Image Processing - Lesson 10

Edge Detection

- Edge detection masks
- Gradient Detectors
- Compass Detectors
- Second Derivative - Laplace detectors
- Edge Linking
- Hough Transform

Image Processing - Computer Vision

Low Level

- Image Processing: representation, compression, transmission
- Image enhancement
- Edge/feature finding

Computer Vision

High Level

- Image "understanding"

UFO - Unidentified Flying Object

Point Detection

Convolution with:

\[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]

Large Positive values = light point on dark surround
Large Negative values = dark point on light surround

Example:

\[
\begin{bmatrix}
5 & 5 & 5 & 5 \\
5 & 5 & 100 & 5 \\
5 & 5 & 5 & 5 \\
\end{bmatrix}
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]

\[
= \begin{cases}
0 & 0 & -95 & -95 & -95 \\
0 & 0 & -95 & 760 & -95 \\
0 & 0 & -95 & -95 & -95 \\
\end{cases}
\]
Edge Definition

- **Line Edge**
 - Gray value
 - Edge

- **Step Edge**
 - Gray value
 - Edge

Edge Detection

- **Line Edge Detectors**
 - [-1, -1, -1]
 - [2, 2, 2]
 - [-1, -1, -1]

- **Step Edge Detectors**
 - [-1, 2, -1]
 - [-1, 2, -1]
 - [-1, 2, -1]

Example

Edge Detection by Differentiation

- **Step Edge detection by differentiation**
 - 1D image $f(x)$
 - 1st derivative $f'(x)$
 - $|f'(x)|$ - threshold

Pixels that passed the threshold are Edge Pixels
Gradient Edge Detection

\[\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} \]

Gradient Magnitude

\[\sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]

Gradient Direction

\[\arctan \left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}} \right) \]

Gradient Edge - Examples

\[\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ 0 \end{bmatrix} \]

Differentiation in Digital Images

horizontal - differentiation approximation:

\[F_A = \frac{\partial f(x,y)}{\partial x} = f(x,y) - f(x-1,y) \]

convolution with \[\begin{bmatrix} 1 & -1 \end{bmatrix} \]

vertical - differentiation approximation:

\[F_B = \frac{\partial f(x,y)}{\partial y} = f(x,y) - f(x,y-1) \]

convolution with \[\begin{bmatrix} 1 \\ -1 \end{bmatrix} \]

Gradient

\((F_A, F_B) \)

Magnitude

\((F_A)^2 + (F_B)^2)^{1/2} \)

Approx. Magnitude

\[|F_A| + |F_B| \]
Roberts and other 2x2 operators are sensitive to noise.

Smoothed operators

Given \(k \) operators, \(g_k(x,y) \) is the image obtained by convolving \(f(x,y) \) with the \(k^{th} \) operator.

The gradient is defined as:

\[
g(x,y) = \max_k g_k(x,y)
\]

\(k \) defines the edge direction.
Various Compass Operators:

1 1 1
1 -2 1
-1 -1 -1

1 2 1
0 0 0
-1 -2 -1

5 5 5
-3 0 -3
-3 -3 -3

Kirsch Edge Detector

Kirsch (Compass)

Edge Detector - Comparison

Original

Sobel

Kirsch (Compass)

Direction Map

Magnitude

Negative Magnitude

Derivatives

Approximation of second derivative (horizontal):

\[
\frac{\partial^2 f(x,y)}{\partial x^2} = f'(x+1,y) - f'(x,y) = \left[f(x+1,y) - f(x,y) \right] - \left[f(x,y) - f(x-1,y) \right]
\]

\[
= f(x+1,y) - 2f(x,y) + f(x-1,y)
\]

convolution with: \([1 \ -2 \ 1]\)

Approximation of second derivative (vertical):

convolution with: \([1\ \ 2\ \ 1]\)

Laplacian Operator

\[
\nabla^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)
\]

convolution with: \([0 \ -1 \ 0 \ -1 \ 0 \ -1 \ 0 \ -1 \ 0]\)
Variations on Laplace Operators:

\[
\begin{bmatrix}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{bmatrix} \quad \begin{bmatrix}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{bmatrix} \quad \begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}
\]

All are approximations of:

Example of Laplacian Edge Detection

Laplacian \sim \text{Difference of gaussians}

DOG = \text{Difference of Gaussians}

Laplacian Operator (Image Domain) \quad \text{Laplacian Filter (Frequency Domain)}

\[
\text{FFT} \quad \text{FFT}
\]
Enhancement Using the Laplacian Operator

Edge Image $f(x)$

1st derivative $\frac{\partial f}{\partial x}$

2nd derivative (Laplacian) $\frac{\partial^2 f}{\partial x^2}$

$f(x) - \frac{\partial^2 f}{\partial x^2}$

Mach Bands

Examples of enhanced images

Original Laplacian Image

Scaled Laplacian Image Enhanced Image

Edge Detection - Noise Issues

$f(x)$

$\frac{d}{dx} f(x)$

$\frac{\partial}{\partial x} (g*f)$

Peaks in $\frac{\partial}{\partial x} (g*f)$ mark the edge
Edge Detection - Noise Issues

From the convolution theorem we have:
\[
\frac{\partial}{\partial x}(h * f) = \left(\frac{\partial}{\partial x}h\right) * f
\]

Zero Crossings in \(\frac{\partial^2}{\partial x^2}(g * f)\) mark the edge.

Canny Edge Detector

1) Convolve image with derivative of a Gaussian
2) Perform NonMaximum suppression.
3) Perform Hysteresis Thresholding.

Canny Edge Detector - Step 1

Convolve image with derivative of a Gaussian

\[f(x,y) * G'(x,y) \equiv f(x,y) * G'_x(x,y) + f(x,y) * G'_y(x,y)\]

\[F_a = f(x,y) * G_x(x,y) * D_x(x,y)\]

\[= f(x,y) * \begin{bmatrix} 1 & 2 & 4 & 2 & 1 \end{bmatrix} * \begin{bmatrix} 1 \\ -1 \end{bmatrix}\]

\[F_b = f(x,y) * G_y(x,y) * D_y(x,y)\]

\[= f(x,y) * \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \\ 1 \end{bmatrix} * \begin{bmatrix} 1 \\ -1 \end{bmatrix}\]

Magnitude \(\sqrt{(F_A)^2 + (F_B)^2}\)
Canny Edge Detector - Step 1

Original

\(f \star G_x \)
\(f \star G_y \)

\(F_x = rG_x \star D_x \)
\(F_y = rG_y \star D_y \)

Magnitude
\((|F_x|^2 + |F_y|^2)^{1/2} \)

Canny Edge Detector - Step 2

NonMaximum Suppression.

Remove edges that are NOT local Maxima in the gradient direction.

Canny Edge Detector - Step 2

NonMaximum Suppression.

Canny Edge Detector - Step 3

Hysteresis Thresholding.

Include possible edge pixels that are adjacent to edge pixels.
Canny Edge Detector - Step 3

- Magnitude (NonMax Suppressed)
- Low Threshold
- High Threshold
- Hysteresis Threshold

Effect of Scale
Effect of σ (Gaussian kernel size)

- Original
- Canny with $\sigma = 1$
- Canny with $\sigma = 2$

Scale Space
Witkin 83

- first derivative peaks
- Gaussian filtered signal

Properties of Scale Space:
- Position of edges may change with scale.
- Edges may merge with increase in scale.
- Edges do NOT split with increase in scale.

Edge Completion
Edge Linking

(x,y) is an edge pixel.
Search for neighboring edge pixels that are "similar".

Similarity:

Similarity in Edge Orientation
Similarity in Edge strength (Gradient Amplitude)

Perform Edge Following along similar edge pixels.
(as in Contour Following in binary images).

Examples of edge linking

Original Sobel Vertical
Sobel Horizontal Linked Edges

Edge Points linked: Gradient Value > 25
Gradient direction within 15%

Problem:
Edges are not lines even when linked.

Edge pixels are not ellipses even when linked.

straight line Hough Transform

\[y = ax + b \]

\[s = x \cos(\theta) + y \sin(\theta) \]
Hough Transform

Image Domain

straight line

Hough Domain

many points on a line = many lines in the Hough transform space which intersect at 1 point.

Hough Transform Example

Original square image

Hough Transform (s, θ) space

Reconstructed line segments

Hough Transform Example

Original Edges

Hough Transform

Results1

Results2

Results3
Hough Transform for Circles

Image Domain

$$r^2 = (x-x_0)^2 + (y-y_0)^2$$

Hough Domain

$$r^2 = (x-x_0)^2 + (y-y_0)^2$$

Hough Transform Example

Original

Edges

Result

Nice demo: http://www.markschulze.net/java/hough/index.html

3D Perception - Depth Perception

Impossible Figures (Escher)