
• Low Pass Filter

• High Pass Filter

• Band pass Filter

• Blurring

• Sharpening 

Image Processing

Image Operations in the 
Frequency Domain



Frequency Bands

Percentage of image power enclosed in circles
(small to large) : 

90, 95, 98, 99, 99.5, 99.9

Image Fourier Spectrum



Blurring - Ideal Low pass Filter
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98% 99%

99.5% 99.9%















The Power Law of Natural Images

• The power in a disk of radii r=sqrt(u2+v2 ) 
follows:       P(r)=Ar-α where α≈2

Images from: Millane, Alzaidi & Hsiao - 2003



Recall:
The Convolution Theorem

g = f * h g = f⋅h 

implies implies 

G = F⋅H G = F * H 
 

 



Low pass Filter

f(x,y)               F(u,v)

g(x,y)              G(u,v)

G(u,v)  = F(u,v) • H(u,v)

spatial domain frequency domain

filter

•

f(x,y) F(u,v)

H(u,v)g(x,y)



H(u,v)  - Ideal Low Pass Filter

u

v

H(u,v)

0 D0

1

D(u,v)

H(u,v)

H(u,v) = 
1    D(u,v) ≤ D0

0    D(u,v) > D0

D(u,v) = √ u2 + v2

D0 = cut off frequency



Blurring - Ideal Low pass Filter

98.65%

99.37%

99.7%



98.0%

99.4%

99.7%

Blurring - Ideal Low pass Filter

99.0%

96.6%

99.6%



The Ringing Problem

G(u,v)  =  F(u,v) • H(u,v)

g(x,y)  =   f(x,y)  * h(x,y)

Convolution Theorem

sinc(x) 

h(x,y)H(u,v)

↑ D0 ↓ Ringing radius + ↓ blur

IFFT



The Ringing Problem
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H(u,v)  - Gaussian Filter

D(u,v)0 D0

1

H(u,v)

u
v

H(u,v)

D(u,v) =  √ u2 + v2

H(u,v) =  e-D2(u,v)/(2D2
0)

Softer Blurring  +  no Ringing

e/1



Blurring - Gaussain Lowpass Filter

96.44%

98.74%

99.11%



The Gaussian Lowpass Filter

Freq. domain

Spatial domain
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Blurring in the Spatial Domain:

Averaging = convolution with 1  1
1  1

= point multiplication of the transform with sinc:
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Gaussian Averaging = convolution with 
1  2  1
2  4  2
1  2  1

= point multiplication of the transform with a gaussian.

Image Domain Frequency Domain



Image Sharpening - High Pass Filter

H(u,v)  - Ideal Filter

H(u,v) = 
0    D(u,v) ≤ D0

1    D(u,v) > D0

D(u,v) = √ u2 + v2

D0 = cut off frequency

0 D0

1

D(u,v)

H(u,v)

u

v

H(u,v)



H(u,v)

D(u,v)0 D0

1

D(u,v) =  √ u2 + v2

High Pass  Gaussian Filter

u

v

H(u,v)

H(u,v) =  1 - e-D2(u,v)/(2D2
0)

e/11−



High Pass Filtering

Original High Pass Filtered 



High Frequency Emphasis

Original High Pass Filtered 

+

=



High Frequency Emphasis

Emphasize High Frequency.
Maintain Low frequencies and Mean.

(Typically K0 =1)

H'(u,v) = K0 + H(u,v)

0 D0

1

D(u,v)

H'(u,v)



High Frequency Emphasis - Example

Original High Frequency Emphasis

Original High Frequency Emphasis



High Pass Filtering - Examples

Original High pass Emphasis

High Frequency Emphasis 
+

Histogram Equalization



Band Pass Filtering

H(u,v) = 1    D0- ≤ D(u,v) ≤ D0 +
0    D(u,v) > D0 +

D(u,v) = √ u2 + v2

D0 = cut off frequency

u

v

H(u,v)

0

1
D(u,v)

H(u,v)

D0-
w
2

D0+
w
2

D0

0    D(u,v) ≤ D0 -
w
2

w
2

w
2

w
2

w  = band width



H(u,v) = 
1    D1(u,v) ≤ D0   or D2(u,v) ≤ D0

0    otherwise

D1(u,v) = √ (u-u0)2 + (v-v0)2

D0 = local frequency radius

Local Frequency Filtering

u

v

H(u,v)

0 D0

1

D(u,v)

H(u,v)

-u0,-v0 u0,v0

D2(u,v) = √ (u+u0)2 + (v+v0)2

u0,v0 = local frequency coordinates



H(u,v) = 
0    D1(u,v) ≤ D0   or D2(u,v) ≤ D0

1    otherwise

D1(u,v) = √ (u-u0)2 + (v-v0)2

D0 = local frequency radius

Band Rejection Filtering

0 D0

1

D(u,v)

H(u,v)

-u0,-v0 u0,v0

D2(u,v) = √ (u+u0)2 + (v+v0)2

u0,v0 = local frequency coordinates

u

v

H(u,v)
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Additive Noise Filtering



Local Reject Filter - Example

Original Noisy image Fourier Spectrum

Band Reject Filter



Local Reject Filter - Example

Original Noisy image Fourier Spectrum

Local Reject Filter



Homomorphic Filtering 
(multiplicative Noise Filtering)

Noise Model:

Image

Noise

Brightness

i(x,y)

n(x,y)

f(x,y)  =  i(x,y) • n(x,y)

Assumption: noise  ≈ low frequencies.

(suppress low frequencies associated with n(x,y))
Goal: Clean multiplicative noise

( ) ( )( ) ( )( ) ( )( )yxnFyxiFyxnyxiF ,~,~,,~ ⋅≠⋅

However:



Homomorphic Filtering

Original



Surface Reflectance i(x,y)

Illumination n(x,y)

Homomorphic Filtering - Example

Reflectance Model:

Brightness f(x,y)  =  i(x,y) • n(x,y)

Assumptions:

Illumination changes "slowly" across scene
Illumination  ≈ low frequencies.

Surface reflections change "sharply" across scene
reflectance  ≈ high frequencies.

Illumination Reflectance Brightness

Goal: Determine i(x,y)



Perform:

z(x,y) = log(f(x,y)) 

I(u,v) + N(u,v)

Apply low 
attenuating filter H(u,v)

S(u,v) = H(u,v)•Z(u,v)
-1

i'(x,y) + n'(x,y)

g(x,y) = exp(s(x,y))

Homomorphic Filtering:

log FFT-1FFT H(u,v) expimage image

log(i(x,y) • n(x,y)) = 
log(i(x,y)) + log(n(x,y))

=

Z(u,v) =

H(u,v)•I(u,v) + H(u,v)•N(u,v)=

s(x,y) =

exp(i'(x,y)) • exp(n'(x,y))=



Homomorphic Filtering

Original Filtered



Homomorphic Filtering

Original Histogram Equalized

Filtered



Homomorphic Filtering

Original Filtered



Computer Tomography
using FFT



CT Scanners
• In 1901 W.C. Roentgen won the Nobel 

Prize (1st in physics) for  his discovery 
of X-rays. 

Wilhelm Conrad Röntgen



CT Scanners
• In 1979 G. Hounsfield & A. Cormack, 

won the Nobel Prize for developing the 
computer tomography.

• The invention revolutionized medical 
imaging.

1st prototype of CT scanner

Allan M. Cormack

Godfrey N. Hounsfield



Computerized Tomography

Reconstruction from projections

f(x,y)

θ1

θ2



Projection & Sinogram

Sinogram
t

θ

Sinogram: 
All projections

P(θ,t)

f(x,y)

t

θ

y

x

X-rays

Projection: All ray-sums in a direction

π



CT Image & Its Sinogram

K. Thomenius & B. Roysam



The Slice Theorem

f(x,y)

θ1

x

y

θ1

u

v

spatial domain frequency domain
f(x,y) = object
g(x) = projection of f(x,y) parallel to the y-axis.

g(x) = ∫f(x,y)dy

F(u,v) = ∫ ∫ f(x,y) e -2πi(ux+vy) dxdy
Fourier Transform of f(x,y):

Fourier Transform at v=0 :
F(u,0) = ∫ ∫ f(x,y) e -2πiuxdxdy

= ∫ [ ∫ f(x,y)dy] e -2πiuxdx

= ∫ g(x) e -2πiuxdx  = G(u) 

The 1D Fourier Transform of g(x)

Fourier 
Transform



u

v
F(u,v)

Interpolations Method:
Interpolate (linear, quadratic etc) in the frequency 
space to obtain all values in F(u,v).
Perform Inverse Fourier Transform to obtain the 
image f(x,y).



Reconstruction from Projections - Example

Original simulated 
density image

8 projections-
Frequency Domain

120 projections-
Frequency Domain

8 projections-
Reconstruction

120 projections-
Reconstruction



Back Projection Reconstruction

g(x) is Back Projected along the line of projection.
The value of g(x) is added to the existing values at
each point which were obtained from other back 
projections.

Note: a blurred version of the original is obtained.
(for example consider a single point object is back
projected into a blurred delta).



Back Projection Reconstruction - Example

1 view 8 views

32 views 180 views



Filtered Back Projection - Example

1 view 2 views 4 views

8 view 16 views 32 views

180 views

Frequency
Spatial

Filter



THE END


