Image Representation

- Gaussian pyramids
- Laplacian Pyramids
- Wavelet Pyramids
- Applications

Image Pyramids

Image features at different resolutions require filters at different scales.

Edges (derivatives):

Image Pyramids

Image Pyramid = Hierarchical representation of an image

A collection of images at different resolutions.

Image pyramids

- Gaussian Pyramids
- Laplacian Pyramids
- Wavelet/QMF

Image Pyramid

Low resolution

High resolution

Image Pyramid Frequency Domain

Low resolution **High resolution**

Image Blurring = low pass filtering

Image Pyramid

Low resolution

High resolution

Level n 1 X 1

Level 1 2ⁿ⁻¹ X 2ⁿ⁻¹

Level 0 2ⁿ X 2ⁿ

Burt & Adelson (1981)

Normalized: $\Sigma w_i = 1$

Symmetry: $w_i = w_{-i}$

Unimodal: $w_i \ge w_j$ for 0 < i < j

Equal Contribution: for all j $\sum w_{j+2i} = constant$

Burt & Adelson (1981)

Normalized: $\Sigma w_i = 1$

Symmetry: $w_i = w_{-i}$

Unimodal: $w_i \ge w_j$ for 0 < i < j

Equal Contribution: for all j $\sum w_{j+2i} = constant$

Burt & Adelson (1981)

Normalized: $\Sigma w_i = 1$

Symmetry: $w_i = w_{-i}$

Unimodal: $w_i \ge w_j$ for 0 < i < j

Equal Contribution: for all j $\sum w_{j+2i} = constant$

Burt & Adelson (1981)

$$a + 2b + 2c = 1$$

$$a + 2c = 2b$$

$$b = 0.25$$

$$b = 0.25$$

 $c = 0.25 - a/2$

For a = 0.4 most similar to a Gauusian filter

$g = [0.05 \ 0.25 \ 0.4 \ 0.25 \ 0.05]$

low_pass_filter = g' * g =

0.0125	0.0200	0.0125	0.0025
0.0625	0.1000	0.0625	0.0125
0.1000	0.1600	0.1000	0.0200
0.0625	0.1000	0.0625	0.0125
0.0125	0.0200	0.0125	0.0025
	0.0625 0.1000 0.0625	0.0625 0.1000 0.1000 0.1600 0.0625 0.1000	0.01250.02000.01250.06250.10000.06250.10000.16000.10000.06250.10000.06250.01250.02000.0125

Gaussian Pyramid - Computational Aspects

Memory:

$$2^{N}X2^{N}(1 + 1/4 + 1/16 + ...) = 2^{N}X2^{N} * 4/3$$

Computation:

Level i can be computed with a single convolution with filter: $h_i = g * g * g *$

Example:

MultiScale Pattern Matching

Option 1: Scale target and search for each in image.

Option 2: Search for original target in image pyramid.

Hierarchical Pattern Matching

Pattern matching using Pyramids - Example

Image pyramids

- Gaussian Pyramids
- Laplacian Pyramids
- Wavelet/QMF

Laplacian Pyramid

Motivation = Compression, redundancy removal. compression rates are higher for predictable values. e.g. values around 0.

 $G_0, G_1, \dots =$ the levels of a Gaussian Pyramid.

Predict level G_I from level G_{I+1} by Expanding G_{I+1} to G'_I

Denote by L_1 the error in prediction:

$$L_{l} = G_{l} - G'_{l}$$

 $L_0, L_1, \dots =$ the levels of a Laplacian Pyramid.

What does blurring take away?

original

What does blurring take away?

smoothed (5x5 Gaussian)

What does blurring take away?

smoothed - original

Laplacian Pyramid

Frequency Domain

Laplacian Pyramid

Laplace Pyramid - No scaling

from: B.Freeman

Reconstruction of the original image from the Laplacian Pyramid

Laplacian Pyramid

$$G_1 = L_1 + G'_1$$

Laplacian Pyramid - Computational Aspects

Memory:

$$2^{N}X2^{N}(1 + 1/4 + 1/16 + ...) = 2^{N}X2^{N} * 4/3$$

However coefficients are highly compressible.

Computation:

 L_i can be computed from G_0 with a single convolution with filter: $k_i = h_{i-1} - h_i$

Image Mosaicing

Image Blending

Blending

Multiresolution Spline

When splining two images, transition from one image to the other should behave:

Multiresolution Spline

Low Frequencies

Multiresolution Spline - Example

Left Image

Right Image

Left + Right

Narrow Transition

Wide Transition

(Burt & Adelson)

Multiresolustion Spline - Using Laplacian Pyramid

Multiresolution Spline - Example

(Burt & Adelson)

Multiresolution Spline - Example

Original - Left

Original - Right

Original - Right

Splined

Glued

laplacian level 4

left pyramid right pyramid blended pyramid

Multiresolution Spline

Multiresolution Spline - Example

Multi-Res. Blending

© prof. dmartin

Image pyramids

- Gaussian Pyramids
- Laplacian Pyramids
- Wavelet/QMF

What is a good representation for image analysis?

- Pixel domain representation tells you "where" (pixel location), but not "what".
 - In space, this representation is too localized
- Fourier transform domain tells you "what" (textural properties), but not "where".
 - In space, this representation is too spread out.
- Want an image representation that gives you a local description of image events—what is happening where.
 - That representation might be "just right".

Space-Frequency Tiling

Space-Frequency Tiling

Various Wavelet basis

Wavelet - Frequency domain

Wavelet bands are split recursively

Wavelet - Frequency domain

Wavelet decomposition - 2D

Wavelet - Frequency domain

Apply the wavelet transform separably in both dimensions

• Splitting can be applied recursively:

Pyramids in Frequency Domain

Gaussian Pyramid Laplacian Pyramid

Wavelet Transform - Step By Step Example

Wavelet Transform - Example

Wavelet Transform - Example

Application: Wavelet Shrinkage Denoising

Noisy image

Clean image

Range [0, 255] Dims [394, 599]

Wavelet Shrinkage Denoising

Get top histogram but want to get bottom histogram.

Wavelet Shrinkage Denoising

For every Wavelet Band define Shrinkage function:

Wavelet Shrinkage Pipe-line

More results

More results

Image Pyramids - Comparison

Image pyramid levels = Filter then sample.

Filters:

Gaussian Pyramid

Laplacian Pyramid

Wavelet Pyramid

Image Linear Transforms

Transform	Basis	Characteristics
Delta	Standard	Localized in space Not localized in Frequency
Fourier	Sines+Cosines	Not localized in space Localized in Frequency
Wavelet Pyramid	Wavelet Filters	Localized in space Localized in Frequency

Convolution and Transforms in matrix notation (1D case)

Basis vectors (Fourier, Wavelet, etc)

Fourier Transform

Fourier bases are global: each transform coefficient depends on all pixel locations.

Transform in matrix notation (1D case)

Forward Transform:

Basis vectors (Fourier, Wavelet, etc)

Inverse Transform:

transformed image

Inverse Fourier Transform

Every image pixel is a linear combination of the Fourier basis weighted by the coefficient.

Note that if U is orthonormal basis then $\mathbf{U}^{-1} = \mathbf{U}^{\mathrm{t}}$

Convolution

Pyramid = Convolution + Sampling

Pyramid = Convolution + Sampling

Pyramid Level 1

Pyramid Level 2

Pyramid Level 2

Pyramid = Convolution + Sampling

Pyramid Level 2

Pyramid Level 2

Pyramid as Matrix Computation - Example

U1 =

```
1
    4
        6
                     0
                              0
                                   0
                                       0
                                            0
                                                0
                                                    0
                                                         0
                                                             0
                                                                      0
                                                                               0
                                                                                   0
0
    0
        1
             4
                 6
                     4
                          1
                              0
                                   0
                                       0
                                            0
                                                0
                                                    0
                                                         0
                                                             0
                                                                  0
                                                                      0
                                                                               0
                                                                                   0
                          6
                     4
                                       0
                                           0
                                                0
                                                    0
                                                             0
0
    0
        0
             0
                 1
                              4
                                                         0
                                                                      0
                                                                               0
                                                                                   0
    0
        0
                 0
                     0
                          1
                              4
                                   6
                                       4
                                           1
                                                0
                                                    0
                                                         0
                                                                               0
                                                                                   0
0
             0
                                                             0
                                                                      0
                                                4
        0
             0
                 0
                     0
                              0
                                       4
                                            6
                                                    1
                                                                      0
                                                                               0
                                                                                   0
                                            1
                                                4
                                                    6
    0
        0
             0
                 0
                     0
                              0
                                   0
                                       0
                                                                      0
                                                                                   0
                                                                               0
                 0
                     0
                          0
                                   0
                                       0
                                                     1
                                                         4
        0
                              0
                                            0
                                                0
                                                             6
                                                                      1
                                                                               0
                                                                                   0
                 0
                     0
                          0
                              0
                                   0
                                       0
                                            0
                                                0
                                                    0
                                                         0
                                                             1
                                                                               1
                                                                                   0
```

- Next pyramid level

U2 =

- The combined effect of the two pyramid levels

U2 * U1 =

```
4
        10
            20
                 31
                               40
                                    31
                                         20
                                              10
                                                                0
                                                                                 0
                                                                                     0
                                                                             0
0
    0
        0
            0
                 1
                        10
                             20 31
                                     40 44 40 31
                                                          20
                                                              10
                                                                    4
                                                                                 0
                                                                                     0
0
    0
        0
            0
                0
                     0
                         0
                             0
                                 1
                                         10
                                              20
                                                   31
                                                        40
                                                            44
                                                                 40
                                                                      30
                                                                           16
                                                                                    0
0
    0
        0
            0
                0
                     0
                         0
                             0
                                 0
                                          0
                                               0
                                                   1
                                                            10
                                                                 20
                                     0
                                                         4
                                                                           16
                                                                                4
                                                                                    0
```


Wavelet Transform

The End