Lecture 1

The Human Visual System

The Human Visual System

The Human Eye

The Human Retina

light

Cross-section of Human Retina

Retinal Photoreceptors

Retinal Photoreceptors

- **Rods** • Low illumination levels (Scotopic vision).
 - Highly sensitive (respond to a single photon).
 - 100 million rods in each eye.
 - No rods in fovea.

Cones - • High illumination levels (Photopic vision)

- Less sensitive than rods.
- 5 million cones in each eye.
- Only cones in fovea (aprox. 50,000).
- Density decreases with distance from fovea.

Calculating the viewing angle of a single cone in the fovea:

1es - 2.3 μ – which 2.5 μ – inter-cone distance 0.5'– field of view

Cone Mosaic at Fovea

 $10 \ \mu m$

Cone Mosaic in periphery

Retinal Photoreceptors

Cones - • High illumination levels (Photopic vision)

- Less sensitive than rods.
- 5 million cones in each eye.
- Only cones in fovea (aprox. 50,000).
- Density decreases with distance from fovea.
- 3 cone types differing in their spectral sensitivity: L, M, and S cones.

Cone Receptor Mosaic (Roorda and Williams, 1999)

L-cones M-cones S-cones

S cone Sampling Mosaic

Foveal Periphery

Human Image Formation

What is the quality of the optics of the human eye?

Image Formation - Optics

Put a piece of film in front of an object.

source: Yung-Yu Chuang

Image Formation - Optics

Add a barrier to block off most of the rays.

- It reduces blurring
- The pinhole is known as the aperture
- The image is inverted

Image Formation - Optics Shrinking the aperture

Why not create the aperture as small as possible?

- Less light gets through
- Diffraction effect

Image Formation - Optics Shrinking the aperture

0.35 mm

0.15 mm

0.07 mm

Image Formation - Optics Adding a Lens

Image Formation - Optics Adding a Lens

Lens Design: Snell's Law

(a)

 $n\sin(\phi) = n'\sin(\phi')$

Lensmaker's Equation

 $d_s = source \ dist$ $d_i = image \ dist$ $f = focal \ length$

Optical power and object distance

Encoding Characteristics - Line spread

Line spread defines the optical quality of the eye

Light Scattered From From The Retina Is Used To Estimate Optical Quality (e.g., Campbell and Gubisch)

Double Pass Method

Measurements of light reflected from the retina (Linespread) at various pupil diameters

Campell and Gubisch 1966

Image formation satisfies :

Homogeneity:

Image formation is a linear system

Image Formation is a Linear System

in
$$\longrightarrow$$
 System \longrightarrow out $f(a) = b$

A system is *Linear* if it satisfies superposition:

homogeneity f(ka) = kf(a) = kbadditivity $f(a_1+a_2) = f(a_1) + f(a_2) = b_1 + b_2$

A finite dimensional linear system can be written as a matrix equation:

where **R** is the system matrix.

Image formation is a Shift Invariant linear system

A shifted input produces a shifted output:

The Human Modulation Transfer Function

The Pointspread Function

The pointspread function is a generalization of the linespread function.

Retinal Image

Monitor Image

Astigmatism Measures the Assymmetry and Orientation of the Pointspread Function

Visual Acuity

Cones at fovea are 2.5μ apart corresponding to 0.5' (arc min).

Typical acuity targets:

Expected acuity is size of cone or visual angle of cone.

Actual acuity \approx 5" (arc seconds) = **Hyperacuity**

Visual Acuity

Do to linespread, movement of stimulus by less than receptor width causes change in receptor response:

Acuity is affected by retinal position and illumination:

Visual Acuity Test

Electromagnetic Radiation -Spectrum

Spectral Power Distribution

The **Spectral Power Distribution** (SPD) of a light is a function f(I) which defines the energy at each wavelength.

Examples of Spectral power Distributions

Multispectral Images

Chromatic Aberration

Different wavelengths bending at lens, focus at different distances.

Chromatic Aberration

Chromatic Aberration Measures Differences in Optical Focus Across Wavelength

A B C D E F GA B C D E F G

Chromatic Modulation Transfer Function

Chromatic Aberration affects the MTF

Blue vs Green Modulation Transfer Function

Sampling rate of Blue vs Green is in accord with Nyquist Theorem

Chromatic Linespread Function

Some Animals Have Non-Circular Pupils

