Image Representation

® Gaussian pyramids
® Laplacian Pyramids

® Wavelet Pyramids

® Applications

Image Pyramids

Image features at different resolutions require filters at
different scales.

Edges (derivatives):

f(x)
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Image Pyramids

Image Pyramid = Hierarchical representation of an image

A No details in image -

Resoluton [~ (dured

i (blurred image)
Resolution low frequencies
Resolution low+high frequencies

A collection of images at different resolutions.

Image pyramids

» Gaussian Pyramids
* Laplacian Pyramids
» Wavelet/QMF




Image Pyramid

Low resolution

Image Pyramid
Frequency Domain

Low resolution

High resolution
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Image Pyramid

Low resolution

High resolution

Gaussian Pyramid
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Gaussian Pyramid
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Gaussian Pyramid

Burt & Adelson (1981)

Normalized: Zw; =1
Symmetry: w;, = w
Unimodal: w;>w, for 0<i<]

Equal Contribution: for allj Xw,,,; = constant
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Gaussian Pyramid

Burt & Adelson (1981)

Normalized: Zw; =1
Symmetry: w; = w;
Unimodal: w;>w; for 0<i<]j

Equal Contribution: for allj Xw,,,; = constant

W,

Gaussian Pyramid

Burt & Adelson (1981)
Normalized: Zw; =1
Symmetry: w, = w;
Unimodal: w;>w; for 0<i<]j

Equal Contribution: for allj Xw,,, = constant

Gaussian Pyramid

Burt & Adelson (1981)

b c
a+2b+2c=1
a+2c=2b

a>0.25
b=0.25
c=0.25-a/2

For a=0.4 most similar to a Gauusian filter
g =[0.05 0.25 0.4 0.25 0.05]

low_pass_filter = g'*g =

0.0025 0.0125 0.0200 0.0125 0.0025
0.0125 0.0625 0.1000 0.0625 0.0125
0.0200 0.1000 0.1600 0.1000 0.0200
0.0125 0.0625 0.1000 0.0625 0.0125
0.0025 0.0125 0.0200 0.0125 0.0025




Gaussian Pyramid -
Computational Aspects

Memory:
2NX2N (1 + 1/4 + 1/16 + ... ) = 2NX2N * 4/3

Computation:

Level i can be computed with a single convolution
with filter: hy=g*g*g*.....

i times

MultiScale Pattern Matching

Option 1: o
Scale target and search for each in image.
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Option2: o .
Search for original target in image pyramid.
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Pattern matching using Pyramids - Example
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Laplacian Pyramid

Image pyramids

Motivation = Compression, redundancy removal.
compression rates are higher for predictable values.
e.g. values around 0.

. Laplacian Pyramids Gy, Gy, .... = the levels of a Gaussian Pyramid.

Predict level G, from level G,,, by Expanding G, to G,

L6

Expand
I Reduce

G, G

Denote by L, the error in prediction:

Lo, Ly, .... = the levels of a Laplacian Pyramid.

What does blurring take away? What does blurring take away?

original smoothed (5x5 Gaussian)




What does blurring take away?

smoothed — original

Laplacian Pyramid

Gaussian Laplacian
Pyramid Pyramid

Laplace Pyramid -
No scaling

Gaussian Frequer!cy Laplacian
: Domain .
Pyramid Pyramid
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Reconstruction of the original image
from the Laplacian Pyramid
Laplacian
Pyramid
o expand
©+0 =0
l expand
© -+ =0
l expand
+
Original
Image
from: B.Freeman
Laplacian Pyramid - | Image Mosaicing |

Computational Aspects
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However coefficients are highly compressible.

Computation: e
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Image Blending

Blending

Multiresolution Spline

When splining two images, transition from one image to
the other should behave:

High Frequencies

Middle Frequencies

Low Frequencies

Multiresolution Spline
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High Frequencies

N2

Middle Frequencies
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Low Frequencies




Multiresolution Spline - Example

Left Image

_Right Image

Left + Right Narrow Transition

_Wide Transition

(Burt & Adelson)

Multiresolustion Spline - Using Laplacian Pyramid

Multiresolution Spline - Example

Left Image _Right Image

_Wide Transition Multiresolution Spline

(Burt & Adelson)

Multiresolution Spline - Example

Original - Left Original - Right

Glued Splined




Multiresolution Spline

laplacian level 4

i‘ | §T__El . J

laplacian level 2

left pyramid  right pyramid blended pyramid

Multiresolution Spline - Example

Multi-Res. Blending

© prof. dmartin




Image pyramids

» Wavelet/QMF

What is a good representation
for image analysis?

* Pixel domain representation tells you
“where” (pixel location), but not
“what”.

— In space, this representation is too localized

* Fourier transform domain tells you
“what” (textural properties), but not
“where”.

— In space, this representation is too spread out.

» Want an image representation that gives
you a local description of image
events—what is happening where.

— That representation might be “just right”.

Space-Frequency Tiling

Freq. .
Standard basis

Spatial

Fourier basis

Spatial

Freq. .
Wavelet basis

Spatial

Space-Frequency Tiling

Freq. .
Standard basis

Fourier basis
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Various Wavelet basis Wavelet - Frequency domain

A
4

Wavelet bands are split recursively

Wavelet - Frequency domain

Wavelet decomposition - 2D Wavelet - Frequency domain

Apply the wavelet transform separably in both dimensions

Frequency domain ‘

— — Horizonlal high pass, Horizontall high pass,
vertical high pass vertical low-pass
\
Horizontal high pass Vertical Ligh pass —
Horizontal'low pass, Horizontgl low pass,
vertical high-pass Vertical low-pass
Horizontal low pass Vertical low pass




 Splitting can be applied recursively:

Pyramids in Frequency Domain

Gaussian Pyramid Laplacian Pyramid

dh
\ |/

Wavelet Decomposition

(XXX )

Fourier Space

Wavelet Transform - Step By
Step Example




Wavelet Transform - Example

Application: Wavelet Shrinkage
Denoising

Noisy image

From: B. Freeman

Wavelet Transform - Example

Clean image

Range [0, 255]
Dims [394, 599)

From: B. Freeman




Wavelet Shrinkage Denoising

Wavelet coefficient

Noisy image Histogram

S w0 @ W A

Wavelet coefficient
Histogram

W 0 W W W 0 @ W W an )

Get top histogram but want to get bottom histogram.

From: B. Freeman

Wavelet Shrinkage Denoising

For every Wavelet Band define
Shrinkage function:
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-60  -30 0 30 H
Wavelet Coefficient Value

From: B. Freeman

Wavelet Shrinkage Pipe-line

Mapping functions

Transform

| ="

Inverse
Transform

WT
|

I clean

More results




More results

Image Pyramids - Comparison
Image pyramid levels = Filter then sample.

Filters:

Gaussian Pyramid /\

Laplacian Pyramid

Wavelet Pyramid

Image Linear Transforms

Transform Basis Characteristics
Localized in space
Delta Standard Not localized in Frequency
Fourier Sines+Cosines Not Igcallged In space
Localized in Frequency
Wavele_t Wavelet Filters Logallzgd in space
Pyramid Localized in Frequency
Delta Fourier Wavelet

MMENN

Preaqueney

space space space

Convolution and Transforms
in matrix notation (1D case)

—

F =Uf

transformed image Vectorized image

Basis vectors (Fourier, Wavelet, etc)




Fourier Transform

Fourier Fourier bases pixel domain
transform image

Fourier bases are global: each transform
coefficient depends on all pixel locations.

From: B. Freeman

Transform in matrix notation
(1D case)

Forward Transform:

F=Uf

transformed image / Vectorized image
Basis vectors (Fourier, Wavelet, etc)

Inverse Transform:

—

U™ F=f

N

Basis vectors Vectorized image

transformed image

Inverse Fourier Transform

Fourier  pixel domain

Fourier bases X
transform image

Every image pixel is a linear combination of the
Fourier basis weighted by the coefficient.

Note that if U is orthonormal basis then U_1 = Ut

Convolution

Convolution Circular Matrix pixel image
Result of
Filter Kernels

From: B. Freeman




Pyramid =
Convolution + Sampling

Matrix of
Filter Kernels

Convolution
Result

pixel image

From: B. Freeman

Pyramid =
Convolution + Sampling

Pyramid Level 1

Pyramid Level 2

Pyramid Level 2

Pyramid =
Convolution + Sampling

Pyramid Level 2 1

Pyramid as Matrix
Computation - Example
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- The combined effect of the two pyramid levels
u2*uUl=

1 10 20 31 40 44 40 31 20 10 4 1 0 0 0 O
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from: B.Freeman
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— pixel image

Overcomplete representation.
Low-pass filters, sampled
appropriately for their blur.

Gaussian
pyramid

From: B. Freeman

Laplacian Pyramid

— pixel image

Overcomplete representation.
Transformed pixels represent
bandpassed image information.

Laplacian
pyramid

From: B. Freeman

Wavelet Transform

I
|
*

Wavelet

pyramid Ortho-normal

transform (like
Fourier transform),
but with localized
basis functions.

pixel image

From: B. Freeman

The End




