Image Operations in the Frequency Domain

- Low Pass Filter
- High Pass Filter
- Band pass Filter
- Blurring
- Sharpening

Frequency Bands

Image

Fourier Spectrum

Percentage of image power enclosed in circles (small to large) :

90, 95, 98, 99, 99.5, 99.9

Blurring - Ideal Low pass Filter

99%

99.5%

99.9%

The Power Law of Natural Images

Figure 1: (a) A natural image $(256 \times 256 \text{ pixels})$, and (b) its circularly averaged power spectrum (thick line) and a linear fit to the high frequency portion (thin line). The slope in (b) is 2.3.

• The power in a disk of radii r=sqrt(u^2+v^2) follows: P(r)=Ar^{- α} where $\alpha \approx 2$

Images from: Millane, Alzaidi & Hsiao - 2003

Recall: The Convolution Theorem

g = f * h $g = f \cdot h$ impliesimplies $G = F \cdot H$ G = F * H

Low pass Filter

H(u,v) - Ideal Low Pass Filter

$$H(u,v) = \begin{cases} 1 & D(u,v) \le D_0 \\ 0 & D(u,v) > D_0 \end{cases}$$

$$D(u,v) = \sqrt{u^2 + v^2}$$
$$D_0 = \text{cut off frequency}$$

Blurring - Ideal Low pass Filter

99.7%

98.65%

Blurring - Ideal Low pass Filter

99.7%

99.6%

99.4%

98.0%

99.0%

The Ringing Problem

H(u,v) - Gaussian Filter

$$H(u,v) = e^{-D^2(u,v)/(2D^2_0)}$$

$$\mathsf{D}(\mathsf{u},\mathsf{v}) = \sqrt{\mathsf{u}_2 + \mathsf{v}_2}$$

Softer Blurring + no Ringing

Blurring - Gaussain Lowpass Filter

99.11%

96.44%

The Gaussian Lowpass Filter

Freq. domain

= point multiplication of the transform with a gaussian.

Image Sharpening - High Pass Filter

H(u,v) - Ideal Filter

$$H(u,v) = \begin{cases} 0 & D(u,v) \le D_0 \\ 1 & D(u,v) > D_0 \end{cases}$$

$$D(u,v) = \sqrt{u^2 + v^2}$$
$$D_0 = \text{cut off frequency}$$

High Pass Gaussian Filter

$$H(u,v) = 1 - e^{-D^2(u,v)/(2D^2_0)}$$

$$\mathsf{D}(\mathsf{u},\mathsf{v}) = \sqrt{\mathsf{u}_2 + \mathsf{v}_2}$$

High Pass Filtering

Original

High Pass Filtered

High Frequency Emphasis

Original

High Pass Filtered

High Frequency Emphasis

Emphasize High Frequency. Maintain Low frequencies and Mean.

$$H'(u,v) = K_0 + H(u,v)$$

(Typically $K_0 = 1$)

High Frequency Emphasis - Example

Original

High Frequency Emphasis

Original

High Frequency Emphasis

High Pass Filtering - Examples

Original

High pass Emphasis

High Frequency Emphasis + Histogram Equalization Band Pass Filtering

$$H(u,v) = \begin{cases} 0 & D(u,v) \le D_0 - \frac{w}{2} \\ 1 & D_0 - \frac{w}{2} \le D(u,v) \le D_0 + \frac{w}{2} \\ 0 & D(u,v) > D_0 + \frac{w}{2} \end{cases}$$
$$D(u,v) = \sqrt{u^2 + v^2}$$
$$D_0 = \text{cut off frequency}$$

w = band width

$$H(u,v) = \begin{cases} 1 & D_1(u,v) \le D_0 \text{ or } D_2(u,v) \le D_0 \\ 0 & \text{otherwise} \end{cases}$$

$$D_1(u,v) = \sqrt{(u-u_0)^2 + (v-v_0)^2}$$
$$D_2(u,v) = \sqrt{(u+u_0)^2 + (v+v_0)^2}$$

 $D_0 = local frequency radius$ $u_0, v_0 = local frequency coordinates$

$$H(u,v) = \begin{cases} 0 & D_1(u,v) \le D_0 \text{ or } D_2(u,v) \le D_0 \\ 1 & \text{otherwise} \end{cases}$$

$$D_{1}(u,v) = \sqrt{(u-u_{0})^{2} + (v-v_{0})^{2}}$$
$$D_{2}(u,v) = \sqrt{(u+u_{0})^{2} + (v+v_{0})^{2}}$$

 $D_0 = local frequency radius$ $u_0, v_0 = local frequency coordinates$

Additive Noise Filtering

Local Reject Filter - Example

Original Noisy image

Fourier Spectrum

Band Reject Filter

Local Reject Filter - Example

Original Noisy image

Fourier Spectrum

Local Reject Filter

Homomorphic Filtering (multiplicative Noise Filtering)

Noise Model:

Image	i(x,y)
Noise	n(x,y)
Brightness	$f(x,y) = i(x,y) \bullet n(x,y)$

Assumption: noise \approx low frequencies.

Goal: Clean multiplicative noise (suppress low frequencies associated with n(x,y))

However:

$$\widetilde{F}(i(x, y) \cdot n(x, y)) \neq \widetilde{F}(i(x, y)) \cdot \widetilde{F}(n(x, y))$$

Original

Homomorphic Filtering - Example

Reflectance Model:

Surface Reflectancei(x,y)Illuminationn(x,y)Brightness $f(x,y) = i(x,y) \bullet n(x,y)$

Assumptions:

Illumination changes "slowly" across scene Illumination \approx low frequencies.

Surface reflections change "sharply" across scene reflectance \approx high frequencies.

ΛШ

Illumination

Reflectance

Brightness

Goal: Determine i(x,y)

Perform:

Homomorphic Filtering:

Original

Filtered

Original

Histogram Equalized

Filtered

Original

Filtered

Computer Tomography using FFT

CT Scanners

• In 1901 W.C. Roentgen won the Nobel Prize (1st in physics) for his discovery of X-rays.

Wilhelm Conrad Röntgen

CT Scanners

- In 1979 G. Hounsfield & A. Cormack, won the Nobel Prize for developing the computer tomography.
- The invention revolutionized medical imaging.

Allan M. Cormack

1st prototype of CT scanner

Godfrey N. Hounsfield

Computerized Tomography

Reconstruction from projections

Projection & Sinogram

Projection: All ray-sums in a direction

CT Image & Its Sinogram

K. Thomenius & B. Roysam

Interpolations Method:

Interpolate (linear, quadratic etc) in the frequency space to obtain all values in F(u,v). Perform **Inverse Fourier Transform** to obtain the image f(x,y).

Reconstruction from Projections - Example Original simulated density image 8 projections-Frequency Domain 120 projections-Frequency Domain b a d с

8 projections-Reconstruction

120 projections-Reconstruction

Back Projection Reconstruction

g(x) is Back Projected along the line of projection. The value of g(x) is added to the existing values at each point which were obtained from other back projections.

Note: a blurred version of the original is obtained. (for example consider a single point object is back projected into a blurred delta).

Back Projection Reconstruction - Example

1 view b a d c

32 views

180 views

Filtered Back Projection - Example

8 view

32 views

180 views

THE END