

Define:

S = the set of pixels inside the region. Q = queue of pixels to be checked.

 $(x_0, y_0) = a$ pixel inside the region.

Algorithm:

Initialize: $S = \emptyset$

 $Q = \{ (x_0, y_0) \}$

- 1) Extract pixel P from queue Q
- 2) Add P to S.
- 3) For each neighbor P' of P:
 - if P' is "similar" to P and P' \notin S then add P' to Q.
- 4) If $Q = \emptyset$ then end, else return to 1.

S = the extracted pixels of the region. Define what "similar" means. Problematic in small gradient regions.

