

Image pyramids

- Gaussian Pyramids
- Laplacian Pyramids
- Wavelet/QMF

Gaussian Pyramid
Burt & Adelson (1981)
Normalized: $\Sigma w_i = 1$ Symmetry: $w_i = w_{-i}$
Unimodal: $w_i \ge w_j$ for $0 < i < j$
Equal Contribution: for all j $\Sigma w_{j+2i} = constant$
w.2 w.1 w0 w1 w2 w.2 w.1 w0 w1 w2

For a = 0.4 most similar to a Gauusian filter												
g = [0.05 0.25 0.4 0.25 0.05]												
low_pass	_filter = g'*	g =										
0.00 0.01 0.02 0.01 0.00 0.15 0.1	25 0.0125 25 0.0625 20 0.1000 25 0.0625 25 0.0125	0.0200 0.1000 0.1600 0.1000 0.0200	0.0125 0.0625 0.1000 0.0625 0.0125	0.0025 0.0125 0.0200 0.0125 0.0025								
0.05	4 3 2		2 3	4	5							

What does blurring take away?

smoothed (5x5 Gaussian)

Multi-Res. Blending

© prof. dmartin

What is a good representation for image analysis?

- Pixel domain representation tells you "where" (pixel location), but not "what".
 - In space, this representation is too localized
- Fourier transform domain tells you "what" (textural properties), but not "where".

 $-\;$ In space, this representation is too spread out.

• Want an image representation that gives you a local description of image events—what is happening where.

- That representation might be "just right".

Image pyramid levels = Filter then sample. Filters: Gaussian Pyramid Laplacian Pyramid Wavelet Pyramid

Image Pyramids - Comparison

Image Linear Transforms											
Basis	Characteristics										
Standard	Localized in space Not localized in Frequency										
Sines+Cosines	Not localized in space Localized in Frequency										
Wavelet Filters	Localized in space Localized in Frequency										
Fourie	er Wavelet										
space	space										
	Image Linear Basis Standard Sines+Cosines Wavelet Filters Fourie Image Linear Standard Sines+Cosines Wavelet Filters Fourie Image Linear Standard Sines+Cosines Space										

Vectorized image

Vectorized image

Pyramid as Matrix																				
Computation - Example																				
U1 =			Ŭ		1							_			- P					
1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	6	4	1	0	
- Next pyramid level																				
U2	=																			
1	4	6	i 4	1	0	0	0													
() (1	4	6	4	1	0													
() (0	0 0	1	4	6	4													
() (0	0	0	0	1	4													
-									e .1											
- 11	he	CO	mb	ine	ed e	ett	ect	0	t th	ıe	tw	o p	byr	am	1d	lev	ve.	ls		
U2 *	U1	=																		
1	4 1	0	20	31	40	44	40	31	2	0	10	4	1	0	0	0	0	0	0	0
0	0	0	0 1	4	10) 2	0 3	31	40	44	40) 31	1 2	0 1	0	4	1	0	0	0
0	0	0	0 () (0	0	1	4	1	0 1	20	31	40	44	40	30) 1	6	4	0
0	0	0	0 () (0	0	0	0) (0	0	1	4	10	20	25	5 1	6	4	0
from: B.Freeman																				

