

Segmentation

Image Segmentation = divide image into (continuous) regions or sets of pixels.

1) Region Based
2) Boundary Based
3) Edge Based

Thresholding

Global Thresholding = Choose threshold T that separates object from background.

Segmentation using Thresholding

Original

Histogram

Threshold $=50$

Threshold $=75$

Thresholding a Grayscale Image

Threshold too high

Simple thresholding is not always possible:

1) Many objects at different gray levels.
2) Variations in background gray level.
3) Noise in image.

Thresholding Example

Single Global Threshold

Adaptive Thresholding
Every pixel in image is thresholded according to the histogram of the pixel neighborhood.

Local Thresholding - 4 Thresholds Divide image in to regions. Perform thresholding independently in each region.

Threshold Segmentation of Noisy Images
Noise inhibits localization of threshold.

Smooth image and obtain a histogram for which threshold is easily determined.

Note: Smooth the image, not the histogram...

Region Growing

Define:

$S=$ the set of pixels inside the region.
$\mathrm{Q}=$ queue of pixels to be checked.
$\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=$ a pixel inside the region.

Algorithm:

Initialize: $S=\varnothing$

$$
\mathrm{Q}=\left\{\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)\right\}
$$

1) Extract pixel P from queue Q
2) Add P to S.
3) For each neighbor P^{\prime} of P : if P^{\prime} is "similar" to P and $P^{\prime} \notin S$ then add P^{\prime} to Q .
4) If $\mathrm{Q}=\varnothing$ then end, else return to 1 .
$S=$ the extracted pixels of the region. Define what "similar" means. Problematic in small gradient regions.

Region Growing - Example

Region Growing - Examples
Color Segmentation

Texture Segmentation

Color + Texture Segmentation

Watershed Threshold Algorithm
An Image can be viewed as a topographic map

Split \& Merge Segmentation

2 Stage Algorithm:

Stage 1: Split
Split image into regions using a Quad Tree representation.

Stage 2: Merge
Merge "leaves" of the Quad Tree which are neighboring and "similar".

Original

Split + Merge

Min-Cut Segmentation

$$
\operatorname{cut}(\mathrm{A}, \mathrm{~B})=\sum_{\mathrm{i} \in \mathrm{~A}, \dot{j} \in \mathrm{~B}} \mathrm{~W}_{\mathrm{ij}}
$$

Segmentation by min-cut:
Find A, B such that $\operatorname{cut}(A, B)$ is minimal.
(Wu and Leahy 1993)

Which Model matches the Measurement?

- Which Model
- What is the transformation from Model to Measurement (translation, rotation, scale,...)

