Coordinate System

1931 – The Commission International de l'Eclairage (CIE) Defined a standard system for color representation.

The CIE-XYZ Color Coordinate System.

In this system, the XYZ *Tristimulus values* can describe any visible color.

The XYZ system is based on the color matching experiments

Trichromatic Color Theory

"tri"=three "chroma"=color

Every color can be represented by 3 values.

Space of visible colors is 3 Dimensional.

Calculating the CIEXYZ Color Coordinate System

David Wright 1928-1929, 1929-1930 & John Guild 1931 17 observers responses to Monochromatic lights between 400-700nm using viewing field of 2 deg angular subtense.

Primaries are monochromatic : 435.8 546.1 700 nm 2 deg field.

These were defined as CIE-RGB primaries and CMF.

XYZ are a linear transformation away from the observed data.

CIEXYZ Color Coordinate System

CIE Criteria for choosing Primaries X,Y,Z and Color Matching Functions $\overline{X},\overline{Y},\overline{Z}$.

- 1) CMFs are non-negative over visible wavelengths. (i.e. any color is represented by 3 positive values).
- Equal amounts of the Primaries produce white.
 (i.e. X=Y=Z for stimulus of equal luminance at each wavelength).
- 3) The y color matching function is defined to match the luminous-efficiency function of the human eye.
- 4) Primaries are as 'tight' as possible around the set of possible colors (Maxwell triangle Projects to equilateral in XYZ space).

Luminous-Efficiency function of the human eye

CIEXYZ Color Coordinate System

CIE-RGB to CIE-XYZ

- * Cr, Cg, Cb must enclose the Gamut.
- * Line Cb-Cr is defined by Y being Luminance Function. (the Alychne = line of zero luminance).
- * Line Cr-Cg is tangent at 650+ (z is zero beyond 650).
- * Thus Cr is defined.
- * Equal Energy (x=y=z=1/3) puts constraint on Cb-Cg
- * Tight around Gamut -> line Cb-Cg is close to green.
- * Cb and Cg are defined.

CIE-RGB to **CIE-XYZ**

CIE RGB space to XYZ space. Map Cb Cg Cr to x=(0,0) y=(0,1) z=(1,0)

$$\begin{bmatrix} X\\Y\\Z \end{bmatrix} = \frac{1}{b_{21}} \begin{bmatrix} b_{11} & b_{12} & b_{13}\\b_{21} & b_{22} & b_{23}\\b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} R\\G\\B \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.49 & 0.31 & 0.20\\0.17697 & 0.81240 & 0.01063\\0.00 & 0.01 & 0.99 \end{bmatrix} \begin{bmatrix} R\\G\\B \end{bmatrix}$$

CIE Color Standard - 1931

- \overline{y} is predefined.
- Non negative over the visible wavelengths.
 (X,Z Several Hundreds, Y 0.100).
- The 3 primaries associated with x y z color matching functions are unrealizable_ (negative power in some of the wavelengths).
- Integral over the CMF gives equal values.
- CMF are linear transformation away from CIE-RGB and from LMS.

CIE Color Standard - 1964

Stiles and Birch data (1959):

Color Matching Experiment with:

10 Deg view

Primaries: 444.4 525.3 645.2

CIE-XYZ₁₀

Color matching functions vs LMS - cone photoreceptor responses

The cone responses form a 3D linear system. Cone responses are equivalent for metamers.

thus

The cone spectral sensitivities and the XYZ color matching functions are related by a 3 x 3 linear transformation.

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 1.9023 & -1.4000 & 0.3544 \\ 0.6371 & 0.3933 & -0.0093 \\ 0.0007 & 0.0033 & 1.7462 \end{bmatrix} \begin{bmatrix} L \\ M \\ S \end{bmatrix}$$

CIE – RGB

Primaries are monochromatic : 435.8 546.1 700 nm

CIEXYZ Color Coordinate System

$\overline{x} \overline{y} \overline{z}$ Color Matching Functions

CIEXYZ Color Coordinate System

CIE Chromaticity Diagram

A common representative of color signal: [x,y,Y]

CIE Chromaticity Diagram

Color Naming

CIE-RGB Primaries

Blackbody Radiators and CIE standard Illuminants

CIE Standard Illuminants:

- A tungsten light
- B Sunset
- C blue sky
- D65 Average daylight
- E Equal energy white (x=y=z=1/3)

Blackbody Radiators

http://www.olympusmicro.com/primer/java/colortemperature/index.html

3200 K

5500 K

1750 K

900 K

Television Primaries and Gamut

 $R_1G_1B_1$ - Primaries used for PAL $R_2G_2B_2$ - Primaries used for NTSC

D65 - reference white for PAL C - reference white for NTSC

CIE Chromaticity + Gamut applet : http://www.cs.rit.edu/~ncs/color/a_chroma.html

Signal Lights

XYZ Color Space

Hue vs Saturation

Given a reference white.

Dominant Wavelength –

wavelength of the spectral color which added to the reference white, produces the given color.

Given a reference white.

Complementary Wavelength –

wavelength of the spectral color which added to the given color, produces the reference white.

Given a reference white.

Purity -

the ratio of the lengths between the given color and reference white and between the dominant wavelength and reference white. Ranges between 0 .. 1.

EXAMPLE:

Reference white is CIE standard illuminant - C.

Dominant Wavelength of color S_1 is D_1 of color S_2 is D_2 .

Complementary Wavelength of color S_1 is D_1 . S2 does not have a complimentary wavelength.

Excitation Purity of S_1 is the ratio CS_1/CD_1 of S_2 is the ratio CS_2/CD_2 of S_3 is the ratio CS_3/CD_3

Color Description

Munsell Color System (1915)

Equal perceptual steps in Hue Saturation Value.

Munsell Book of Colors

Atlas of thr Munsell Color System (1915)

MayuraDraw

PowerPoint

Colors	? ×
Standard Custom	OK Cancel <u>P</u> review
Hue: 171 ÷ Red: 227 ÷ Sat: 238 ÷ Green: 226 ÷ Lum: 240 ÷ Blue: 254 ÷	New
🖵 Semitransparent	Current

Photoshop

Color Picker

Color Space Summary

Spectral Power Distribution (SPD) – High Dimensional

3 Dimensional Spaces:

LMS -

Human Cone responses. Given by the cone sensitivity curves.

CIE-RGB -

Based on color Matching Experiments by Wright+Guild. Defined by Primaries R G B (monochromatic 435.8 546.1 700 nm) and cmf r g b.

CIE-XYZ -

Standard Color space. Linear transformation of above that confirms to set of constraints. Defined by Primaries X Y Z (unrealizable) and cmf $\bar{x} \bar{y} \bar{z}$.

Munsell Color Space -

Perceptually equally spaced samples in 3 dimensions: Hue, Chroma, Value.