Enhancement v.s. Restoration

• Image Enhancement:

 A process which aims to improve bad images so they will "look" better.

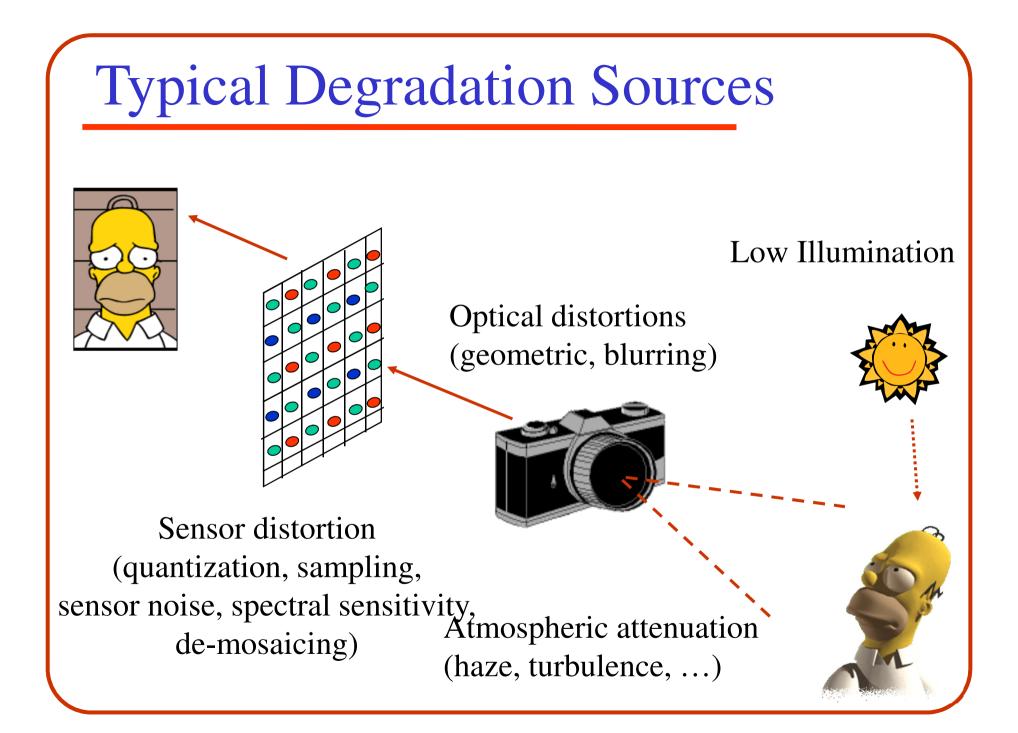
• Image Restoration:

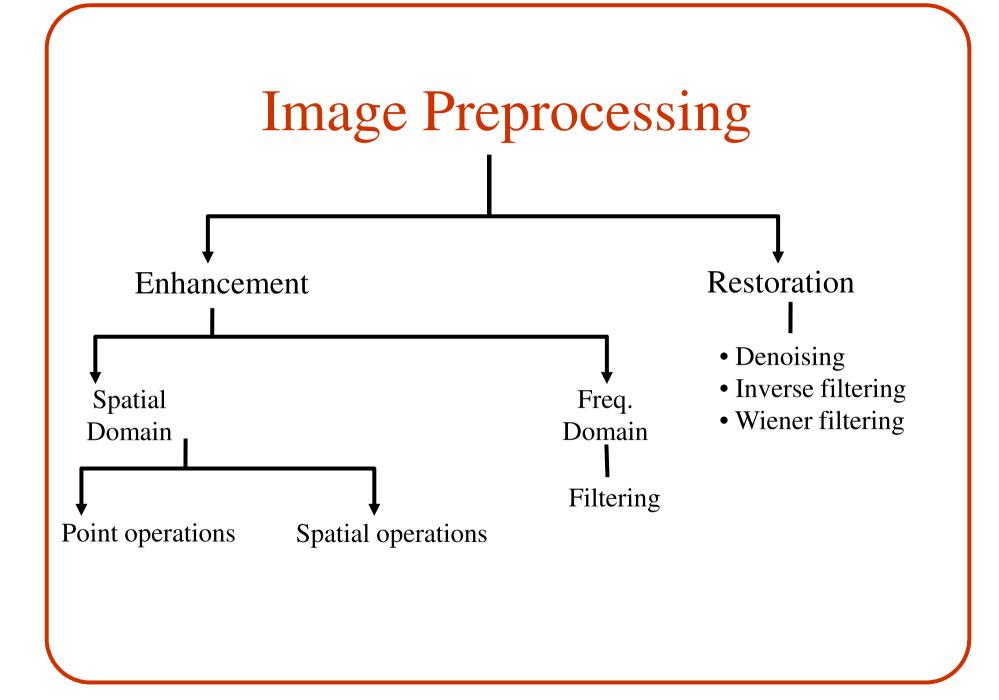
 A process which aims to invert known degradation operations applied to images.

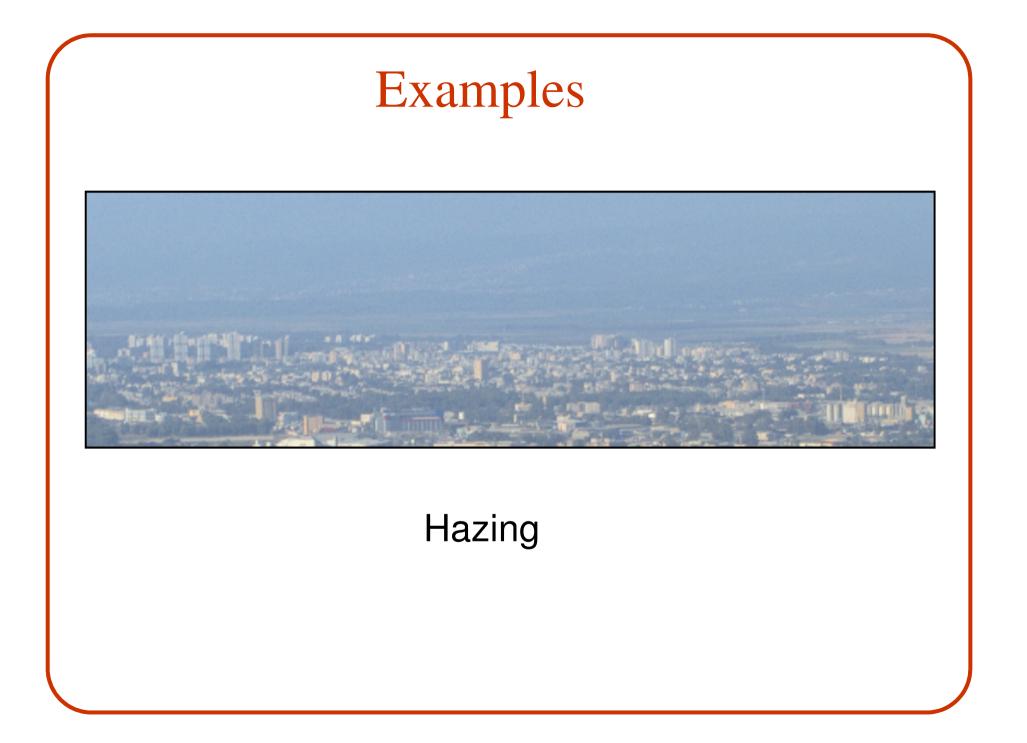
Enhancement vs. Restoration

 "Better" visual representation Remove effects of sensing environment

- Subjective
- Objective
- No quantitative measures
- Mathematical, model dependent quantitative measures







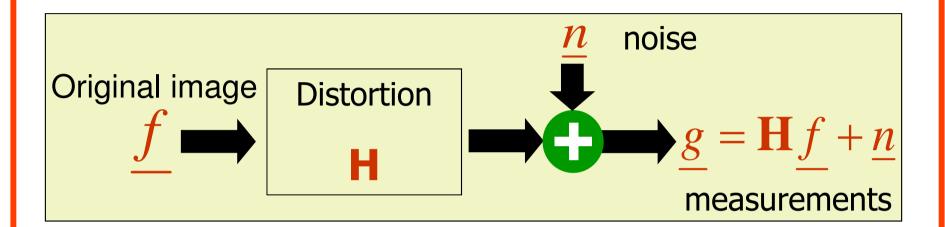
Echo image

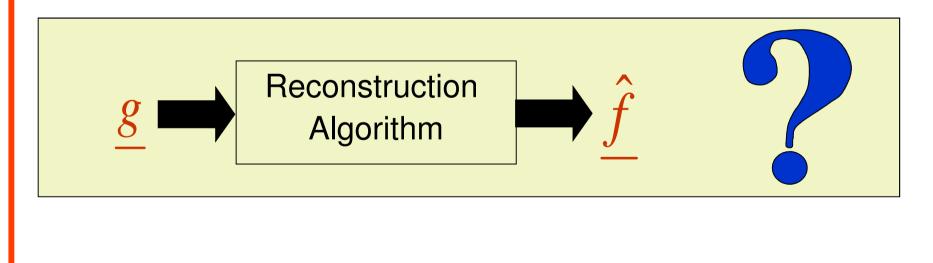
Motion Blur

Blurred image

Blurred image + additive white noise

Reconstruction as an Inverse Problem





So what is the problem?

$$\underline{g} \longrightarrow H^{-1}(\underline{g} - \underline{n}) \longrightarrow \hat{f}$$

- Typically:
 - The distortion H is singular or ill-posed.
 - The noise n is unknown, only its statistical properties can be learnt.

Key point: Stat. Prior of Natural Images

MAP (Max A-posteriori) estimation: $\hat{f} = \arg \max_{x} P(f|g) \propto \arg \max_{x} P(g|f) P(f)$

Bayesian Denoising

• Assume an additive noise model :

g=f+n

• A MAP estimate for the original f:

 $\hat{f} = \arg \max_{f} P(f \mid g)$

• Using Bayes rule and taking the log likelihood :

$$\hat{f} = \arg\max_{f} \frac{P(g \mid f)P(f)}{P(g)} = \arg\min_{f} \left\{ -\log P(g \mid f) - \log P(f) \right\}$$

Bayesian Denoising

If noise component is white Gaussian distributed:

g=f+n where n is distributed ~N(0, σ)

$$P(g \mid f) = e^{-(g-f)^{2}/\sigma}$$
$$-\log P(g \mid f) = (g-f)^{2}/\sigma$$

$$\hat{f} = \arg\min_{f} \left\{ (g - f)^{2} + \lambda R(f) \right\}$$

data term prior term

R(f) is a penalty for non probable f

Inverse Filtering

• Degradation model:

$$g(x,y) = h(x,y)*f(x,y)$$

 $G(u,v)=H(u,v)\cdot F(u,v)$

$$\stackrel{\wedge}{\longrightarrow} \hat{F}(u,v) = G(u,v)/H(u,v)$$

Inverse Filtering (Cont.)

Two problems with the above formulation:

- 1. H(u,v) might be zero for some (u,v).
- 2. In the presence of noise the noise might be amplified: $\hat{F}(u,v)=G(u,v)/H(u,v) + N(u,v)/H(u,v)$

Solution: Use prior information

$$\hat{F} = \arg\min_{F} \left(HF - G\right)^{2} + \lambda R(F)$$
data term prior term

Option 1: Prior Term

• Use penalty term that restrains high F values:

 $\hat{F} = \arg\min_{F} E(F)$

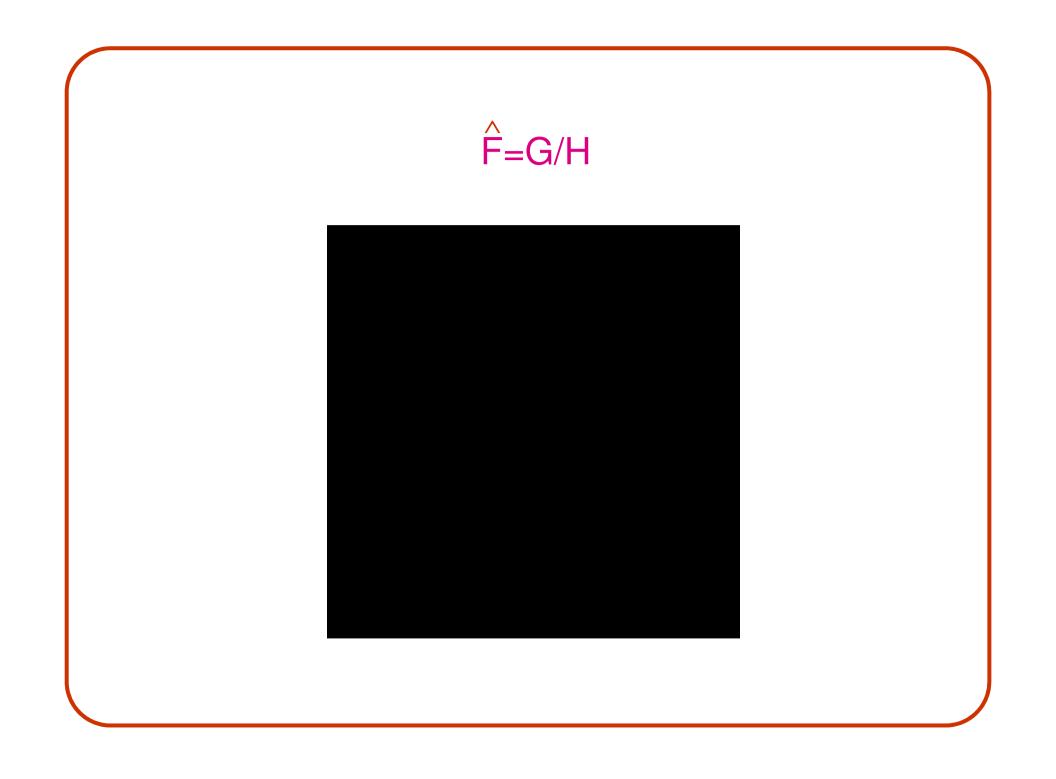
where $E(F) = (HF - G)^2 + \lambda F^2$

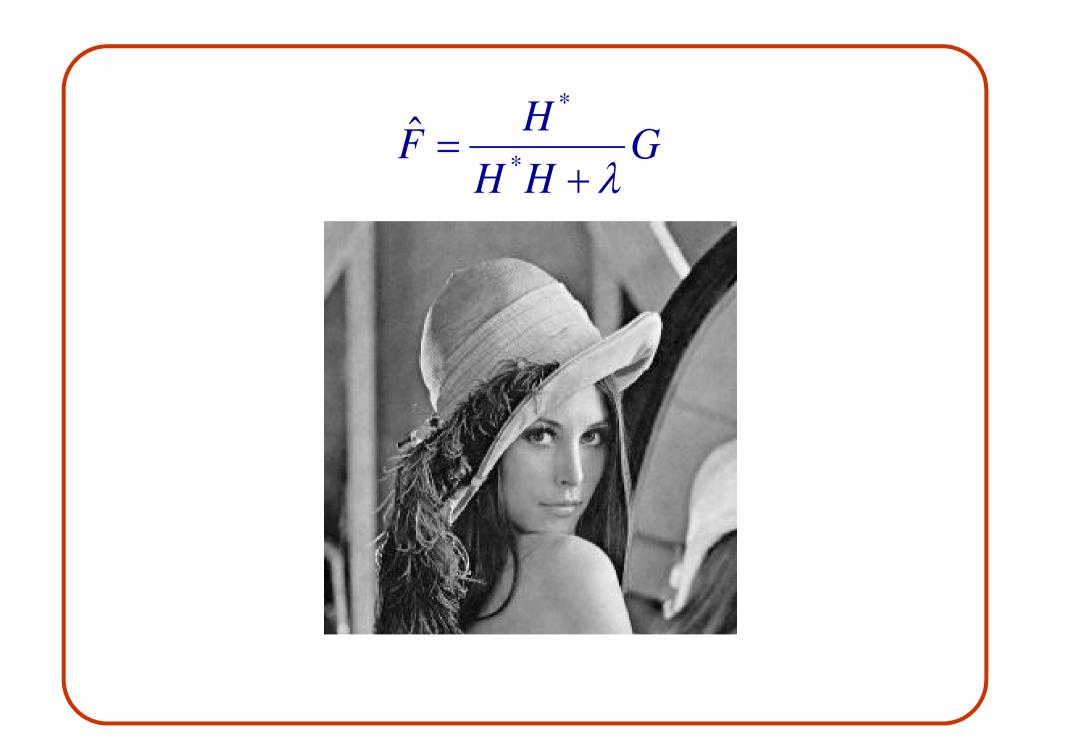
• Solution:

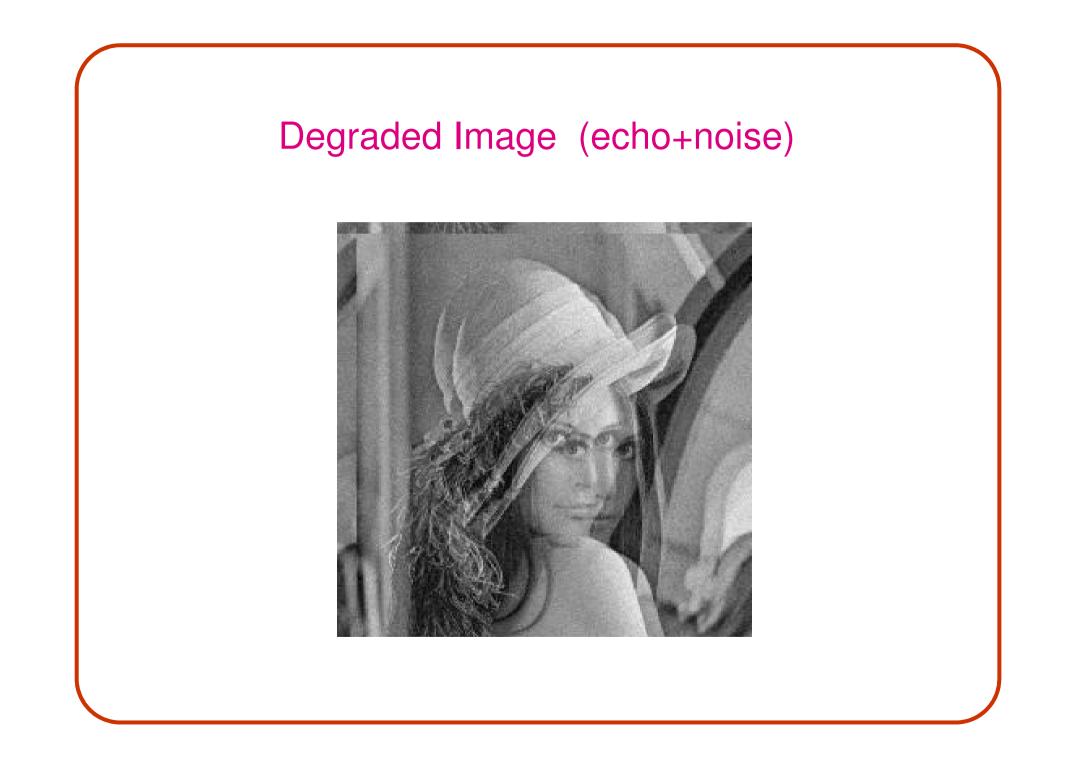
$$\frac{\partial E(F)}{\partial F} = 2H^*(HF - G) + 2\lambda F = 0$$

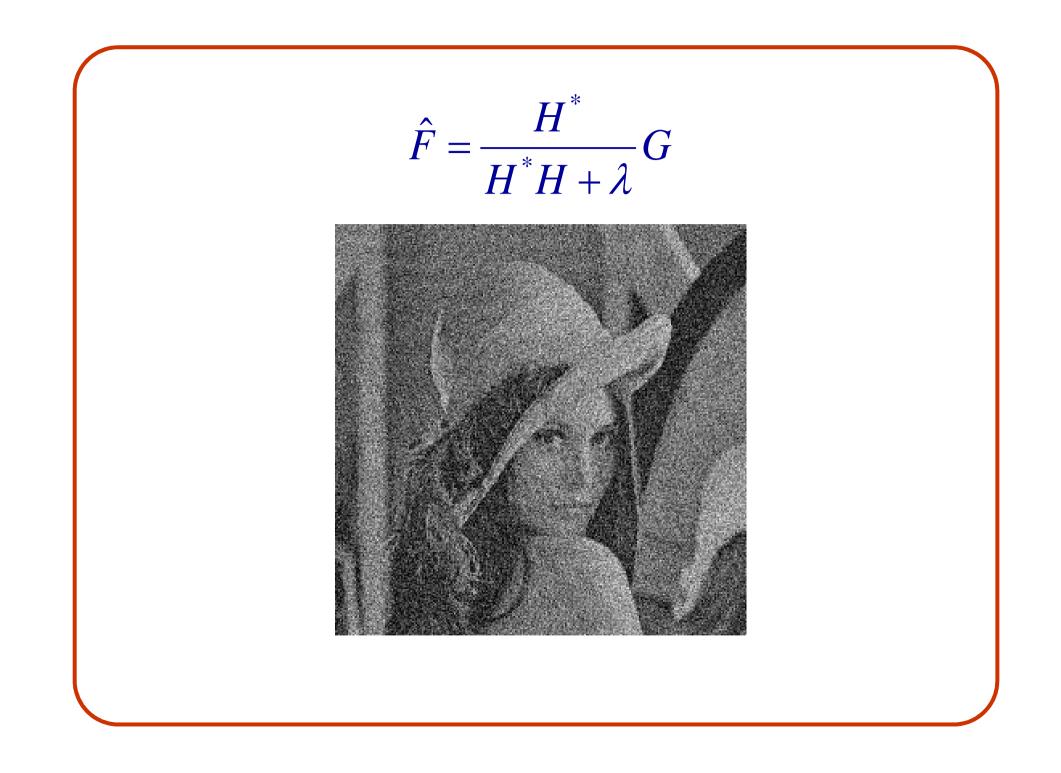
$$\hat{F} = \frac{H^*}{H^*H + \lambda}G$$

 $H(u,v) >> 1 \implies \hat{F} = G/H$ $H(u,v) << 1 \implies \hat{F} = 0$

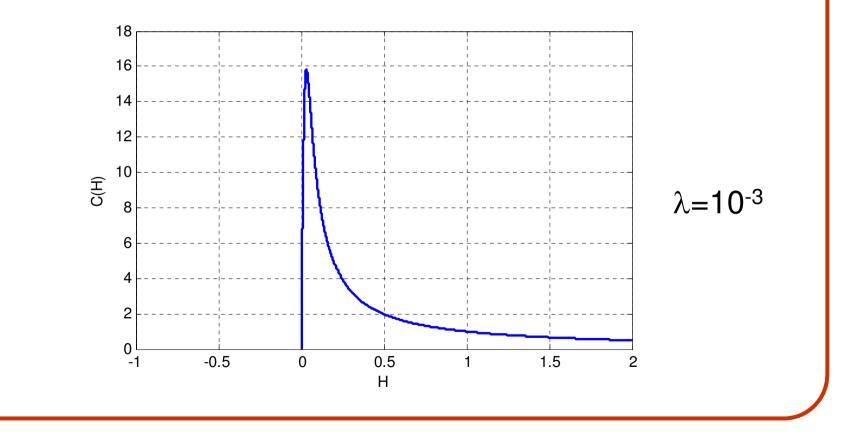








- The inverse filter is $C(H) = H^*/(H^*H + \lambda)$
- At some range of (u,v):
 S(u,v)/N(u,v) < 1 ➡ noise amplification.



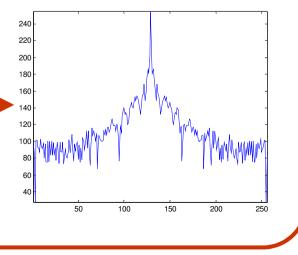
Option 2: Prior Term

- 1. Natural images tend to have low energy at high frequencies
- 2. White noise tend to have constant energy along freq.

$$\hat{F} = \arg\min_{F} E(F)$$

where

$$E(F) = (HF - G)^{2} + \lambda (u^{2} + v^{2})F^{2}$$



• Solution:
$$\frac{\partial E(F)}{\partial F} = 2H^*(HF - G) + 2\lambda(u^2 + v^2)F = 0$$

$$\hat{F} = \frac{H^*}{H^*H + \lambda(u^2 + v^2)}G$$

- This solution is known as the *Wienner Filter*
- Here we assume N(u,v) is constant.
- If N(u,v) is not constant:

$$\hat{F} = \frac{H^*}{H^*H + \lambda(u^2 + v^2) \cdot N(u, v)}G$$

