Image Representation

- Gaussian pyramids
- Laplacian Pyramids
- Wavelet Pyramids
- Applications

Image Pyramids

Image features at different resolutions require filters at different scales.

Edges (derivatives):

Image Pyramids

Image Pyramid = Hierarchical representation of an image

A collection of images at different resolutions.

Image pyramids

- Gaussian Pyramids
- Laplacian Pyramids
- Wavelet/QMF

Image Pyramid

Low resolution

High resolution

Image Pyramid

 Frequency Domain

High resolution

Image Blurring = low pass filtering

Image Pyramid

Low resolution

High resolution

Gaussian Pyramid

Gaussian Pyramid

Gaussian Pyramid

Burt \& Adelson (1981)
Normalized: $\Sigma \mathrm{W}_{\mathrm{i}}=1$
Symmetry: $\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{-\mathrm{i}}$
Unimodal: $\mathrm{w}_{\mathrm{i}} \geq \mathrm{w}_{\mathrm{j}}$ for $0<\mathrm{i}<\mathrm{j}$
Equal Contribution: for all $\mathrm{j} \quad \Sigma \mathrm{W}_{\mathrm{j}+2 \mathrm{i}}=$ constant

Gaussian Pyramid

Burt \& Adelson (1981)
Normalized: $\Sigma \mathrm{W}_{\mathrm{i}}=1$
Symmetry: $\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{-\mathrm{i}}$
Unimodal: $\mathrm{w}_{\mathrm{i}} \geq \mathrm{w}_{\mathrm{j}}$ for $0<\mathrm{i}<\mathrm{j}$
Equal Contribution: for all j $\quad \Sigma \mathrm{W}_{\mathrm{j}+2 \mathrm{i}}=$ constant

Gaussian Pyramid

Burt \& Adelson (1981)
Normalized: $\Sigma \mathrm{W}_{\mathrm{i}}=1$
Symmetry: $\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{-\mathrm{i}}$
Unimodal: $\mathrm{w}_{\mathrm{i}} \geq \mathrm{w}_{\mathrm{j}}$ for $0<\mathrm{i}<\mathrm{j}$
Equal Contribution: for all j $\quad \Sigma \mathrm{W}_{\mathrm{j}+2 \mathrm{i}}=$ constant

Gaussian Pyramid

Burt \& Adelson (1981)

$$
\begin{aligned}
& a+2 b+2 c=1 \\
& a+2 c=2 b
\end{aligned}
$$

$$
\begin{aligned}
& a>0.25 \\
& b=0.25 \\
& c=0.25-a / 2
\end{aligned}
$$

For $\mathrm{a}=0.4$ most similar to a Gauusian filter

$$
g=\left[\begin{array}{lllll}
0.05 & 0.25 & 0.4 & 0.25 & 0.05
\end{array}\right]
$$

low_pass_filter = g' * $\mathrm{g}=$
$\left[\begin{array}{lllll}0.0025 & 0.0125 & 0.0200 & 0.0125 & 0.0025 \\ 0.0125 & 0.0625 & 0.1000 & 0.0625 & 0.0125 \\ 0.0200 & 0.1000 & 0.1600 & 0.1000 & 0.0200 \\ 0.0125 & 0.0625 & 0.1000 & 0.0625 & 0.0125 \\ 0.0025 & 0.0125 & 0.0200 & 0.0125 & 0.0025\end{array}\right]$

Gaussian Pyramid Computational Aspects

Memory:

$$
2^{N} \times 2^{N}(1+1 / 4+1 / 16+\ldots)=2^{N} \times 2^{N} * 4 / 3
$$

Computation:
Level i can be computed with a single convolution with filter: $h_{i}=g * g * g * \ldots$.

i times

Example:

MultiScale Pattern Matching

Option 1:
Scale target and search for each in image.

Option 2:
Search for original target in image pyramid.

Hierarchical Pattern Matching

Pattern matching using Pyramids - Example

image

pattern
correlation

\square

■ - \qquad

Image pyramids

- Gaussian Pyramids
 - Laplacian Pyramids

 - Wavelet/QMF
Laplacian Pyramid

Motivation = Compression, redundancy removal. compression rates are higher for predictable values. e.g. values around 0 .
$\mathrm{G}_{0}, \mathrm{G}_{1}, \ldots .=$ the levels of a Gaussian Pyramid.
Predict level G_{\mid}from level $\mathrm{G}_{\mid+1}$ by Expanding $\mathrm{G}_{\mid+1}$ to G^{\prime}

Denote by L_{1} the error in prediction:

$$
L_{1}=G_{1}-G_{1}^{\prime}
$$

$L_{0}, L_{1}, \ldots .=$ the levels of a Laplacian Pyramid.

What does blurring take away?

original

What does blurring take away?

smoothed (5x5 Gaussian)

What does blurring take away?

smoothed - original

Laplacian Pyramid

Gaussian
Pyramid

Laplacian
Pyramid

\square

-

Gaussian
 Pyramid

Laplacian Pyramid

Laplace Pyramid No scaling

from: B.Freeman

Reconstruction of the original image from the Laplacian Pyramid

Laplacian
 Pyramid

$$
G_{1}=L_{1}+G_{1}^{\prime}
$$

$=$

Laplacian Pyramid Computational Aspects

Memory:
$2^{N} \times 2^{N}(1+1 / 4+1 / 16+\ldots)=2^{N} \times 2^{N} * 4 / 3$
However coefficients are highly compressible.

Computation:

L_{i} can be computed from G_{0} with a single convolution with filter: $k_{i}=h_{i-1}-h_{i}$

Image Mosaicing

Image Blending

Blending

Multiresolution Spline

When splining two images, transition from one image to the other should behave:

High Frequencies

Middle Frequencies

Multiresolution Spline

High Frequencies

Middle Frequencies

Low Frequencies

Multiresolution Spline - Example

Narrow Transition

Wide Transition
(Burt \& Adelson)

Multiresolustion Spline - Using Laplacian Pyramid

Multiresolution Spline - Example

Narrow Transition

Multiresolution Spline

(Burt \& Adelson)

Multiresolution Spline - Example

Glued

Original - Right

Splined

laplacian level 4

(c)
(g)

(k)
laplacian level 2

laplacian level 0
\square
(a)

(e)

(i)
left pyramid right pyramid blended pyramid

Multiresolution Spline

Multiresolution Spline - Example

Multi-Res. Blending

© prof. dmartin

Image pyramids

- Gaussian Pyramids

 - Laplacian Pyramids - Wavelet/QMF
What is a good representation for image analysis?

- Pixel domain representation tells you "where" (pixel location), but not "what".
- In space, this representation is too localized
- Fourier transform domain tells you "what" (textural properties), but not "where".
- In space, this representation is too spread out.
- Want an image representation that gives you a local description of image events-what is happening where.
- That representation might be "just right".

Space-Frequency Tiling

Freq.
Standard basis

Freq.

Spatial
Freq.

Spatial

Space-Frequency Tiling

Freq.
Standard basis

Spatial
Freq.

Spatial
Freq.
Wavelet basis

Spatial

Various Wavelet basis

Wavelet - Frequency domain

Wavelet bands are split recursively

Wavelet - Frequency domain

Wavelet decomposition - 2D

Frequency domain

n

Wavelet - Frequency domain

Apply the wavelet transform separably in both dimensions

- Splitting can be applied recursively:

Pyramids in Frequency Domain

Gaussian Pyramid Laplacian Pyramid

Wavelet Transform - Step By Step Example

Wavelet Transform - Example

Wavelet Transform - Example

Application: Wavelet Shrinkage Denoising

Noisy image

From: B. Freeman

Clean image

Range $[0,255]$
Dims [394, 599]

From: B. Freeman

Wavelet Shrinkage Denoising

Noisy image

Wavelet coefficient Histogram

Wavelet coefficient
Histogram

Get top histogram but want to get bottom histogram.

From: B. Freeman

Wavelet Shrinkage Denoising

For every Wavelet Band define Shrinkage function:

From: B. Freeman

Wavelet Shrinkage Pipe-line

More results

More results

Image Pyramids - Comparison

Image pyramid levels = Filter then sample.

Filters:

Gaussian Pyramid

Laplacian Pyramid

Wavelet Pyramid

Image Linear Transforms

Transform

Basis

Standard

Fourier
Sines+Cosines
Not localized in space Localized in Frequency

Localized in space Not localized in Frequency

Characteristics
Wavelet \quad Wavelet Filters
Pyramid

Localized in space
Localized in Frequency

Convolution and Transforms in matrix notation (1D case)

transformed image

$$
\vec{F}=U \vec{J}
$$

Basis vectors (Fourier, Wavelet, etc)

Fourier Transform

Fourier transform

Fourier bases are global: each transform coefficient depends on all pixel locations.

From: B. Freeman

Transform in matrix notation (1D case)

Forward Transform:

transformed image

$$
\overrightarrow{\mathrm{F}}=\mathrm{Uf}_{\text {Vectorized image }}
$$

Basis vectors (Fourier, Wavelet, etc)

Inverse Transform:

transformed image

Inverse Fourier Transform

Fourier bases

Fourier transform
pixel domain image

Every image pixel is a linear combination of the Fourier basis weighted by the coefficient.

Note that if U is orthonormal basis then $\mathrm{U}^{-1}=\mathrm{U}^{\mathrm{t}}$

Convolution

Convolution
 Result

Circular Matrix of

Filter Kernels

From: B. Freeman

Pyramid = Convolution + Sampling

Convolution
Result
Matrix of
pixel image
Filter Kernels

From: B. Freeman

Pyramid = Convolution + Sampling

Pyramid Level 1

Pyramid Level 2

Pyramid Level 2

$$
\|=\left\lceil\square_{-}^{-}\right] *\left[{ }^{-}-_{-}\right] *
$$

Pyramid = Convolution + Sampling

Pyramid Level 2

Pyramid Level 2

Pyramid as Matrix Computation - Example

U1 =

$$
\begin{array}{llllllllllllllllllll}
1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 0 & 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 6 & 4 & 1 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 6 & 4 & 1 & 0
\end{array}
$$

- Next pyramid level

$\mathrm{U} 2=$
$\begin{array}{llllllll}1 & 4 & 6 & 4 & 1 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & 0 & 1 & 4 & 6 & 4 & 1 & 0\end{array}$
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 4 & 6 & 4\end{array}$
$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 4\end{array}$

- The combined effect of the two pyramid levels

U 2 * U1 =
$\begin{array}{llllllllllllllllllll}1 & 4 & 10 & 20 & 31 & 40 & 44 & 40 & 31 & 20 & 10 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $0 \begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 1 & 4 & 10 & 20 & 31 & 40 & 44 & 40 & 31 & 20 & 10 & 4 & 1 & 0 & 0 & 0\end{array}$ $\begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 10 & 20 & 31 & 40 & 44 & 40 & 30 & 16 & 4 & 0\end{array}$ $\begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4 & 10 & 20 & 25 & 16 & 4 & 0\end{array}$

From: B. Freeman

Laplacian pyramid

Overcomplete representation. Transformed pixels represent bandpassed image information.

From: B. Freeman

Wavelet Transform

Wavelet pyramid

Ortho-normal transform (like
Fourier transform),
but with localized basis functions.

From: B. Freeman

The End

